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Abstract

Key message Genomic prediction models for multi-year dry matter yield, via genotyping-by-sequencing in a com-

posite training set, demonstrate potential for genetic gain improvement through within-half sibling family selection.

Abstract Perennial ryegrass (Lolium perenne L.) is a key source of nutrition for ruminant livestock in temperate environ-
ments worldwide. Higher seasonal and annual yield of herbage dry matter (DMY) is a principal breeding objective but the 
historical realised rate of genetic gain for DMY is modest. Genomic selection was investigated as a tool to enhance the rate 
of genetic gain. Genotyping-by-sequencing (GBS) was undertaken in a multi-population (MP) training set of five popula-
tions, phenotyped as half-sibling (HS) families in five environments over 2 years for mean herbage accumulation (HA), 
a measure of DMY potential. GBS using the ApeKI enzyme yielded 1.02 million single-nucleotide polymorphism (SNP) 
markers from a training set of n = 517. MP-based genomic prediction models for HA were effective in all five populations, 
cross-validation-predictive ability (PA) ranging from 0.07 to 0.43, by trait and target population, and 0.40–0.52 for days-
to-heading. Best linear unbiased predictor (BLUP)-based prediction methods, including GBLUP with either a standard or a 
recently developed (KGD) relatedness estimation, were marginally superior or equal to ridge regression and random forest 
computational approaches. PA was principally an outcome of SNP modelling genetic relationships between training and 
validation sets, which may limit application for long-term genomic selection, due to PA decay. However, simulation using 
data from the training experiment indicated a twofold increase in genetic gain for HA, when applying a prediction model 
with moderate PA in a single selection cycle, by combining among-HS family selection, based on phenotype, with within-
HS family selection using genomic prediction.

Introduction

Genomic selection (GS), introduced by Meuwissen et al. 
(2001), describes breeding strategies in which the effects 
of many DNA markers throughout the genome are used to 
predict the breeding value (genomic-estimated breeding 
value, GEBV) of selection candidates. GS methodology has 
become widely implemented in animal breeding, particularly 
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dairy cattle (Hayes et al. 2009a), and more recently theoreti-
cal and empirical assessments have been implemented for 
economic plant species (Heffner et al. 2009; Resende et al. 
2012). GS has recently emerged as a prospect for forage 
plant species largely due to the advent of flexible, low-cost-
single nucleotide polymorphism (SNP) marker platforms, 
such as genotyping-by-sequencing (GBS) (Elshire et al. 
2011), that can provide the high-density marker informa-
tion typically needed for GS (Annicchiarico et al. 2015; Fè 
et al. 2015a; Hayes et al. 2013).

Forage grasses and legumes are important plant species. 
Of the 38% of global land area under agricultural production 
(http://faostat3.fao.org), approximately 68% is used for pas-
toral agriculture. Pastures based on temperate forage species 
play a significant role within these agricultural systems with, 
for example, an estimated 80% of cow’s milk derived from 
temperate grassland agriculture (Wilkins and Humphreys 
2003).

The temperate forage perennial ryegrass (Lolium perenne 
L.) (2n = 2x = 14) is the principal source of nutrition for 
ruminant livestock grazed in temperate-intensive pastoral 
agricultural systems, including New Zealand. Like most for-
age species, perennial ryegrass is obligately outcrossing and 
both natural and synthetic populations are genetically hetero-
geneous and characterised by high levels of heterozygosity 
(Sweeney and Danneberger 1994). Genetic improvement in 
ryegrass is commonly achieved by intra-population recurrent 
selection (Conaghan and Casler 2011) or systems based on 
phenotypic mass selection, supplemented by generation of 
new populations from inter-population crosses. Cultivars are 
typically synthetic populations generated by a random mat-
ing polycross amongst elite parent plants. Increased seasonal 
and annual level of herbage dry matter yield (DMY), a driver 
of livestock productivity, is a principal breeding objective 
for this species (Wilkins and Humphreys 2003; Williams 
et al. 2007; Chapman et al. 2017). However, the realised rate 
of DMY genetic gain has been modest, at between 3 and 4% 
per decade (Easton et al. 2002; Sampoux et al. 2010; Van 
Wijk and Reheul 1990). One underlying factor is that DMY 
is often not directly selected for in breeding programmes 
(Casler and Brummer 2008). While individual plant vigour 
or biomass may be routinely assessed in spaced plant nurs-
eries, these traits have poor genetic correlation with DMY 
measured in a competitive sward (Hayward and Vivero 
1984; Lazenby and Rogers 1964; Waldron et al. 2008).

Effective direct selection for DMY may best be achieved 
by assessment of half- or full-sibling family performance in 
seeded plots that correspond more closely to a sward (Annic-
chiarico et al. 2015), over a period of years and in more than 
one target environment to account for genotype-by-environ-
ment interaction (Conaghan et al. 2008; Jafari et al. 2003). 
This, however, has the consequence of increasing costs and 
lengthening the selection interval in a breeding programme, 

and therefore, the time taken to generate a candidate cul-
tivar. This between-family selection approach also fails to 
get traction from the within-family genetic variance. If suf-
ficiently accurate, indirect selection methods for DMY, such 
as marker-assisted selection (MAS) or GS, are of interest 
as they represent an opportunity to cost-efficiently select 
for a sward trait in single plants—enhancing accuracy of 
selection, shortening the breeding cycle (Heffner et al. 2010; 
Resende et al. 2014) and enabling application of selection 
pressure to within-family variation (Casler and Brummer 
2008).

DMY and the majority of other agronomically important 
traits in forages are quantitative and highly polygenic (Dol-
stra et al. 2007; Wilkins and Humphreys 2003). Therefore, 
the genetic gain from QTL studies and MAS using one or a 
few QTL-linked markers is likely to be small, due to the low 
proportion of the total genetic variance captured (Heffner 
et al. 2009). GS has the capacity to address these limitations 
because (a) it can be applied directly in multi-parent breed-
ing populations without prior QTL discovery in a separate 
research population; and (b) assuming a majority of con-
tributing QTL are in LD with at least one marker locus, GS 
has the potential to capture the effects of most of the QTL 
governing a quantitative trait (Solberg et al. 2008) such as 
DMY. The potential of GS for improving genetic gain in 
forages has been addressed theoretically (Hayes et al. 2013; 
Resende et al. 2014) and now more recently through empiri-
cal investigation (Annicchiarico et al. 2015; Fè et al. 2015a, 
b; Grinberg et al. 2016; Li et al. 2015).

Our main objective was to develop and evaluate resources 
for GS for DMY and days-to-heading (DTH) in advanced 
perennial ryegrass populations in a commercial breeding 
programme, integrating multi-year phenotypic data from 
multiple locations, and including assessment of differ-
ent data and statistical models for prediction. Our general 
approach was to construct genomic prediction models for 
parent plants using herbage accumulation (HA) data, as a 
measure of DMY potential, from sown plots of their half-
sibling (HS) progenies. The literature on GS incorporates a 
wide-ranging selection of statistical models for determining 
GEBV’s. This includes GBLUP [genomic best linear unbi-
ased prediction via a linear mixed model framework, using 
a genomic relationship matrix (GRM)] through to Bayes-
ian, shrinkage and machine-learning alternatives (Crossa 
et al. 2016; Grinberg et al. 2016; Heslot et al. 2012). We 
utilised some of the most commonly used methods to esti-
mate GEBV’s: (1) GBLUP with GRM estimated in two 
different ways, one being a novel statistical method (KGD) 
proposed by Dodds et al. (2015) for generating unbiased 
relatedness estimates from GBS SNP data; (2) ridge linear 
regression (RR; sometimes referred to as RR-BLUP); and 
(3) random forest regression (RF), a non-linear machine-
learning method.

http://faostat3.fao.org
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Furthermore, most plant studies to date regarding GS 
have considered a single-population scenario. Where indi-
vidual population sizes are numerically small, combining 
phenotypes from multiple populations, analogous to multi-
breed training sets in animals (de Roos et al. 2009; Schulz-
Streeck et al. 2012; Porto-Neto et al. 2015), may be a way to 
increase the size of the training set and develop prediction 
models that are effective across a range of genetic mate-
rial. To assess the potential for broadly focused GS training 
approaches, we investigated GS using a multi-population 
(MP) training set that combines data from smaller, random 
samples of five discrete breeding populations.

