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Predictive ability of genome-
assisted statistical models under 
various forms of gene action
Mehdi Momen1, Ahmad Ayatollahi Mehrgardi1, Ayyub Sheikhi2, Andreas Kranis3, 

Llibertat Tusell4, Gota Morota  5, Guilherme J. M. Rosa  6,7 & Daniel Gianola6,7,8

Recent work has suggested that the performance of prediction models for complex traits may depend 

on the architecture of the target traits. Here we compared several prediction models with respect to 

their ability of predicting phenotypes under various statistical architectures of gene action: (1) purely 
additive, (2) additive and dominance, (3) additive, dominance, and two-locus epistasis, and (4) purely 
epistatic settings. Simulation and a real chicken dataset were used. Fourteen prediction models were 

compared: BayesA, BayesB, BayesC, Bayesian LASSO, Bayesian ridge regression, elastic net, genomic 

best linear unbiased prediction, a Gaussian process, LASSO, random forests, reproducing kernel Hilbert 

spaces regression, ridge regression (best linear unbiased prediction), relevance vector machines, and 
support vector machines. When the trait was under additive gene action, the parametric prediction 

models outperformed non-parametric ones. Conversely, when the trait was under epistatic gene action, 

the non-parametric prediction models provided more accurate predictions. Thus, prediction models 

must be selected according to the most probably underlying architecture of traits. In the chicken 

dataset examined, most models had similar prediction performance. Our results corroborate the view 

that there is no universally best prediction models, and that the development of robust prediction 

models is an important research objective.

�e e�ectiveness of genomic prediction depends on the accuracy of estimation of the genetic value of individuals 
with yet-to-be observed phenotypes1. Various factors a�ect the accuracy of estimated genomic breeding values 
(GEBVs) and, hence the expected response to genomic selection. �ese include the model performance, training 
and testing sample sizes, relatedness between individuals in training and testing sets, marker density, and the 
statistical genetic architecture of target traits, i.e., the extent and distribution of linkage disequilibrium between 
markers and quantitative trait loci (QTL), number of QTLs, allelic frequencies and magnitude of QTL e�ects, and 
trait heritability2,3. Accuracy may vary among genomic prediction models because of di�erent assumptions and 
treatments of marker e�ects and mode1. �e choice of whether to use variable selection or penalized models in 
parametric and non-parametric contexts o�en depends on the typically unknown genetic architecture and herit-
ability of the trait, as well as on sample size4,5. Genetic architecture is a term used to denote genotype-phenotype 
relationships that include the loci contributing to phenotypic variation, e.g., number of loci and their genomic 
location, number of alleles per locus, magnitude of their e�ects, pleiotropy patterns, mode of gene action and 
epigenetic e�ects6,7. Since statistical prediction models are used to represent unknown complexity, the term “sta-
tistical genetic architecture” may be a better term as such models cannot be taken as mechanistic representation 
of “genetic architecture”.

In animal and plant breeding, traits that are relevant for breeding programs have di�erent genetic architec-
tures. For instance, Hayes et al.8, studied three traits with presumably di�erent underlying genetic architecture: 
proportion of black coat color, fat percentage, and overall type in Holstein cattle. �ey concluded that the models 

1Department of Animal Science, University College of Agriculture, Shahid Bahonar University of Kerman (SBUK), 
Kerman, Iran. 2Department of Statistical Science, University College of Mathematic and Statistical Science, Shahid 
Bahonar University of Kerman (SBUK), Kerman, Iran. 3Roslin Institute, University of Edinburgh, Edinburgh, EH25 
9PS, UK. 4INRA UMR1388/INPT ENSAT/INPT ENVT GenPhySE, F-31326, Castanet-Tolosan, France. 5Department 
of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA. 6Department of Animal Sciences, 
University of Wisconsin, Madison, WI, USA. 7Department of Biostatistics and Medical Informatics, University 
of Wisconsin, Madison, WI, USA. 8Department of Dairy Science, University of Wisconsin, Madison, WI, USA. 
Correspondence and requests for materials should be addressed to A.A.M. (email: mehrgardi@uk.ac.ir)

Received: 1 November 2017

Accepted: 24 July 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-3567-6911
http://orcid.org/0000-0001-9172-6461
mailto:mehrgardi@uk.ac.ir


www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |  (2018) 8:12309  | DOI:10.1038/s41598-018-30089-2

with a di�erent variance per SNP (BayesA) were better for prediction of two of the traits that were a�ected by 
major genes; Gianola et al.9 showed that BayesA, actually assigns the same variance to each marker e�ect. A 
study by Ober et al.2 found that genomic best linear unbiased prediction (GBLUP) performed well for traits 
with a mostly additive genetic background (in Drosophila melanogaster), and conjectured an underlying epistatic 
gene-action when observing a poor predictive ability. In host plant resistance to wheat rust, a trait possibly 
in�uenced by additive gene e�ects, the Bayesian least absolute shrinkage and selection operator (BL) and ridge 
regression models outperformed support vector regression (SVM)10. Ornella et al.11, compared eleven genomic 
prediction models using wheat, maize, and barley data. Except for SVM, all prediction models provided similar 
average prediction accuracies. Howard et al.12 compared 14 genomic prediction models with 2000 biallelic mark-
ers by simulating two complex traits (explaining either 30% or 70% of the phenotypic variability) in a F2 and a 
backcross (BC) populations derived from crosses of inbred lines. �ey concluded that the parametric models 
predicted phenotypic values worse than those of non-parametric models when the gene action was epistasis.

�e preceding suggests that the performance of genomic prediction models depends on the genetic architec-
ture of the trait, especially major genes. Hill et al.13 and Mäki-Tanila and Hill14 have given strong empirical and 
theoretical evidence that most of the genetic variance is additive even when gene action is not. Unfortunately, the 
genetic architecture of most complex traits remains unknown for animal breeders and evolutionary geneticists, 
so a search for robust and stable prediction models is important.

�e objective of this study was to compare predictive accuracy of several parametric and non-parametric 
genomic prediction models for quantitative traits simulated under various forms of gene actions (additive, 
additive-dominance, additive-dominance-epistasis and pure epistasis). Predictive accuracy of the all models was 
also assessed with a real chicken dataset.

Methods
Real and simulated genomic data were used to investigate sensitivity and predictive ability of various genomic 
prediction models. Real data o�er the advantage of re�ecting true complexity, whereas simulation allows ones to 
explore the impact on predictive performance of factors such as statistical genetic architecture of the trait, number 
of markers used for the analysis, and degree of relatedness between training and prediction populations4.