Materials and methods

Plant material and trial sites

A training set was composited from five perennial ryegrass 
breeding populations (designated Pop I to Pop V; 102–117 
plants per population) from the Grasslands Innovation Ltd 
breeding programme, all of which were infected with the 
same fungal endophyte (Epichloë festucae var lolii) strain. 
Full detail of population development is provided in Supple-
mentary material. Trials were sown with maternal HS seed 
harvested from 517 maternal parents. Six trials were sown at 
three New Zealand sites: Ruakura (Waikato region, northern 
New Zealand, 37.78°S, 175.32°E; Te Rapa peaty silt loam), 
Aorangi (Manawatu region, central New Zealand, 40.34°S, 
175.46°E; Kairanga sandy loam) and Lincoln (Canterbury 
region, southern New Zealand, 43.38°S 172.62°E; Wakanui 
silt loam). Trials were sown in the Southern Hemisphere 
autumn or spring of 2013 (Supplementary Table S1). The 
unit for evaluation of HS families in the trials was a 1-m 
sown row of plants (0.2 g of seed per row; approximately 
equivalent to 14 kg ha−1 if a sward was sown at 7 rows per 
m), hereafter referred to as a plot. Plots were sown with 
25–30 cm spacing between plots and 30 or 50 cm gaps at 
the end of the plots, depending on the trial. In the aligned 
breeding programme, HA measured in this type of plot was 
positively correlated (r = 0.77–0.83) with DMY in larger 
(1.5 × 5 m) plots (M. Z. Z. Jahufer, unpublished data).

Two trials were sown at each site. At both Ruakura and 
Aorangi, one trial (severe defoliation treatment; SEV) was 
grazed by sheep every 2 weeks through the summer period 
in 2014–2015 and 2015–2016. The other trial (standard 
treatment, STD) was also grazed but only when plants had 
reached the 2–3 leaf growth stage (see below). Mechani-
cal mowing was used to defoliate under-grazed areas to a 
residual height of 5 cm, where needed. At the Lincoln site, 
one trial was STD and the other (irrigated treatment; IRR) 
was managed as STD except that it was watered by rainfall 
plus irrigation to approximately 40 mm of water weekly. All 

trials used a row–column experimental design with three 
replicates. Within each of the six trials, populations were 
blocked and families randomised in three replicates within 
these blocks. Repeated check lines were planted within and 
across replicate blocks. In all trials, soil fertility levels were 
adjusted to ensure nutrients were not limiting plant growth. 
Nitrogen was applied (15–30 kg N/ha) at each defoliation. 
Superphosphate fertilizer (8.8 kg P/ha) was applied in late 
autumn each year.

Trait measurements

To assess DMY potential, HA was measured by cutting plots 
to a height of 5 cm. Harvested foliage was dried (80 °C for 
48 h) and weighed to obtain HA as g DM per plot. Up to 
nine HA harvests were completed between summer 2014 
and autumn 2016 in each trial (Supplementary Table S1). 
These were timed to occur at least once in summer, autumn 
and spring in a given year. However, not all seasons at all 
sites were sampled each year, due to sub-optimal growth 
conditions at certain times resulting in insufficient plant 
material for harvest (Supplementary Table S1). HA har-
vests were completed when plots were at the 2–3 leaf-growth 
stage, typically 3–4 weeks regrowth after the prior defolia-
tion (dependent on season and site). The same defoliation 
management was used outside of when HA measurements 
were made.

Days-to-heading (DTH) was assessed at two sites 
(Ruakura and Lincoln) during spring 2015, using the 
Ruakura STD and Lincoln IRR trials. Both trials were closed 
to grazing from early September. Days-to-heading (DTH) 
was recorded as days from 1 November, with observations 
starting on that day and repeated every 2–3 days for the next 
35 days. DTH was recorded when there were at least five 
heads in a plot that were fully emerged and these heads were 
appearing uniformly along the plot. Further detail of trial 
treatments are provided in Supplementary material.

Statistical analysis of phenotypic data

Data were analysed using the linear mixed model option in 
GENSTAT (GenStat 2006). Analyses were conducted on 
the five individual populations and the full multi-population 
(MP) training set, for which data from all five populations 
were combined. HS families, replicates and row and column 
were treated as random effects. Years, harvests, sites and 
populations were treated as fixed effects. Treating the popu-
lations as fixed enabled assessment of differences between 
them for mean performance; within sites within treatments, 
within sites across treatments, across sites within treatments 
and across sites and treatments. Full details of the models 
are provided in Supplementary material.
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Average HA, merging data from all individual harvests, 
was used for developing genomic prediction models. This 
was undertaken within- and across-sites and treatments, 
with ten HA traits produced: Rua STD (average HA in the 
Ruakura STD treatment); Rua SEV (average HA in the 
Ruakura SEV treatment); Aor STD (as per Rua STD, at the 
Aorangi site); Aor SEV (as per Rua SEV, at the Aorangi 
site); Lin STD (as per Rua STD, at the Lincoln site); Rua 
STD + SEV (average HA over both treatments at Ruakura); 
Aor STD + SEV (as per Rua STD + SEV, at Aorangi); 
Comb STD (average HA across all STD treatments); Comb 
SEV (average HA across both SEV treatments); and Comb 
STD + SEV (average HA over all sites and treatments). The 
Lin IRR trial showed no significant (P > 0.05) genetic vari-
ation for six of seven seasonal HA determinations completed 
(Supplementary Table S1), and so was not used. DTH data 
from the Ruakura and Lincoln sites were analysed as aver-
age performance across two sites, to generate an across-site 
assessment designated Comb DTH.

The adjusted HS family phenotypic means generated from 
each of the residual maximum likelihood (REML) analy-
ses were based on best linear unbiased predictors (BLUP’s) 
(White and Hodge 1989). Estimation of the significance of 
the genetic variance component for each trait was based 
on the log-likelihood ratio test (Galwey 2006) and, where 
appropriate, the linear models also included family-by-year, 
family-by-harvest, family-by-site and family-by-treatment 
interaction effects. The row-column experimental design 
enabled adjustment for random error across replicates, col-
umns and rows within replicates, and the repeated checks 
helped reduce trial spatial effects (Gleeson 1997; Gleeson 
and Kempton 1997).

For the MP analyses, variance components were used to 
estimate HS family mean repeatability (R), the upper limit 
of the degree of genetic determination (Falconer 1989). For 
individual population analyses, narrow sense heritability, hn

2 
was estimated on a family mean basis. The general equation 
used was:

where σg
2 is genotypic variation in the R estimation or ¼ 

additive variation (among HS family variation within indi-
vidual populations) in the hn

2 estimation; σε
2, experimental 

error; nr, number of replicates. The denominator in Eq. 1 
was expanded further with interaction component effects, 
depending on the analysis: σ2

gy, genotype-by-year; σ2
gh, gen-

otype-by-harvest; σ2
gt, genotype-by-treatment; σ2

gI, genotype-
by-site, and their associated divisors: ny, number of years; 
nh, number of harvests; nt, number of treatments; nl, number 
of sites.

(1)R or h
2
n
=

�
2
g

�
2
g
+

�
2
�

nr

,

Cluster analysis of the 517 HS families-by-five environ-
ment (Aor STD, Aor SEV, Rua STD, Rua SEV and Lin STD) 
BLUP matrix was carried out using a hierarchical agglom-
erative complete linkage procedure with squared Euclidean 
distance as a measure of dissimilarity (Wishart 1969). The 
Hartigan algorithm (Hartigan 1975) was used to determine 
the optimal number of clusters.

DNA isolation and production of GBS libraries

DNA was isolated from approximately 100 mg of fresh leaf 
blade + pseudostem tissue for 577 training set mother plants, 
using a high-throughput method based on that described 
by Whitlock et al. (2008) with modifications including a 
final binding, washing and eluting DNA from AcroPrep™ 
Advance 96 Filter Plates (Pall Corporation, Ann Arbor, MI, 
USA). DNA quality was checked via visualisation on eth-
idium bromide stained 0.8% (wt/vol) agarose/TBE gels and 
then quantified using the Quant-iT™  PicoGreen® dsDNA 
Assay Kit (Invitrogen, Carlsbad, CA). DNA concentrations 
were normalised to 20 ng/μl and subsequently used for GBS 
library preparation. GBS libraries were generated following 
the methodology of Elshire et al. (2011), with 100 ng of 
DNA digested using ApeKI (New England Biolabs, Ipswich, 
MA) and ligated to a unique barcoded adapter and a com-
mon adapter (99 ng). A total of six libraries were developed 
in 96-plex which included a blank and a common positive 
control sample. Each library was passed through a Pippin 
Prep™ DNA size selector (Sage Science, Beverly, MA, 
USA) to isolate fragments between 193 and 313 bp, which 
were then sequenced on two lanes of an Illumina HiSeq 2500 
(Illumina, San Diego, CA, USA) at AgResearch Invermay, 
New Zealand.

GBS data analysis

Raw reads from the 12 FASTQ data files were initially 
checked on the basis of read count statistics and then sub-
jected to de-multiplexing, tag alignment and SNP calling 
based on the TASSEL 5.0 GBS pipeline (Glaubitz et al. 
2014). SNP calling was conducted jointly for all six librar-
ies, combining data for Pop I–V into a single analysis. A 
ryegrass reference genome was constructed by aligning a 
published ryegrass assembly (Byrne et al. 2015) onto the 
Hordeum vulgare genome (version 082214v1.27) to form 
ryegrass pseudochromosomes. Non-genic regions of the H. 

vulgare genome were masked prior to alignment to ensure 
alignment by gene synteny. Ryegrass contigs were aligned 
to the H. vulgare reference genome using Lastz version 7.0.1 
(Harris 2007) from within Geneious 8 (http://www.geneious.
com; Kearse et al. (2012) with parameters left at default. 
GBS tags were aligned to the constructed reference genome 
using Bowtie2 (Langmead and Salzberg 2012).

http://www.geneious.com
http://www.geneious.com
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Duplicated samples, from the two lanes of data per library, 
were merged for genotyping calling, based on the binomial 
likelihood ratio method implemented in the TASSEL pipe-
line (Glaubitz et al. 2014) and 1,093,464 biallelic SNPs were 
retained after filtering using VCF tools (Danecek et al. 2011) 
with the criteria of 50% maximum missing data per site, minor 
allele frequency (MAF) > 0.05 and read depth > 1. Refer-
ence and alternative allele counts for the 1,093,464 SNPs 
were retrieved and exported for KGD analysis (Dodds et al. 
2015). After filtering by Hardy–Weinberg disequilibrium 
(HWdiseq > − 0.05) 1,023,011 SNPs, with a mean read depth 
of 2.94, were obtained and used to compute a genomic rela-
tionship matrix (GRM) in that software, for GEBV estimation. 
HWdiseq filtering was used, as recommended by Dodds et al. 
(2015), as a tool to filter SNP potentially from duplicated or 
repetitive regions of the genome.

The retained 1,023,011 SNPs were also additionally filtered 
by allowable level of missing data per SNP locus, resulting 
in three datasets composed of different numbers of SNPs 
(Table 1). These SNP datasets were used for GEBV estimation 
using the RR, RF and GBLUP methods as described below. 
For all GEBV statistical methods except KGD, missing SNP 
genotypes were imputed using mean imputation (MNI) as 
explained below.

Linkage disequilibrium (LD) analysis

LD was calculated by computing the pairwise LD measure r2 
(Hill and Robertson 1968) using a soon-to-be published meth-
odology (Bilton et al. 2017), which accounts for uncertainty 
in the GBS genotypes associated with low-read depth (Bilton 
and Dodds 2016). SNPs were removed from the LD analysis 
for a given population if they had a minor allele frequency 
(MAF) < 0.05, 25% or more missing data, a mean read depth 
less than or equal to 20 or a Hardy–Weinberg disequilibrium 
estimate less than − 0.05 or less than − 0.8 times the squared 
MAF. Within each population, LD was calculated on all pairs 
of remaining SNPs which mapped to the same scaffold. The 
decay of r2 with respect to distance was modelled using the 
equation,

(2)E(r2) =
1

� + 4�d
+

1

n
,

where n is the sample size, d is the physical distance (in 
base pairs) between the SNPs and � and � are parameters 
to be estimated (Weir and Hill 1980). As some genotypes 
are missing, the sample size n was taken to be the number 
of individuals with no missing genotypes for a given pair 
of SNPs. Non-linear regression modelling was performed 
using the nls function in the statistical package R v3.3.0 (R 
Core Team 2017).

Imputation of genotypic data

With the exception of KGD, the statistical methods below 
require a complete genotypic dataset. The initial GBS SNP 
marker data had up to 50% missing values per marker, there-
fore, we explored three methods, described in Rutkoski et al. 
(2013) for imputing missing data, mean imputation (MNI); 
expectation–maximisation algorithm (EMI); and random 
forest regression algorithm (RFI). We used packages impute, 
rrBLUP and MissForest of R software, respectively. When 
these imputation strategies were compared, with respect to 
GEBV predictive ability, on a sample of chosen traits and 
a set of SNP markers, all methods gave very similar results 
(data not presented). Therefore, we chose the simplest and 
most efficient approach, MNI, for further evaluations.

Statistical methods for estimation of GEBVs

A number of statistical models have been developed for pre-
diction of breeding or phenotypic values, and approaches 
can be collated into two categories, parametric and non-
parametric (for a detailed review see de los Campos et al. 
(2013). We focused on simply modelling the BLUP-adjusted 
HS family means on marker information from the maternal 
parent for GEBV estimation. Assessment of statistical mod-
els was based on a final training set of n = 517 for which 
both phenotypic (HS family) and genotypic (maternal par-
ent) data were available.