Simulated data. Population. We used a mutation–dri� model with an e�ective population size of 100 
individuals. �e simulated population evolved at random for 2,000 historical generations with a constant size of 
1,000 individuals per generation. To create linkage disequilibrium and to establish mutation-dri� equilibrium in 
the historical population, a population bottleneck was introduced by decreasing population size from 1,000 to 200 
at generations 1,200–1,400. �en, the historical population size was extended to 1,000 individuals for the next 800 
generations15. A total of 400 females and 20 males from the last generation of the historical population became 
founders of the most recent generations. �e population was then expanded in the subsequent 55 generations 
under random mating, each mating producing two progenies. �e �nal 50th to 55th generations comprised of 
4,800 genotyped and phenotyped animals that were used to evaluate the di�erent prediction models.

Genome. �e simulated genome consisted of �ve pairs of autosomes with 100 cM length each, leading to a 
500 cM genome. At the onset, all loci were homozygous but subsequently, alleles were randomly mutated and 
recombined such that each loci had a mutation rate at QTLs and SNP markers of 2 5 10 5

. ×
−  per generation. �e 

SNP markers were randomly distributed across the genome and the initial number of markers was chosen such 
that it would generate a 10,000 SNP density panel of segregating bi-allelic loci with a minor allele frequency 
(MAF) ≥ 0.1. A total of 300 bi-allelic QTLs was simulated, whose positions were randomly distributed across the 
genome.

Simulation of phenotypes under various gene action models. Additive, dominance, and two-locus epistatic e�ects 
(i.e., additive × additive, additive × dominance and dominance × dominance interactions) were simulated in 
order to measure the predictive ability of various statistical prediction models. Four scenarios of gene action were 
simulated: additive, additive plus dominance, additive plus dominance plus epistasis, and a purely epistatic model.

Purely additive (Ad). �e average e�ect of allelic substitution measures the expected change in average pheno-
type produced by substituting a single allele of one type with that of another type (Table 1). �is is shown as 

α = + −a d q p( ), where a and d are additive and dominance e�ects, respectively, and p is the allelic frequency 
with q p1= − . In previous simulation studies16, additive allelic substitution e�ects at QTLs were drawn from a 
Gamma distribution with parameters shown in Table 2. �e e�ect sign was sampled to be positive or negative, 
each with probability 0.5. �ree hundred QTLs positions were sampled from the SNPs in order to produce a 

k Pure additive(d 0i = ) Additive: Dominance

A A1 1 p a2 2 ( )− α− p(2 2 )

A A1 2 p a1 2 ( )− p(1 2 )α−

A A2 2 p a2 ( )− p( 2 )α−

Table 1. Genotypic values of simulated QTL for a one-locus, two-allele model of gene action when a trait 
is a�ected only by additive (second column) and by both additive and dominance (third column). p: allelic 
frequency, a: additive e�ect, di: dominance e�ect, α = a + d(q − p): average e�ect of allelic substitution.



www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |  (2018) 8:12309  | DOI:10.1038/s41598-018-30089-2

purely additive trait (in this case, the dominance e�ect was =d 0ik ; i and k denote the i-th individual and k-th 
QTL, respectively). �e phenotypic value of each individual i, was created by adding a normally distributed resid-
ual e , N(0, )i

2~ σ  to the sum over QTL of genetic values shown in Table 1:

y X a e
i k

nQTL
ik k i1∑= +

=

Above, Xik is an (i = 1, …, number of individuals; k = 1, …, number of QTLs) is an element of the incidence 
matrix for additive genetic effects (a )k with 2, 1 and 0 as entries for A A2 2, A A ,2 1 and A A1 1 genotypes, 
respectively.

Additive and dominance (Ad:Dom). Dominance arises when the e�ect of alleles at a locus interact such that the 
value of heterozygous genotype deviates from the mean value of the homozygous genotypes. �e dominance 
deviation for a particular QTLs was calculated as the di�erence between the average value of A A1 2 genotypes and 
the mean of A A1 1 and A A2 2  genotypes. Then, breeding values are q a d q p2 [ ( )]+ −  (for A A1 1), 

− + −q p a d q p( )[ ( )] (for A A1 2) and p a d q p2 [ ( )]− + −  (for A A2 2). �e dominance deviation at a given 
QTL locus is the di�erence between the total genotypic value and the breeding value, and is equal to q d2 2

− , pqd2  
and p d2 2
−  for A A1 1, A A1 2 and A A2 2, respectively17. In this study, the dominance e�ect QTL k was determined as 

the product of the absolute value of the additive substitution e�ect and degree of dominance δ α= .dk k k , 
here, kδ  is the degree of dominance sampled from a normal distribution with N(0 5, 1)k ~δ .  (Table 2). To create 
the phenotypic value for individual i, a residual ei was added to the sum of e�ects of the true breeding value and 
of the dominance deviation:

∑= + +
=

y X a D d e( )
i

k

nQTL

ik k ik k i
1

Above, Dik (i = 1, …, number of individuals; k = 1, …, number of QTLs) is an element of the incidence matrix 
for dominance genetic e�ects (d )k with 0, 1, and 0 as entries for A A2 2, A A ,2 1 and A A1 1 genotypes, respectively.

Additive, dominance and epistasis (Ad:Dom:Epi). �e simplest quantitative genetic model including epistasis 
is a two-locus model in which each locus has two alleles. Epistatic gene action in�uences the average e�ects of 
alleles and of dominance deviations, and consequently, the additive and dominance genetic variance18,19. In this 
scenario, we considered the genetic e�ects on a trait to be due to unlinked QTLs, with additive, dominance and 
epistatic gene action (Table 3).

Epistasis was simulated only between pairs of QTLs and it included additive × additive (A × A), addi-
tive × dominance (A × D), dominance × additive (D × A), and dominance × dominance (D × D) interactions. 
QTLs were randomly chosen from the 300 QTLs to form 1,500 pairs, and each pair was assigned interaction 
e�ects; 1) (A × A) ′aal lk k , 2) (A × D) ′adl lk k , 3) (D × A) dal lk k′ and 4) (D × D) interaction ddl lk k′. Here, lk and lk′ 
represent the k and k′ QTLs. Similar to Wittenburg et al.16, the epistatic e�ects were sampled from a normal dis-
tribution with parameters shown in Table 2. �e phenotype was created by adding ei to the sum of simulated 
additive, dominance and epistatic QTLs e�ects20:

y X a D d aal l adl l

dal l ddl l e

i
k

nQTL

ij j
k

nQTL

ij j
k

p

k
k k

p

k k
k

p

k
k k

p

k k

k

p

k
k k

p

k k
k
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1 1 1

1

2 1
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= + + +
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=
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=
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Above, ′aal lk k , adl lk k′, dal lk k′ and ddl lk k′ are the AxA, AxD, DxA, and DxD epistatic e�ects between QTLs k and k′ 
(k < k′ = 1, …, p), respectively.