Suppose there are n individuals and m SNP markers. 
The first parametric model we used was ‘genomic BLUP’ 
(denoted here by GBLUP) and is defined as, y = μ + Xu + e, 
where y is the n × 1 vector of genotype BLUP’s (estimated 
in stage 1), μ is the n × 1 vector of grand mean, X is the 
n × m design matrix and u is the m × 1 vector of random 
marker effects with u ~ N(0, σu

2 G), where G is the n × n 
‘genomic relationship matrix (GRM)’, and e is the n × 1 
vector of random errors with e ~ N(0, σe

2 I), where I is the 
n × n identity matrix. With M = {mij} representing the n × m 
marker matrix, G ∝ MMT and was calculated as G = ZZT/
(2∑jpj(1 − pj)), where Z is the (minor allele) adjusted SNP 
scores with elements (mij − 2pj), for ith individual (geno-
types) and jth SNP, and pj is the ‘minor allele frequency’ of 
the jth SNP. The GBLUP modelling was implemented using 

Table 1  SNP datasets produced for assessment of genomic selection 
statistical models

RR ridge regression, RF random forest, KGD GBLUP using KGD-
generated genomic relationship matrix

SNP set Missing data per 
SNP site (%)

Total number 
of SNPs

Models tested

1 50 1,023,011 KGD, GBLUP, RF

2 10 249,546 GBLUP, RR, RF

3 1 43,966 GBLUP, RR, RF
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the ‘rrBLUP’ package (Endelman 2011) in R software (R 
Core Team 2017).

The second parametric model we considered, denoted by 
KGD, is a variation of GBLUP. Here, the GRM G was esti-
mated using an approach proposed by Dodds et al. (2015). 
They provide a method which gives unbiased estimates of 
relatedness using SNPs assayed by GBS, which accounts 
for the depth (including zero depth) of the genotype calls.

We also utilised a linear regression model for estimat-
ing GEBV’s. With vectors and matrices as defined above, 
we may write this regression model as, y = μ + Mu + e. 
Since the number of predictors (SNP markers) exceeds the 
number of observations (genotypes), we needed to resort to 
‘shrinkage’-based regression. A commonly used approach 
for genomic prediction is the ‘ridge regression’ model 
(denoted by RR), where a shrinkage parameter λ needs to 
be estimated. We used the package ‘glmnet’ (Friedman et al. 
2010) of R software for implementing RR.

Finally, to explore a non-parametric and non-linear 
regression approach, we considered a machine-learning 
algorithm, ‘random forest’ regression (RF) (Breiman 2001), 
for GEBV estimation. We used 500 trees and 10% of the 
total no. of SNPs to find the best split at each node (the latter 
choice was made due the size of marker data used and the 
CPU time required for computations). The RF modelling 
was implemented using the package “ranger” of R software.

Predictive ability via cross‑validation

The predictive ability (PA) of the models (GBLUP, KGD-
BLUP, RR and RF) was assessed via cross-validation. Here, 
the data were split into training and validation sets. We 
undertook two assessments of the MP-based models to esti-
mate their PA: (1) within the breeding programme as a whole 
and (2) for each of the individual populations, Pop I–V.

For (1) we considered a tenfold cross-validation, where 
phenotypic (BLUP) data and corresponding genotypic (SNP 
marker based) data of the 517 individuals were randomly 
divided into ten subsets of similar size. Note here that the 
validation set was composed of individuals from all five 
populations. Models were fitted on the training set (i.e., 
nine subsets consisting of 90% of the data) and the GEBV’s 
predicted for the validation set (remaining subset). The PA 
of the models was computed as the Pearson’s correlation 
coefficient between predicted values (GEBV’s) and observed 
values (BLUP’s). For this set of cross-validations, bias of the 
different statistical methods for prediction was also assessed 
by measuring the slope of the regression of GEBV on BLUP.

For each trait and each SNP marker data, five replicates of 
the cross-validation scheme were considered (thus, resulting in 
five GEBV estimates for each genotype), enabling computation 
of empirical standard errors of PA and ensuring that results 
obtained were not due to random partitioning of data. Five 

replicates were deemed sufficient after it was determined that 
expanding to ten replicates made no difference to variability 
or PA (Supplementary Figures S5 and S6). To warrant precise 
comparisons, the four different statistical models were fitted 
in exactly the same cross-validation partitions. To compare 
similarities of these models across all chosen traits, a simple 
ANOVA with two factors (genomic prediction method and 
trait) was employed. The PA’s computed separately for each 
of the five tenfold cross-validation sets were considered as 
response.

For (2), estimating PA- of MP-based models within each 
of Pop I–V, we used a cross-validation scheme wherein the 
training set consisted of approximately 258 individuals bal-
anced across all five individual populations, including about 
50% of the individuals from the target (predicted) population. 
The validation set was composed of the remaining 50% of 
individuals from the target population. This approach ensured 
that the predicted population was represented equally in both 
the training and validation sets. The smaller size of the overall 
training set was necessary to ensure it was composed of a bal-
anced number of individuals from all five individual popula-
tions. For each trait and each SNP marker data, 25 replicates 
of the cross-validation scheme were considered. Outlier indi-
viduals associated with Pop V (Fig. 1) were excluded.

Simulation of genetic gain from GS

Simulations were implemented to compare genetic gain 
(∆Gc) from one cycle of selection using conventional 
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Fig. 1  Multi-dimensional scaling ordination plot for a ryegrass train-
ing set made up of individuals (n  =  566) from five breeding popu-
lations (Pop I–V). Six repeats of a control DNA sample (one per 
96-plex GBS library created) are represented by purple dots near the 
centre of the image
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phenotypic HS family selection (HSF), against a GS strat-
egy  (ApWFgs-HS). The GS strategy simulated combined 
among-family selection based on phenotype and within-
family selection using genomic prediction. The simulation 
used ‘real’ data generated from training population pheno-
typing trials, specifically: Rua STD for Pop II (n = 108 HS 
families), based on HA data from eight discrete harvests 
over a period of 27 months. This trait was chosen as it 
was based on the most complete set of seasonal data in 
the study (Supplementary Table S1). Pop II was selected 
as the best-performed population in this environment 
(Table 2).

For simulating  ApWFgs-HS, a range of genomic PAs 
were assumed (r = 0.10–0.50, in steps of 0.10) in addition 
to the PA of 0.27 estimated by cross-validation for Rua 
STD in Pop II (Fig. 4). Among-family selection inten-
sity (kf) was fixed at 1.40 (top-ranked 20% of families) 
for HSF and all  ApWFgs-HS simulations, while three dif-
ferent within-family selection intensities were tested at 
each PA for  ApWFgs-HS: kw = 2.67 (top-ranked 1% of 
individuals within family), kw = 2.27 (3% of individu-
als) and kw = 2.06 (5% of individuals). The estimation 
of genetic gain using within-family genomic selection 
was based on a modification of the equation proposed by 
Casler and Brummer (2008), for among-and-within fam-
ily selection, where within-family selection is based on a 
secondary trait, X, the primary trait being Y. The equation 
used in DeltaGen:

where ApWFgsy-HS is the predicted ∆G using a combination 
of phenotypic among-HS family selection and within-HS 
family GS; σ2

AY, additive genetic variance for the trait Y 
under selection; σAY, standard deviation of additive genetic 
variance for trait Y; σPF, among-family phenotypic standard 
deviation for trait Y; kf and kW, among- and within-HS fam-
ily selection intensity, respectively; cf and cW, among- and 
within-HS family parental controls, respectively [for HS 
family selection c = 0.5; Casler and Brummer (2008)]; hX, 
square root of heritability for secondary trait X and h

X
 is 

assumed to be 1; rA-XY, genomic PA.
Expected ∆G for HSF selection was estimated using 

the equation proposed by Casler and Brummer (2008) for 
forage crops:

where σ2
AY is additive genetic variance and c = 0.5.