Genetic E�ects
Number of QTL/
Interactions Distribution

additive 300 α β= . = .~G ( 0 42, 8 282)

dominance 300 d N, (0 5, 1)k k k kδ α δ= .~

additive × additive 1500 N m t( 0 02, 0 03)2~ = . = .

additive × dominance 1500 = . = .N m t( 0 02, 0 03)2~

dominance × additive 1500 N m t( 0 02, 0 03)2~ = . = .

dominance × dominance 1500 ~ = . = .N m t( 0 02, 0 03)2

Table 2. Distribution of simulated QTL e�ects (Gamma for addtive and normal for epistatic) and 
corresponding parameters. �e dominance QTL e�ects were derived from additive e�ects and a degree of 
dominance derived from a normal distribution. m: mean, t2: variance, δk: degree of dominance, G~: Gamma 
distribution, N~: normal distribution.
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Purely epistatic (Epi). We also simulated a purely epistasic model, without additive and dominance e�ects at any 
of the QTLs, as:

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑= + + + +
=

−
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�e simulation process was carried out in two steps: the QMSim so�ware21 was �rst used to simulate the his-
torical and recent populations and then the outputs were used to design gene action architectures.

Genetic variance components. In order to compute genetic variance components based on Cockerham22, we 
assumed that each pairs of QTLs were independent, and the additive and non-additive genetic variances were as 
in Table 4. Table 5 shows the partition of variance relative to the total variance explained by each source of genetic 
variation accounted for traits.

Real Data. �e data set consisted of records on 1,351 broiler chickens provided by Aviagen Ltd (Aviagen Ltd, 
Newbridge, UK) for three traits: body weight (BW), ultrasound of breast muscle at 35 days of age (BM), and 
hen-house egg production (HHP) de�ned as the total number of eggs laid between weeks 28 and 54 per bird. 
Phenotypic records for BW and BM were pre-corrected for a combined e�ect of sex (525 males and 826 females), 
hatch week, contemporary group of parents and pen in the growing farm, whereas phenotypic records for HHP 

A–locus genotype f(AiAj)

B–locus genotype

B1B1 B1B2 B2B2

f(BkBl)

q
1

2 2q1q2 q
2

2

A A1 1 p
1

2
µ + + +a a aaA B µ + + +a d adA B µ + − −a a aaA B

p q
1

2

1

2 p q q2
1

2

1 2
p q

1

2

2

2

A A1 2 p p2
1 2

d a daA Bµ + + + d d ddA Bµ + + + µ + − −d a daA B

p p q2
1 2 1

2 p p q q4
1 2 1 2

p p q2
1 2 2

2

A A2 2 p
2

2
a a aaA Bµ − + − a d adA Bµ − + − µ − − +a a aaA B

p q
2

2

1

2 p q q2
2

2

1 2
p q

2

2

2

2

Table 3. Genotypic values and genotypic frequencies1 in a two-locus, two-allele model with additive, 
dominance, and epistatic gene action. Two locus genotypic frequencies were obtained by multiplication of 
marginal frequencies under linkage equilibrium63. µ: population mean; a: additive substitution e�ect; d: 
dominance deviation;aa, da, da and dd: additive × additive, additive × dominance, dominance × additive and 
dominance × dominance, gene actions respectively; p and q are major and minor allele frequencies.

Additive δ α= + − =pq a d q p pq2 [ ( )] 2a
2 2 2

Dominance δ = pqd[2 ]d
2 2

Additive × Additive δ αα= ∑p q4 ( )aa i k ik
2 2

Additive × Dominance δ αδ= ∑p q q2 ( )ad i k l ikl
2 2

Dominanc × Additive δ δα= ∑p p q2 ( )da i j k ikl
2 2

Dominanc × Dominanc δ δδ= ∑ ( )p p q qdd i j k l ijkl
2 2

Table 4. Variance components for main e�ects (additive and dominance) and two order epistatic interactions 
that contributed to genetic variance under di�erent genetic architectures. a: additive substitution e�ect; d: 
dominance deviation; α: average allelic e�ect; αα, αδ, δα and δδ are additive × additive, additive × dominance, 
dominance × additive and dominance × dominance epistatic deviations, respectively; p and q are major and 
minor allele frequencies64.

Gene action ha
2 hd

2 ha:a
2 ha:d

2 hd:a
2 hd:d

2 Hbroad sense
2

Purely Additive 0.30 0.00 0.00 0.00 0.00 0.00 0.30

Additive:Dominance 0.30 0.10 0.00 0.00 0.00 0.00 0.40

Additive:Dominance:Epistatic 0.30 0.10 0.10 0.10 0.10 0.10 0.80

Purely Epistatic 0.00 0.00 0.10 0.05 0.05 0.10 0.30

Table 5. Heritability of simulated traits under various forms of gene action (additive, dominance and epistatic). 

ha
2: additive heritability, hd

2: dominance heritability, and ha a:
2 , ha d:

2 , hd a:
2 , and hd d:

2  are additive by additive, additive 
by dominance, dominance by additive, and dominance by dominance epistatic heritabilites, respectively.
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were pre-adjusted for hatch e�ects. All individuals were genotyped with a 600 K A�ymetrix SNP chip (A�ymetrix, 
Inc., Santa Clara, CA, USA). More precisely, 580,954 SNP genotypes were available in the dataset. Markers with 
MAF < 1% were removed and missing genotypes for the remaining SNPs were imputed using the Beagle so�-
ware23. All SNPs were subsequently kept if they presented a genotype call rate >95% and were in Hardy–Weinberg 
equilibrium. Individuals were kept if their genotype call rate >95%. Deviation from Hardy–Weinberg equilib-
rium was assessed by the Pearson’s chi-square test with a signi�cance threshold of 10− 6. A�er edits, 354,364 
autosomal SNPs remained for the analysis. Mean MAF was equal to 0.27. Only SNPs on 28 chromosomes were 
considered, covering 919 Mb of the Gallus gallus genome. �e PLINK so�ware24 was used to edit the data.