(3)ApWFgsy-HS = kfcf

1

4
�

2
AY

�PF
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√
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Results

GBS data and population structure

SNP data were acquired via GBS for 566 of the 577 mother 
plants submitted for analysis. Lane-to-lane sequence varia-
tion of the read counts was minimal, with the coefficient of 
variation of the barcoded read counts in each lane between 
12 and 20%, confirmed also by the positive control sample 
located on each plate (see below). SNP calling was con-
ducted jointly for all populations, Pop I–V. Initial filtering 
yielded 1,093,464 SNPs across all populations and this 
was reduced to 1,023,011 following an additional filter 
for Hardy–Weinberg disequilibrium (HWdiseq > − 0.05). 
The mean missing rate per SNP of this subset was 0.24 and 
the mean read depth 2.94. The overall MAF distribution of 
the selected SNPs is shown in Supplementary Figure S2.

A genomic relationship matrix (S) of dimension 
566 × 566 was derived using the KGD analysis package, 
based on the set of 1,023,011 SNPs. Multidimensional 
scaling (MDS) was applied to its distance matrix (1 − S), 
revealing the structure amongst the five individual popula-
tions of the MP training set (Fig. 1). With few exceptions, 
genotypes clustered by population and populations were 
grouped discretely. The relative positions of the five popu-
lations reflected their known breeding histories (Dr. Alan 
Stewart, pers comm). Eight outlying individuals associated 
with Pop V and six with Pop II were confirmed via repeat 
genotyping not to have been mis-labelled (data not pre-
sented). The first MDS ordinate separated Pop IV, a popu-
lation characterised by early DTH, from the other four 
individual populations which all had later DTH (Table 2). 
The second ordinate further separated Pops I, II, III and 
V, with a closer relationship indicated amongst Pops II, 
III and V. Positive control samples of a single genotype, 
repeated in all six GBS libraries and run in different 
sequencing lanes, landed at the same position in space on 
the MDS plot, indicating consistency of GBS and SNP-
calling across the six libraries. The genomic relationship 
matrix, S, was subsequently used for genomic prediction 
modelling using the KGD model. Additional filtering on 
missing data per SNP site was applied (Table 1), resulting 
in three SNP datasets with SNP numbers ranging from ca. 
44 K to 1.02 M.

A summary of results from linkage disequilibrium (LD) 
analysis of the five individual populations in the MP train-
ing set is shown in Fig. 2. LD decay in all populations was 
rapid, decaying to below r2 of 0.25 after 366–1750 base 
pairs (bp). The rates of decay varied amongst the popula-
tions. Pop III was characterised by the shortest extent of 
LD (r2 = 0.25 at 366 bp), followed by Pop II (477 bp) 
and the remaining populations had longer LD—Pop I 
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Table 2  Genotypic (σg
2; for multi-population training set, MP) or 

additive (σa
2; for individual populations), genotype-by-harvest (σ2

gh), 
genotype-by-year (σ2

gy), genotype-by-treatment (σ2
gt), genotype-by-

site (σ2
gl) and experimental error (σε

2) variance components and their 

associated standard errors (± SE) and R (repeatability; for MP train-
ing set) or hn

2 (narrow-sense heritability; for individual populations), 
estimated for HA (g DM per plot) and DTH (number of days after 25 
October) traits

Trait Training set Mean Range σ2
(g or a) σ2

gh σ2
gy σ2

gt σ2
gl σε

2 R or hn
2

Rua MP 25.2 13.5–36.8 13.6 ± 1.8 2.0 ± 0.7 19.7 ± 1.6 – – 91.8 ± 1.5 0.47

STD Pop I 21.2 11.8–30.2 15.7 ± 3.72 ns 10.7 ± 2.67 – – 57.1 ± 2.93 0.65

Pop II 32.2 22.9–39.9 10.3 ± 2.41 ns 8.0 ± 1.95 – – 66.1 ± 2.58 0.67

Pop III 25.3 15.4–36.5 15.1 ± 3.07 ns 11.7 ± 2.25 – – 77.6 ± 2.85 0.60

Pop IV 22.1 14.9–30.3 12.5 ± 3.60 ns 10.1 ± 3.45 – – 55.9 ± 4.82 0.61

Pop V 24.9 13.9–37.9 26.7 ± 4.95 ns 11.5 ± 2.50 – – 73.0 ± 3.17 0.73

Rua MP 29.6 17.3–48.9 30.3 ± 3.2 ns 12.0 ± 1.9 – – 101.1 ± 2.1 0.67

SEV Pop I 26.7 15.4–41.1 41.4 ± 8.14 ns ns – – 94.2 ± 7.29 0.84

Pop II 39.8 32.0–52.4 21.9 ± 4.10 ns ns – – 76.8 ± 4.33 0.77

Pop III 30.6 20.2–41.7 30.1 ± 4.94 ns ns – – 92.6 ± 4.95 0.80

Pop IV 26.1 16.0–47.0 42.7 ± 10 ns ns – – 60.6 ± 6.71 0.89

Pop V 26.1 16.1–37.9 32.5 ± 5.93 ns 6.6 ± 3.03 – – 84.1 ± 5.13 0.76

Aor MP 58.9 53.0–63.4 4.6 ± 2.2 ns 11.1 ± 2.8 – – 172.4 ± 3.5 0.23

STD Pop I 52.2 44.6–58.7 10.9 ± 4.28 ns 8.9 ± 4.14 – – 80.5 ± 5.23 0.55

Pop II 52.4 48.0–57.1 5.5 ± 2.05 ns ns – – 85.7 ± 4.24 0.54

Pop III 51.4 44.6–60.6 8.6 ± 3.19 ns 12.7 ± 3.76 – – 97.6 ± 4.40 0.42

Pop IV 54.4 49.5–59.2 8.1 ± 3.19 ns ns – – 103.4 ± 9.50 0.59

Pop V 57.1 49.0–64.4 8.0 ± 3.6 10.0 ± 4.70 11.9 ± 5.00 – – 117.3 ± 6.50 0.34

Aor MP 38.4 24.0–52.1 28.7 ± 3.0 10.2 ± 2.2 ns – – 128.3 ± 2.8 0.73

SEV Pop I 38.2 17.4–53.5 63.8 ± 10.25 22.1 ± 5.03 ns – – 75.9 ± 4.82 0.85

Pop II 41.9 30.6–54.3 35.2 ± 5.60 11.6 ± 5.10 ns – – 101.0 ± 5.20 0.79

Pop III 39.9 23.6–55.4 39.0 ± 5.73 14.8 ± 3.71 ns – – 83.0 ± 4.08 0.80

Pop IV 39.6 27.5–49.0 25.4 ± 5.26 ns ns – – 57.6 ± 5.09 0.89

Pop V 32.5 21.7–46.8 45.4 ± 7.24 28.2 ± 5.18 ns – – 85.2 ± 4.59 0.76

Lin MP 43.7 35.7–52.2 10.5 ± 2.0 ns 11.4 ± 2.4 – – 124.3 ± 3.0 0.45

STD Pop I 46.4 39.7–51.8 11.6 ± 4.43 ns 12.0 ± 5.33 – – 83.1 ± 6.77 0.52

Pop II 40.8 33.6–45.8 12.2 ± 2.95 ns ns – – 69.3 ± 4.17 0.76

Pop III 43.8 35.8–52.7 9.9 ± 3.05 ns 5.8 ± 2.88 – – 71.5 ± 3.95 0.59

Pop IV – – ns ns ns – – 63.2 ± 11.19 –

Pop V 48.1 42.6–54.1 12.8 ± 3.68 ns 8.3 ± 4.05 – – 78.1 ± 5.10 0.60

Rua MP 28.2 16.2–42.5 14.3 ± 2.0 ns 11.6 ± 1.1 11.7 ± 1.3 – 98.3 ± 2.2 0.50

STD + SEV Pop I 23.5 12.7–33.4 12.5 ± 4.20 ns ns 16.0 ± 3.80 – 81.7 ± 3.20 0.54

Pop II – – ns ns 2.8 ± 1.21 18.6 ± 3.63 – 82.0 ± 2.50 –

Pop III 28.1 18.1–40.3 16.3 ± 3.22 ns 4.3 ± 1.40 5.7 ± 1.74 – 96.1 ± 2.73 0.68

Pop IV – – ns ns 2.9 ± 1.91 37.5 ± 8.02 – 71.9 ± 3.41 –

Pop V 26.8 16.6–38.9 17.0 ± 4.93 ns 4.9 ± 1.64 19.6 ± 3.94 – 92.9 ± 3.03 0.53

Comb MP – – ns 3.1 ± 0.6 11.4 ± 1.0 – 22.7 ± 1.6 119.8 ± 1.3 –

STD Pop I 35.3 27.9–42.2 4.9 ± 2.19 ns 4.1 ± 1.46 – 11.2 ± 2.28 77.9 ± 2.79 0.40

Pop II 37.0 32.6–42.5 2.9 ± 1.35 ns 2.9 ± 0.97 – 7.6 ± 1.46 73.4 ± 2.02 0.35

Pop III 37.8 32.7–43.1 4.2 ± 1.61 ns ns – 9.3 ± 2.01 167.6 ± 3.82 0.40

Pop IV – – ns ns 4.5 ± 2.18 – 12.0 ± 3.15 75.1 ± 4.11 –

Pop V 38.5 31.7–46.8 8.6 ± 2.65 ns 5.1 ± 1.42 – 10.7 ± 2.02 84.6 ± 2.50 0.53

Comb MP 33.0 21.0–45.4 13.5 ± 2.4 2.6 ± 0.8 2.7 ± 1.0 – 20.0 ± 2.1 117.3 ± 1.72 0.47

SEV Pop I 32.4 18.2–43.6 29.1 ± 7.62 ns ns – 24.2 ± 5.93 107.2 ± 5.14 0.66

Pop II 38.5 30.5–47.9 10.8 ± 3.44 ns ns – 12.7 ± 3.44 126.2 ± 3.42 0.52

Pop III 33.3 24.6–41.3 33.3 ± 4.31 ns ns – 14.7 ± 3.63 133.0 ± 4.53 0.75

Pop IV 33.0 26.7–41.5 14.1 ± 5.22 ns ns – 7.6 ± 3.20 132.8 ± 7.70 0.65



711Theoretical and Applied Genetics (2018) 131:703–720 

1 3

(1506 bp) Pop IV (1750 bp) and Pop V (1100 bp). These 
observations align with what is understood about the 
breeding history of two of the contrasting populations. 
Pop I was based on only six pair crosses between randomly 

selected individuals from two cultivars, whereas Pop III 
originated with contributions from a larger number and 
greater diversity of parents—a polycross of 80 randomly 
selected individuals from six different cultivars. After 
advancement to  F2, both underwent multiple cycles of 
selection prior to their inclusion in the MP training set.

Phenotypic data

Data from 28 seasonal HA harvests (Supplementary 
Table S1) were used to derive estimates of average HA 
within each site and treatment combination, and across 
site and treatments. Nine discrete HA traits were generated 
and variance components (Table 2) and BLUP’s estimated. 
These BLUP’s represented the estimated breeding value for 
the mother plants polycrossed, within each of the five popu-
lations, to generate the HS families.

For the MP training set (n = 517 HS families) significant 
(P < 0.05) σg

2 amongst families was indicated for seven of 
the HA traits as well as DTH estimated across two envi-
ronments (Comb DTH) (Table 2). There was no significant 
(P > 0.05) σg

2 for HA traits Comb STD (combined data from 
all standard grazing sites) or Comb STD + SEV (combined 
data from all grazing treatments and sites). Significant 
genotype-by-location (σ2

gl) and genotype-by-treatment (σ2
gt) 

interactions (Table 2) indicated variation in the relative rank-
ing amongst HS families due to trial location (HA traits, 
Comb DTH) or summer grazing management (HA traits). 
HS family mean R, estimating the upper limit of heritability, 
was high for Comb DTH as well as for HA under severe 
grazing treatment (compared with standard grazing) and the 

Table 2  (continued)

Trait Training set Mean Range σ2
(g or a) σ2

gh σ2
gy σ2

gt σ2
gl σε

2 R or hn
2

Pop V 28.5 19.0–40.0 20.0 ± 4.6 ns ns – 11.1 ± 3.12 100.4 ± 3.82 0.71

Comb MP – – ns 0.8 ± 0.3 5.5 ± 0.6 11.5 ± 1.0 19.9 ± 1.3 124.4 ± 1.1 –

STD + SEV Pop I 35.8 24.9–44.6 7.6 ± 3.32 ns 2.0 ± 0.93 14.8 ± 2.8 11.9 ± 2.25 79.4 ± 2.30 0.37

Pop II

Pop III 35.7 29.4–41.6 4.8 ± 1.78 ns 2.0 ± 0.70 4.9 ± 1.21 9.4 ± 1.46 89.6 ± 1.80 0.39

Pop IV – – ns ns 2.3 ± 1.31 8.2 ± 2.30 8.4 ± 2.25 71.6 ± 3.05 –

Pop V 36.6 28.9–45.0 10.0 ± 2.73 ns 2.5 ± 0.86 6.3 ± 1.48 8.5 ± 1.58 85.8 ± 2.00 0.55

Comb MP 16.2 11.1–21.2 6.1 ± 0.8 – – – 0.2 ± 0.02 18.5 ± 0.7 0.66

DTH Pop I – – ns – – – 5.2 ± 1.97 12.8 ± 1.59 –

Pop II 17.0 10.6–22.0 6.0 ± 1.26 – – – 1.7 ± 0.78 8.3 ± 0.77 0.73

Pop III 16.7 12.5–21.6 4.4 ± 1.27 – – – ns 17.1 ± 1.34 0.61

Pop IV 16.7 6.9–17.3 13.3 ± 3.71 – – – ns 21.6 ± 4.08 0.79

Pop V 24.2 21.1–26.6 2.3 ± 1.12 – – – ns 17.3 ± 1.71 0.44

ns indicates a variance component was recorded but was not statistically significant (P > 0.05). Results are given for analysis of populations as 
a MP training set and as individual populations (Pop I–V). Where there was no significant (P > 0.05) σ(g or a)

2 for a training set, results are not 
shown (including all training sets for the trait Aor STD + SEV)

STD standard grazing management, SEV severe summer grazing management, Comb data combined across locations and/or treatments

Fig. 2  Decline in linkage disequilibrium, measured as r2 against dis-
tance in base pairs (bp), for the five populations making up the multi-
population (MP) perennial ryegrass training set. The lines are non-
linear regression models estimated for each of Pop I–V. These are 
based on pairwise r2 values between all SNPs mapped to the same 
scaffold, for all chromosomes within the population (Supplementary 
Figure S3)
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same trend was observed for hn
2 in individual populations. 