Genome-assisted prediction model. �e performance of 14 di�erent prediction models that di�er with respect to 
assumptions regarding distribution of marker e�ects was evaluated. �e parametric models included GBLUP25,26, 
ridge regression BLUP (rrBLUP)27,28, the least absolute shrinkage and selection operator (LASSO)29,30, the elas-
tic net (EN)31, Bayesian ridge regression (BRR)5,31,32, BL33, BayesA27,34, BayesB27,34, and BayesC27,34. In addition, 
the following non-parametric models were evaluated: reproducing kernel Hilbert space regression (RKHS)35–37, 
SVM38, relevance vector machine (RVM)39 and Gaussian Processes (GP)39,40 and random forest (RF). Although 
GBLUP and the GP use similar approaches, GP which is o�en used in machine learning, predict the value for an 
unseen point from training data and de�ned as a collection of random variables40,41.

To implement the BayesA, BayesB, BayesC, BRR, BL, and RKHS, we used BGLR R package developed by Pérez 
and de los Campos42 and the glmnet function from the glmnet R-package were used for LASSO and EN43. �e 
rvm, ksvm functions from the kernlab package44 were used to predict genomic breeding values for RVM, SVM, 
and GP. In addition, we used the mixed.solve function from rrBLUP package28 to perform GBLUP and rrBLUP 
and the randomForest option from the e1071 package45 for RF.

To compare the performance of the different prediction models, we used 20 replicates of a five-fold 
cross-validation scheme as described in Pérez-Cabal et al.46. �e data were divided into training (80%) and testing 
(20%) sets. �e training set was used to �t the models and the testing set to measure performance of the predic-
tion models. �e procedure was repeated 20 times at random, yielding 100 cross-validation runs.

For each cross-validation scenario, three criteria were measured: (i) predictive accuracy de�ned as the corre-
lation between phenotypic values and the predicted genomic values (r )y GEBV, , (ii) the “empirical” accuracy de�ned 
as the correlation between true breeding values (TBV) and predicted genomic breeding values (rTBV GEBV, ) 
(because of unknown TBV, this criterion was not used in the chicken data set) and, (iii) a test for empirical pre-
diction bias done by regressing phenotypes (simulated and real) on the GEBVs.

Availability of data and materials. �e datasets generated and/or analyzed during the current study are 
not publicly available due to the Aviagen Ltd (Aviagen Ltd, Newbridge, UK) polices.

Ethical approval and consent to participate. �e article does not contain any studies with human sub-
jects performed by the authors. �e data analysis was conducted in the Department of Animal Science at the 
University of Wisconsin-Madison, U.S.A.

Results and Discussion
Predictive accuracy and empirical accuracy of genomic predictions. Figure 1 shows the mean and 
standard errors (the 100 cross-validation values) of predictive and empirical accuracy over all prediction models. 
Prediction accuracies decreased when gene action was more complex, although the two extreme architectures (i.e. 
Ad and Epi) had the same broad sense heritability (H2

= 0.30). �e largest di�erence between predictive and 
empirical accuracy was under the Ad scenario. �is may be due to the fact that the additive model was the sim-
plest, so the prediction task is less challenging to the models.

Predictive and empirical accuracies of prediction models for traits simulated under Ad, Add:Dom, 
Add:Dom:Epi, and Epi gene actions are depicted in Fig. 2. Both measures of accuracy showed the same trend 

Figure 1. Overall mean (standard error) of predictive and empirical accuracy of di�erent prediction models 
under various gene action scenarios: purely additive (Ad), additive and dominance (Ad:Dom), additive 
dominance and epistasis (Ad:Dom:Epi), and pure epistasis (Epi).
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across gene action scenarios. �e highest predictive and empirical accuracies were consistently obtained under 
Ad (0.56 and 0.90, respectively), in which genetic values of individuals were only in�uenced by additive QTL 
e�ects. Accuracy decreased as genetic complexity increased (0.33 and 0.4 for Epi). �e results show QTL gene 
action a�ects empirical and predictive accuracies in genomic prediction. Our �ndings under a purely additive 
scenario are in agreement with Daetwyler et al.47. �ey compared two parametric models (GBLUP and BayesB) 
using data with three di�erent e�ective population sizes coupled with a wide range of number of additive QTLs. 
�ey found that GBLUP had a stable accuracy, whereas BayesB slightly outperformed GBLUP when the number 
of QTLs was small. A similar �nding was reported by Clark et al.48, who investigated the e�ect of genetic architec-
ture on predictive performance of rrBLUP and BayesB. In this study, BayesB outperformed rrBLUP if the trait to 
be predicted was in�uenced by a few rare QTLs with a large e�ect. However, the previous studies did not examine 
non-parametric models or genetic architectures other than the additive gene action.

Predictive and empirical accuracies did not di�er among prediction models at any of the gene action scenar-
ios, except for RF and RKHS, which produced the lowest performance when predicting the trait under Ad genetic 
architecture but slightly outperforming the other prediction models under Epi. Although parametric models 
di�er in prior assumptions made about marker e�ects49, their predictive ability was similar and they globally 
obtained higher accuracies, especially under Ad genetic architecture.

Among parametric models, LASSO and GBLUP yielded the highest accuracy of prediction when only additive 
genetic e�ect in�uenced the phenotype. Conversely, non-parametric models such as RKHS, delivered better pre-
dictive performance when non-additive e�ects were present. �is is because non-parametric or semi-parametric 
models can build (co)variance structures capable of capturing more complex modes of gene action than lin-
ear smoothers50. Our results are in agreement with previous studies; for example Howard et al.12 reported that 
parametric models predicted phenotypic values worse when the underlying architecture was entirely epistatic, 
whereas parametric models produced slightly better predictions than non-parametric models when additively 
assumptions held. Further, parametric genome-based prediction models were unable to predict chill coma recov-
ery, an adaptive trait in Drosophila. Previous whole genome scan suggested that this trait exhibited epistatic inter-
actions involving many loci2. Possibly, non-parametric models account better non-additive e�ects while making 
weaker assumptions51. �us, non-parametric regression models seem to be well-suited for modeling such traits.

Di�erences in predictive ability among non-parametric models could be due to the intrinsic ways in which 
marker information is incorporated by various prediction models. While models make no assumptions about 
gene action, non-linearity is introduced in speci�c ways52. For instance, RKHS with a single Gaussian kernel 
may yield di�erent results compared to a multi-kernel speci�cation e.g.,53. Further, the di�erences among par-
ametric models when a speci�c genetic architecture was assumed, may be due to di�erence in the ability of the 

Figure 2. Predictive and empirical accuracies of genomic prediction models for traits simulated under purely 
additive (Ad), additive:dominance (Add:Dom), additive:dominance:epistatic (Add:Dom:Epi), and purely 
epistatic (Epi) gene action scenarios with a broad sense heritability of 0.30, 0.40, 0.80 and 0.30, respectively. 
Prediction models: BayesA, BayesB BayesC, Bayesian least absolute shrinkage and selector operator (BL), 
Bayesian ridge regression (BRR), elastic net (EN), genomic best linear unbiased prediction (GBLUP), Gaussian 
process (GP), least absolute shrinkage and selector operator (LASSO), random forest (RF), reproducing kernel 
Hilbert spaces regression (RKHS), ridge regression best linear unbiased prediction (rrBLUP), relevance vector 
machine (RVM), and support vector machine (SVM).
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prediction models in capturing linkage disequilibrium between markers and QTLs leading to di�erent prediction 
accuracies49,54.

Arguably, a higher genomic heritability results in genetic values that perform better at predicting yet-to-be 
observed phenotypes. For example, prediction accuracies for wheat resistance to yellow and stem rust was related 
to their lower and highest heritability, respectively55. Similar results were found for grain yield (low heritability) 
versus grain moisture (high heritability) in maize, with the respective accuracies of prediction at 0.58 and 0.9056. 
Nevertheless, predictive ability does not depend on heritability only. For instance, prediction accuracy for �our 
protein content (heritability = 0.56) and sucrose solvent retention (heritability = 0.45) was 0.64 and 0.74, respec-
tively, in double-haploid biparental wheat lines57. As shown in our simulation study, accuracy of genomic predic-
tion was sensitive not only with respect to heritability of a trait but also with respect to gene action.

Prediction bias. Figure 3 shows boxplots of the regression of simulated phenotypes on the predicted genomic 
values. “Unbiased prediction models” are expected to have a regression with a small intercept and a slope equal 
to 1 (red dashed horizontal line in Fig. 3); the regression coe�cients greater than 1 indicate under-prediction and 
smaller than 1 indicate an over-statement prediction30. BayesA, BayesB, BayesC, BL, BRR, GBLUP, RKHS, and, 
rrBLUP produced nearly unbiased predictions, irrespectively of the genetic architecture underlying the trait. EN 
and RF systematically over and under predicted genetic architecture scenarios, respectively. GP and SVM over 
predicted the trait under Epi architecture, and under predicted otherwise. Genetic architecture of the trait had a 
great in�uence on predictive ability of the models tested. Less biased, more precise, and stable prediction mod-
els should be preferred. Our results indicate that an inadequate representation of genetic architecture may lead 
to biased predictions when genomic data are used as inputs. In such situations, appropriate prediction models 
that are more capable to capture genetic architecture of complex traits for correcting the bias of predictions are 
required58,59.

Hierarchical clustering of predicted genetic values. A hierarchical clustering algorithm “Ward’s 
method”60 was applied to compute a distance matrix from three sources (predictive and empirical accuracies, and 
bias) for all implemented prediction models. �e solution obtained with Ward’s method was re�ned using the 
k-means algorithm taking an agglomerative approach or bottoms up approach61 so that it starts with own cluster 
and each pairs of clusters were merged together as one moves up the hierarchy62.

Results (Fig. 4) showed that under Ad gene action, parametric and non-parametric models (notably RF, 
GP, SVM, and RKHS) were grouped into di�erent clusters. In, the Ad:Dom model, the dendrogram showed a 
slightly di�erent structure; for example, BayesC was placed together with GP, and RVM, and RKHS were placed 
within a parametric group. When epistatic interaction e�ects were included (Ad:Dom:Epi, and Epi), all Bayesian 
models and LASSO settled in the same category. For Ad:Dom:Epi, RKHS, SVM, GBLUP, and GP were grouped 
together, all Bayesian models were grouped in separate cluster, and RVM and RF were in the same cluster with 
rrBLUP and EN. Within the Epi architecture, RKHS regression was separated from all other models, and some 
non-parametric models were allocated to groups that combine parametric models. In summary, the dendrogram 
topology did not separate non-parametric from parametric models clearly, when gene action was not additive.

Chicken dataset. �e results obtained with chicken data on predictive accuracy and bias indicated that GP 
and GBLUP consistently produced the least biased, most precise, and most stable estimates of predictive accuracy 
for HHP and BM (Fig. 5 and Table 6). For BW, BayesA and BayesB, and LASSO yielded the highest predictive 
accuracies, and LASSO was at least as good as or ever better than BayesA and BayesB in terms of unbiasedness. 

Figure 3. Boxplots of bias (regression coe�cient of simulated phenotypes on genomic estimated 
breeding values) for traits simulated under purely additive (Ad), additive:dominance (Ad:Dom), 
additive:dominance:epistatic (Ad:Dom:Epi) and pure epistatic (Epi) gene action scenarios and heritability 
of 0.30, 0.40, 0.80 and 0.30, respectively. Prediction models: BayesA, BayesB, BayesC, Bayesian least absolute 
shrinkage and selector operator (BL), Bayesian ridge regression (BRR), elastic net (EN), genomic best linear 
unbiased prediction (GBLUP), Gaussian process (GP), least absolute shrinkage and selector operator (LASSO), 
random forest (RF), reproducing kernel Hilbert spaces regression (RKHS), ridge regression best linear unbiased 
prediction (rrBLUP), relevance vector machine (RVM), and support vector machine (SVM). Outliers are 
denoted as black dots.
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RKHS performed best the among non-parametric models. Other prediction models performed inconsistently 
across the traits and su�ered varying degrees of over- or under-prediction and numerical instability. In general, 
all models tended more to over predict yet-to-be observed phenotypes than to under predict, whereas in the sim-
ulations, most models tended to under predict measured phenotypes.