Further description of variance components for both the MP 
training set and individual populations, including genotype-
by-environment interactions, as well as R and hn

2 values, are 
provided in Supplementary material.

Genomic prediction using GBS SNP data

PA of genomic prediction models was assessed by cross-
validation at two levels. First, models based on the MP train-
ing set were assessed for prediction of individuals sampled 
from the MP without consideration of individual popula-
tion (prediction at the breeding programme level). For KGD, 
GBLUP and RF a full set of 1,023,011 SNPs were used in 
the models. Due to computational limitations, only a smaller 
set of 249,546 SNPs was able to be used for RR.

The highest PA amongst traits, determined as the Pear-
son’s correlation between observed phenotype (BLUP) and 
GEBV, was for Comb DTH (Fig. 3). Across all four statisti-
cal methods, mean r for Comb DTH was 0.50. Amongst 
HA traits, there was substantial variation in PA, ranging 
from Lin STD (mean r = 0.12 over the four methods), Aor 
STD (0.21), Aor SEV (0.24), Rua STD (0.27) up to Rua 

SEV (0.30). Combining data from certain sites and/or treat-
ments generated higher PA: amalgamation of standard and 
severe treatment HA data from the Ruakura trials (Rua 
STD + SEV) had a mean PA of r = 0.43 and combining data 
from the severe grazing treatments at Aorangi and Ruakura 
(Comb SEV) resulted in a mean PA of r = 0.36.

Amongst HA traits and Comb DTH there were small 
(Fig. 3) but significant (Table 3) differences in PA when 
comparing the four statistical methods. RF overall ranked 
lowest in PA for five of eight traits, most significantly Comb 
DTH and Rua STD + SEV. The two GBLUP methods were 
statistically inseparable, except for Lin STD, and were sig-
nificantly outperformed by another method for only two 
traits (Lin STD and Rua STD). The slope of the regression 
of GEBV on BLUP was determined to assess the bias of a 
statistical method, with unbiased models expected to have 
a slope coefficient of 1. The RF method over-estimated 
BLUP’s for all traits except for Aor SEV (Fig. 3), while 
all other methods tended to under-estimate, particularly 
RR. KGD and GBLUP methods for traits Rua SEV, Rua 
STD + SEV, Comb SEV and Comb DTH came close to 
being unbiased. In this dataset, there was also no obvious 
relationship between PA and R.

Fig. 3  Mean (n = 5) tenfold 
cross-validation predictive 
ability in a multi-population 
training set (MP) for seven HA 
traits and DTH, determined 
using four statistical models 
and assessed as a Pearson’s 
correlation between observed 
phenotype (BLUP) and GEBV; 
b slope of the regression of 
GEBVs on BLUPs. RR ridge 
regression, RF random forest, 
KGD GBLUP using KGD 
genomic relationship matrix. 
RR models used 249,546 SNPs 
(largest SNP dataset able to be 
dealt with computationally by 
this method), while GBLUP, 
KGD and RF used 1,023,011 
SNPs. Differences between any 
two statistical methods for each 
trait > LSD bar are significant 
at P < 0.05. In b statistical 
methods with a slope of regres-
sion of GEBVs on BLUP-
adjusted means ≈ 1 are regarded 
as providing unbiased estimates 
of BLUPs. Lines are used on 
the plots not to infer continuity 
between the points but to clearly 
illustrate differences amongst 
the statistical methods
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MP genomic prediction models were also assessed 
by cross-validation for PA within the respective individ-
ual populations, Pop I–V, using KGD. This reflects the 
situation in which a breeder applies a genomic predic-
tion model developed with the MP training set, into one 
specific breeding population. PA varied amongst the five 
populations (Fig. 4) but the direction of r in the individual 
populations was consistent with that observed in the full 
MP training set (black symbols in Fig. 4) and the magni-
tude was similar albeit reduced by 10–32% (depending on 
population and trait): very low to low PA for within-envi-
ronment HA traits, Lin STD (r = 0.01–0.08, mean 0.04), 
Aor STD (0.11–0.23, mean 0.18), Aor SEV (0.15–0.24, 
mean 0.21), Rua STD (0.21–0.31, mean 0.19) and Rua 
SEV (0.21–0.31, mean 0.25); and higher for Comb DTH 
(0.41–0.51, mean 0.46) and HA traits where data were 
merged from more than one environment, Rua STD + SEV 
(0.27–0.44, mean 0.34) and Comb SEV (0.22–0.38, mean 

0.29). No one of the five populations ranked consistently 
highest for PA across all traits (Fig. 4) but Pop V was 
highest on average, followed by Pop II, Pop I, and Pops III 
and IV ranked last equal. Similar PA values were observed 
using three other statistical modelling approaches, 
GBLUP, RR and RF (data not presented).

The influence of SNP density on PA was investigated to 
a limited extent. SNP datasets of different sizes were gener-
ated (Table 1) but this was achieved by manipulating the 
allowable missing data level so that SNP datasets of differ-
ent sizes also potentially varied in terms of the reliability 
of SNP genotype calls. For all statistical methods there was 
minimal effect of SNP number for predicting traits in the MP 
training set (Table 4). PA’s estimated with the smallest SNP 
dataset (44 K) were not significantly different (P < 0.05) to 
those estimated using the largest SNP dataset (1.02 M). A 
comprehensive summary of the effects of missing SNP data 
rate and read depth, by statistical method, is provided in 
Supplementary Table S3.

Simulation of genetic gain under a GS breeding 
strategy

Figure 5 illustrates the modelled impact on ∆Gc when 
using a genomic prediction model to select the top-
ranked individuals by GEBV within the best 20% of HS 
families  (ApWFgs-HS), as compared to randomly select-
ing individuals within those families (HSF). HSF in Pop 
II achieved ∆Gc of 6.02% for the Rua STD HA trait, with 
a single selection cycle. Applying genomic prediction to 
select the top individuals within the best 20% HS fam-
ilies resulted in ∆Gc increasing from 6.02% to a mini-
mum of 7.89%, assuming the lowest genomic PA (0.10) 
and lowest selection intensity (equivalent to selecting the 
top 5% of individuals within-family). This increased to 
a maximum ∆Gc of 18.18% when the highest PA (0.50) 
and selection intensity (picking top 1% of individuals 
within family) combination was applied. This range is 
equivalent to a 31–202% improvement in ∆Gc by apply-
ing  ApWFgs-HS over HSF. The effect of using a higher 
selection intensity was amplified as PA increased, as seen 

Table 3  Analysis of variance 
results considering two 
measures of genomic predictive 
ability, the Pearson’s correlation 
between BLUP’s and GEBV’s 
and the slope of the regression 
of GEBV’s on BLUP’s, with 
statistical method and trait as 
factors

Accuracy measure Source df SS MS F value P value

Pearson correlation Method 3 0.0039 0.0013 6.50 0.0004

Trait 7 2.1105 0.3015 1505.95 < 0.0001

Method × trait 21 0.0535 0.0026 12.72 < 0.0001

Residual 128 0.0256 0.0002

Regression slope Method 3 4.9230 1.6409 404.69 < 0.0001

Trait 7 1.8710 0.2673 65.92 < 0.0001

Method × trait 21 0.7570 0.0360 8.89 < 0.0001

Residual 128 0.5190 0.0041

Fig. 4  Cross-validation predictive ability (mean of n  =  25 twofold 
cross-validations) in individual populations (Pop I–V) for seven HA 
traits and DTH. For each population, predictive ability is based on 
genomic prediction models developed from a multi-population (MP) 
training set, using the KGD statistical method. Prediction accura-
cies by KGD in the full MP training set (Fig. 3), are represented here 
(black symbol) for comparison. Error bars are SE
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by the relative slopes of the three selection intensity lines 
(Fig. 5). At PA of 0.10, moving from picking the top 5% 
of individuals within-family to the top 1%, increased ∆Gc 
by 0.56%. At PA of 0.50 the same change in selection 
intensity increased ∆Gc by 2.78%. Taking the PA of 0.27, 

as estimated by cross-validation for Rua STD in Pop II 
(Fig. 4), and applying the highest within-family selection 
intensity in the  ApWFgs-HS scenario, ∆Gc increased by 
twofold over HSF (Fig. 5).