Figure 4. Ward’s hierarchical clustering on predicted genomic values derived from traits simulated under 
purely additive (Ad), additive:dominance (Ad:Dom), additive:dominance:epistatic (Ad:Dom:Epi) and purely 
epistatic (Epi) gene action. Prediction models: Bayes A, Bayes B, Bayes C, Bayesian least absolute shrinkage 
and selector operator (BL), Bayesian ridge regression (BRR), elastic net (EN), genomic best linear unbiased 
prediction (GBLUP), Gaussian processor (GP), least absolute shrinkage and selector operator (LASSO), 
random forest (RF), reproducing kernel Hilbert spaces regression (RKHS), ridge regression best linear unbiased 
prediction (rrBLUP), relevance vector machine (RVM) and support vector machine (SVM).

Figure 5. Boxplots of bias (regression coe�cient of observed phenotypes on genomic estimated breeding 
values) obtained in the testing sets from a 20-fold cross validation using chicken data for body weight (BW), 
breast meat (BM) and hen-house production (HHP). Prediction models: Bayes A, Bayes B, Bayes C, Bayesian 
least absolute shrinkage and selector operator (BL), Bayesian ridge regression (BRR), elastic net (EN), genomic 
best linear unbiased prediction (GBLUP), Gaussian process (GP), least absolute shrinkage and selector operator 
(LASSO), random forest (RF), reproducing kernel Hilbert spaces regression (RKHS), ridge regression best 
linear unbiased prediction (rrBLUP), relevance vector machine (RVM) and support vector machine (SVM). 
Outliers are denoted as black dots.
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Results obtained with the chicken data also show that the performance of the prediction models was trait 
dependent. Our results support the view that there are no universally best prediction models and that prediction 
performance is not necessarily indicating mode of gene action.

Conclusions
�is study compared nine parametric and �ve non-parametric genome-based prediction models with simulated 
and real data sets. Our study con�rms that when gene action was additive, parametric models provide better 
prediction than non-parametric models. Conversely, some of the non-parametric models produced a better per-
formance when epistatic interaction e�ects underlie phenotypic variation. For example, GP, RKHS, and RF mod-
els, which exploit a non-linear relationship between SNP markers and phenotypes, delivered a higher predictive 
accuracy and a smaller bias of prediction under epistatic gene action.

Assumptions and treatment of marker e�ects are two main factors that a�ect predictive abilities of a predic-
tion models. If non-additive genetic e�ects are important, genome-based tools can be used to identify the nature 
and components of interacting genetic systems, and perhaps genomic prediction schemes can be designed to 
exploit non-additive genetic sources of variation.

References
 1. Desta, Z. A. & Ortiz, R. Genomic selection: genome-wide prediction in plant improvement. Trends in plant science 19, 592–601 

(2014).
 2. Ober, U. et al. Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLoS genetics 

8, e1002685 (2012).
 3. Hayes, B. & Goddard, M. Genome-wide association and genomic selection in animal breeding. Genome/National Research Council 

Canada = Genome/Conseil national de recherches Canada 53, 876–883, https://doi.org/10.1139/G10-076 (2010).
 4. Daetwyler, H. D., Calus, M. P. L., Pong-Wong, R., de los Campos, G. & Hickey, J. M. Genomic Prediction in Animals and Plants: 

Simulation of Data, Validation, Reporting, and Benchmarking. Genetics 193, 347–365, https://doi.org/10.1534/genetics.112.147983 
(2013).

 5. Campos, G. et al. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182, 
375–385 (2009).

 6. Yang, J., Zhu, J. & Williams, R. W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 
23, 1527–1536, https://doi.org/10.1093/bioinformatics/btm143 (2007).

 7. Holland, J. B. Genetic architecture of complex traits in plants. Current opinion in plant biology 10(2), 156–161, https://doi.
org/10.1016/j.pbi.2007.01.003 (2007).

 8. Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J. & Goddard, M. E. Genetic architecture of complex traits and accuracy of 
genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 6, e1001139 
(2010).

 9. Gianola, D., de los Campos, G., Hill, W. G., Manfredi, E. & Fernando, R. Additive genetic variability and the Bayesian alphabet. 
Genetics 183, 347–363 (2009).

 10. Desta, Z. A. & Ortiz, R. Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science 19, 592–601, 
https://doi.org/10.1016/j.tplants.2014.05.006 (2015).

 11. Ornella, L. et al. Genomic prediction of genetic values for resistance to wheat rusts. �e Plant Genome 5, 136–148 (2012).
 12. Howard, R., Carriquiry, A. & Beavis, W. Parametric and nonparametric statistical methods for genomic selection of traits with 

additive and epistatic genetic architectures. G3-Genes Genomes Genetics 4, 1027–1046 (2014).
 13. Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS 

genetics 4, e1000008 (2008).
 14. Mäki-Tanila, A. & Hill, W. G. In�uence of gene interaction on complex trait variation with multilocus models. Genetics 198, 355–367 

(2014).

Models

Traits

BW BM HHP

BayesA 0.320 (0.023) 0.195 (0.012) 0.209 (0.017)

BayesB 0.330 (0.034) 0.196 (0.012) 0.219 (0.017)

BayesC 0.188 (0.023) 0.190 (0.012) 0.220 (0.017)

BL 0.196 (0.023) 0.188 (0.012) 0.186 (0.016)

BRR 0.190 (0.024) 0.176 (0.011) 0.247 (0.018)

EN 0.249 (0.027) 0.198 (0.015) 0.231 (0.019)

GBLUP 0.192 (0.021) 0.268 (0.009) 0.221 (0.017)

GP 0.178 (0.023) 0.140 (0.011) 0.227 (0.017)

LASSO 0.284 (0.019) 0.201 (0.015) 0.176 (0.010)

RKHS 0.191 (0.018) 0.206 (0.009) 0.219 (0.016)

rrBLUP 0.175 (0.016) 0.169 (0.010) 0.236 (0.015)

RVM 0.185 (0.026) 0.159 (0.024) 0.196 (0.015)

SVM 0.172 (0.024) 0.161 (0.018) 0.202 (0.017)

Table 6. Average correlations between phenotypes and predicted breeding values obtained in the testing sets 
from a 20-fold cross validation using the chicken data for body weight (BW), breast meat (BM), and hen-house 
production (HHP). Prediction models: BayesA, BayesB, BayesC, Bayesian least absolute shrinkage and selector 
operator (BL), Bayesian ridge regression (BRR), elastic net (EN), genomic best linear unbiased prediction 
(GBLUP), Gaussian processor (GP), least absolute shrinkage and selector operator (LASSO), reproducing 
kernel Hilbert spaces regression (RKHS), ridge regression best linear unbiased prediction (rrBLUP), relevance 
vector machine (RVM), and support vector machine (SVM).

http://dx.doi.org/10.1139/G10-076
http://dx.doi.org/10.1534/genetics.112.147983
http://dx.doi.org/10.1093/bioinformatics/btm143
http://dx.doi.org/10.1016/j.pbi.2007.01.003
http://dx.doi.org/10.1016/j.pbi.2007.01.003
http://dx.doi.org/10.1016/j.tplants.2014.05.006


www.nature.com/scientificreports/

1 0SCIENTIFIC REPORTS |  (2018) 8:12309  | DOI:10.1038/s41598-018-30089-2

 15. Jiménez-Montero, J. A., Gonzalez-Recio, O. & Alenda, R. Genotyping strategies for genomic selection in small dairy cattle 
populations. Animal 6, 1216–1224 (2012).

 16. Wittenburg, D., Melzer, N. & Reinsch, N. Including non-additive genetic e�ects in Bayesian methods for the prediction of genetic 
values based on genome-wide markers. BMC genetics 12, 74 (2011).

 17. Falconer, D. S. & Mackay, T. F. Introduction to quantitative genetics (4th edn). Trends in Genetics 12, 280 (1996).
 18. Fan, C. et al. �e main e�ects, epistatic e�ects and environmental interactions of QTLs on the cooking and eating quality of rice in 

a doubled-haploid line population. �eoretical and Applied Genetics 110, 1445–1452 (2005).
 19. Zhuang, J.-Y. et al. Analysis on additive e�ects and additive-by-additive epistatic e�ects of QTLs for yield traits in a recombinant 

inbred line population of rice. �eoretical and Applied Genetics 105, 1137–1145 (2002).
 20. Lidan Sun, R. W. Mapping complex traits as a dynamic system. Physics of Life Reviews (2015).
 21. Sargolzaei, M. & Schenkel, F. S. QMSim: a large-scale genome simulator for livestock. Bioinformatics 25, 680–681 (2009).
 22. Cockerham, C. C. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when 

epistasis is present. Genetics 39, 859 (1954).
 23. Browning, B. L. & Browning, S. R. A uni�ed approach to genotype imputation and haplotype-phase inference for large data sets of 

trios and unrelated individuals. �e American Journal of Human Genetics 84, 210–223 (2009).
 24. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. �e American Journal of 

Human Genetics 81, 559–575 (2007).
 25. VanRaden, P. E�cient methods to compute genomic predictions. J Dairy Sci 91, 4414–4423 (2008).
 26. Habier, D., Fernando, R. L. & Garrick, D. J. Genomic-BLUP decoded: a look into the black box of genomic prediction. Genetics 194, 

https://doi.org/10.1534/genetics.113.152207 (2013).
 27. Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. 

Genetics 157, 1819–1829 (2001).
 28. Endelman, J. B. Ridge regression and other kernels for genomic selection with R package rrBLUP. �e Plant Genome 4, 250–255 

(2011).
 29. Tibshirani, R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B-Methodological 58, 267–288 (1996).
 30. Usai, M. G., Goddard, M. E. & Hayes, B. J. LASSO with cross-validation for genomic selection. Genetics research 91, 427–436 (2009).
 31. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology) 67, 301–320 (2005).
 32. Gianola, D., Perez-Enciso, M. & Toro, M. A. On marker-assisted prediction of genetic value: beyond the ridge. Genetics 163, 347–365 

(2003).
 33. Park, T. & Casella, G. �e bayesian lasso. Journal of the American Statistical Association 103, 681–686 (2008).
 34. Habier, D., Fernando, R., Kizilkaya, K. & Garrick, D. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics 

12, 186 (2011).
 35. Gianola, D., Fernando, R. L. & Stella, A. Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173, 

1761–1776, https://doi.org/10.1534/genetics.105.049510 (2006).
 36. Gianola, D. & van Kaam, J. B. C. H. M. Reproducing Kernel Hilbert Spaces Regression Methods for Genomic Assisted Prediction of 

Quantitative Traits. Genetics 178, 2289–2303, https://doi.org/10.1534/genetics.107.084285 (2008).
 37. Campos, G., Gianola, D., Rosa, G. J., Weigel, K. A. & Crossa, J. Semi-parametric genomic-enabled prediction of genetic values using 

reproducing kernel Hilbert spaces methods. Genetics Research 92, 295–308 (2010). de los.
 38. González-Recio, O., Rosa, G. J. & Gianola, D. Machine learning methods and predictive ability metrics for genome-wide prediction 

of complex traits. Livestock Science 166, 217–231 (2014).
 39. Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research 1, 211–244 (2001).
 40. Williams, C. K. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. Nato asi series d 

behavioural and social sciences 89, 599–621 (1998).
 41. Rasmussen, C. E. & Williams, C. K. Gaussian processes in machine learning. Lecture notes in computer science 3176, 63–71 (2004).
 42. Pérez, P. & de los Campos, G. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics 198, 483–495, 

https://doi.org/10.1534/genetics.114.164442 (2014).
 43. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. Journal of 

statistical so�ware 33, 1 (2010).
 44. Karatzoglou, A. et al. �e kernlab package. Kernel-Based Machine Learning Lab. R package version 0.9.-22. Available online: https://

cran.r-project.org/web/packages/kernlab (accessed on 4 November 2015) (2007).
 45. Dimitriadou, E. et al. �e e1071 package. Misc Functions of Department of Statistics (e1071), TU Wien (2006).
 46. Pérez-Cabal, M. A., Vazquez, A. I., Gianola, D., Rosa, G. J. M. & Weigel, K. A. Accuracy of genome enabled prediction in a dairy 

cattle population using di�erent cross-validation layouts. Frontiers in Genetics 3, https://doi.org/10.3389/fgene.2012.00027 (2012).
 47. Daetwyler, H. D., Pong-Wong, R., Villanueva, B. & Woolliams, J. A. �e impact of genetic architecture on genome-wide evaluation 

methods. Genetics 185, 1021–1031 (2010).
 48. Clark, S. A., Hickey, J. M. & Van der Werf, J. H. Di�erent models of genetic variation and their e�ect on genomic evaluation. Genet 

Sel Evol 43(10), 1186 (2011).
 49. de los Campos, G., Hickey, J. M., Pong-Wong, R., Daetwyler, H. D. & Calus, M. P. Whole-genome regression and prediction methods 

applied to plant and animal breeding. Genetics 193, 327–345 (2013).
 50. Gianola, D. & de los Campos, G. Inferring genetic values for quantitative traits non-parametrically. Genetics Research 90, 525–540 

(2008).
 51. Gianola, D. & van Kaam, J. B. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative 

traits. Genetics 178, 2289–2303 (2008).
 52. Morota, G. & Gianola, D. Kernel-based whole-genome prediction of complex traits: a review. Frontiers in genetics 5 (2014).
 53. Tusell, L., Pérez‐Rodríguez, P., Forni, S. & Gianola, D. Model averaging for genome‐enabled prediction with reproducing kernel 

Hilbert spaces: a case study with pig litter size and wheat yield. Journal of animal breeding and genetics 131, 105–115 (2014).
 54. Haws, D. C. et al. Variable-selection emerges on top in empirical comparison of whole-genome complex-trait prediction methods. 

PloS one 10, e0138903 (2015).
 55. Zhao, Y., Zeng, J., Fernando, R. & Reif, J. C. Genomic prediction of hybrid wheat performance. Crop Science 53, 802–810 (2013).
 56. Technow, F. et al. Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize. 

Genetics 197, 1343 (2014).
 57. He�ner, E., Sorrells, M. & Jannink, J. Genomic selection for crop improvement. Crop Sci 49, 1–12 (2009).
 58. Rabier, C.-E., Barre, P., Asp, T., Charmet, G. & Mangin, B. On the accuracy of genomic selection. PloS one 11, e0156086 (2016).
 59. Gao, H. et al. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic 

Holstein population. Genetics Selection Evolution 44, 8, https://doi.org/10.1186/1297-9686-44-8 (2012).
 60. Murtagh, F. & Legendre, P. Ward’s hierarchical clustering method: clustering criterion and agglomerative algorithm. arXiv preprint 

arXiv 1111, 6285 (2011).
 61. Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? 

Journal of Classi�cation 31, 274–295 (2014).

http://dx.doi.org/10.1534/genetics.113.152207
http://dx.doi.org/10.1534/genetics.105.049510
http://dx.doi.org/10.1534/genetics.107.084285
http://dx.doi.org/10.1534/genetics.114.164442
http://dx.doi.org/10.3389/fgene.2012.00027
http://dx.doi.org/10.1186/1297-9686-44-8


www.nature.com/scientificreports/

1 1SCIENTIFIC REPORTS |  (2018) 8:12309  | DOI:10.1038/s41598-018-30089-2

 62. Morota, G., Abdollahi-Arpanahi, R., Kranis, A. & Gianola, D. Genome-enabled prediction of quantitative traits in chickens using 
genomic annotation. BMC genomics 15, 109 (2014).

 63. Crow, J. F. & Kimura, M. An introduction to population genetics theory. An introduction to population genetics theory. (1970).
 64. Holland, J. B. Epistasis and plant breeding. Plant breeding reviews 21, 27–92 (2001).

Acknowledgements
Authors acknowledge the Ministry of Science, Research and Technology of Iran for �nancially supporting the 
visit of MM to the University of Wisconsin-Madison. This study was partially supported by the Wisconsin 
Agriculture Experiment Station under hatch grant 142-PRJ63CV to DG.

Author Contributions
M.M. conceived, carried out the study, and wrote the �rst dra� of the manuscript. D.G. and G.J.M.R. designed the 
experiment, supervised the study and critically contributed to the �nal version of manuscript. G.M. contributed 
to the interpretation of results, provided critical insights, and revised the manuscript. A.K., A.A.M., A.S. and L.T. 
participated in discussion and reviewed the manuscript. All authors read and approved the �nal manuscript.

Additional Information
Competing Interests: �e authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Predictive ability of genome-assisted statistical models under various forms of gene action
	Methods
	Simulated data. 
	Population. 
	Genome. 
	Simulation of phenotypes under various gene action models. 
	Purely additive (Ad). 
	Additive and dominance (Ad:Dom). 
	Additive, dominance and epistasis (Ad:Dom:Epi). 
	Purely epistatic (Epi). 
	Genetic variance components. 

	Real Data. 
	Genome-assisted prediction model. 

	Availability of data and materials. 
	Ethical approval and consent to participate. 

	Results and Discussion
	Predictive accuracy and empirical accuracy of genomic predictions. 
	Prediction bias. 
	Hierarchical clustering of predicted genetic values. 
	Chicken dataset. 

	Conclusions
	Acknowledgements
	Figure 1 Overall mean (standard error) of predictive and empirical accuracy of different prediction models under various gene action scenarios: purely additive (Ad), additive and dominance (Ad:Dom), additive dominance and epistasis (Ad:Dom:Epi), and pure 
	Figure 2 Predictive and empirical accuracies of genomic prediction models for traits simulated under purely additive (Ad), additive:dominance (Add:Dom), additive:dominance:epistatic (Add:Dom:Epi), and purely epistatic (Epi) gene action scenarios with a br
	Figure 3 Boxplots of bias (regression coefficient of simulated phenotypes on genomic estimated breeding values) for traits simulated under purely additive (Ad), additive:dominance (Ad:Dom), additive:dominance:epistatic (Ad:Dom:Epi) and pure epistatic (Epi
	Figure 4 Ward’s hierarchical clustering on predicted genomic values derived from traits simulated under purely additive (Ad), additive:dominance (Ad:Dom), additive:dominance:epistatic (Ad:Dom:Epi) and purely epistatic (Epi) gene action.
	Figure 5 Boxplots of bias (regression coefficient of observed phenotypes on genomic estimated breeding values) obtained in the testing sets from a 20-fold cross validation using chicken data for body weight (BW), breast meat (BM) and hen-house production 
	Table 1 Genotypic values of simulated QTL for a one-locus, two-allele model of gene action when a trait is affected only by additive (second column) and by both additive and dominance (third column).
	Table 2 Distribution of simulated QTL effects (Gamma for addtive and normal for epistatic) and corresponding parameters.
	Table 3 Genotypic values and genotypic frequencies1 in a two-locus, two-allele model with additive, dominance, and epistatic gene action.
	Table 4 Variance components for main effects (additive and dominance) and two order epistatic interactions that contributed to genetic variance under different genetic architectures.
	Table 5 Heritability of simulated traits under various forms of gene action (additive, dominance and epistatic).
	Table 6 Average correlations between phenotypes and predicted breeding values obtained in the testing sets from a 20-fold cross validation using the chicken data for body weight (BW), breast meat (BM), and hen-house production (HHP).