Discussion

We describe an empirical assessment of GS for perennial 
ryegrass using GBS SNP data in conjunction with a train-
ing set composited from multiple breeding populations, with 
the principal focus on HA as a measure of DMY potential. 
The GS training experiment emulates a genotypic recurrent 
selection breeding scheme in which the genetic merit of 
an individual is estimated by assessing the average perfor-
mance of maternal HS progeny in sown field plots, for mul-
tiple HA harvests (Conaghan and Casler 2011) in multiple 
environments.

A multi-environment phenotypic dataset was acquired 
that reflects grass production systems in New Zealand, 
wherein pastures are typically grazed for most seasons of 
the year, there is substantial regional variation in terms of 
climate, soil characteristics, insect and disease pressures 
(Chapman et al. 2017) and perennial ryegrass-based pas-
tures are expected to be productive for multiple years (Tozer 
et al. 2011). Overall, the phenotyping experiment provided 
an effective basis for the development of genomic predic-
tion models. Significant genetic variation was detected for 
HA measured in plots amongst HS families within five trial 
environments (defined by location and grazing treatment), 
with moderate to high R. Particularly, high R (0.67–0.73) 
occurred in environments where frequent summer defolia-
tion was applied. Severe grazing during summer, through 
the imposition of short grazing intervals and/or low grazing 

Table 4  Mean (n = 10) cross-validation predictive ability in a multi-population (MP) training set using three different SNP sets for seven HA 
traits and Comb DTH

Set 1 = 43,966 SNPs (1% missing data per SNP site). Set 2 = 249,546 SNPs (10% missing data per SNP site). Set 3 = 1,023,011 SNPs (50% 
missing data per SNP site)

RR ridge regression, RF random forest, KGD GBLUP using KGD genomic relationship matrix

Trait RF GBLUP RR KGD

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Aor STD 0.23 (0.007) 0.23 (0.008) 0.23 (0.003) 0.23 (0.006) 0.22 (0.006) 0.21 (0.006) 0.22 (0.009) 0.19 (0.007) 0.22 (0.005)

Aor SEV 0.26 (0.004) 0.26 (0.004) 0.24 (0.005) 0.24 (0.004) 0.24 (0.005) 0.23 (0.006) 0.21 (0.005) 0.23 (0.005) 0.24 (0.004)

Lin STD 0.11 (0.006) 0.14 (0.005) 0.15 (0.010) 0.10 (0.003) 0.10 (0.003) 0.07 (0.009) 0.13 (0.006) 0.15 (0.006) 0.10 (0.011)

Rua STD 0.26 (0.007) 0.25 (0.007) 0.25 (0.004) 0.26 (0.005) 0.27 (0.006) 0.26 (0.005) 0.28 (0.006) 0.30 (0.007) 0.26 (0.005)

Rua SEV 0.32 (0.008) 0.31 (0.006) 0.30 (0.006) 0.31 (0.006) 0.31 (0.005) 0.31 (0.005) 0.28 (0.010) 0.30 (0.008) 0.30 (0.007)

Rua 
STD + SEV

0.40 (0.006) 0.40 (0.005) 0.39 (0.004) 0.43 (0.006) 0.44 (0.007) 0.44 (0.007) 0.44 (0.007) 0.44 (0.008) 0.43 (0.006)

Comb SEV 0.36 (0.007) 0.35 (0.006) 0.34 (0.005) 0.35 (0.007) 0.36 (0.007) 0.36 (0.007) 0.33 (0.011) 0.35 (0.010) 0.36 (0.006)

Comb DTH 0.47 (0.004) 0.47 (0.004) 0.46 (0.005) 0.52 (0.002) 0.52 (0.003) 0.52 (0.003) 0.51 (0.002) 0.51 (0.003) 0.52 (0.005)

Fig. 5  Predicted rates of genetic gain (∆Gc) for HA based on data 
from the evaluation of 108 half-sibling (HS) families of perennial 
ryegrass Pop II in the Rua STD environment. HS family selection 
(HSF) is compared with among-HS family phenotypic selection and 
within-family genomic selection  (APWFgs-HS). ∆Gc is estimated at 
six levels of genomic-predictive ability (r), including the value esti-
mated by cross-validation for Rua STD HA in Pop II (0.27, indicated 
by arrow). Three within-HS family selection intensities (kw  =  2.06, 
2.27 and 2.67, equivalent to selecting the top 5, 3 and 1% of indi-
viduals, respectively) are tested at each r. Among-HS family selection 
intensity is fixed at kf = 1.40 (equivalent to selecting top 20% of HS 
families) for all HSF and  APWFgs-HS scenarios. The solid horizontal 
line indicates ∆Gc for HSF selection (6.02) and the dotted line shows 
two times that rate (12.04)
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height, can lead to loss of plant vigour in ryegrass pastures 
(Cosgrove 2011; Brougham 1960) and may negatively influ-
ence the persistence of dry matter production in subsequent 
seasons (Brougham 1970). Our findings indicate a strong 
genetic component for HA, particularly where plants have 
been previously stressed by frequent summer defoliation, 
and therefore, potential for genetic improvement of ryegrass 
yield and persistence under sub-optimal conditions.

In general, genomic selection PA increases with training 
set size (Asoro et al. 2011; Cericola et al. 2017; Hayes et al. 
2009b; VanRaden et al. 2009) and is affected by the magni-
tude of genetic relatedness between training and selection 
or validation populations (de Roos et al. 2009; Habier et al. 
2007; Taylor 2014). In forage species, DMY is only realisti-
cally phenotyped in sown plots and in this regard training 
set size represents a practical constraint because limited 
numbers (e.g., often < 100) of such records from half- or 
full-sibling families are typically available for a given popu-
lation in one generation. Moreover, breeding programmes 
can consist of several breeding populations, with varying 
levels of genetic relatedness, and it would be efficient to 
have genomic prediction models that are applicable to the 
full extent of genetic material in the programme. Combin-
ing data from multiple populations is a potential strategy for 
increasing training set size as well as ensuring representation 
of the full genetic base of the breeding programme in the 
training set. A combined population training set may also 
better support GEBV estimation for populations not repre-
sented in the training set (Pryce et al. 2011). In the current 
study, genomic prediction models constructed with a moder-
ately sized MP training set were predictive of HA traits, and 
DTH, to varying levels of accuracy, when assessed at either 
the breeding programme level (treating the MP training set 
as a single-target population) or in each of the individual 
populations that made up the MP training set. PA in the 
full MP set for within-environment HA traits ranged from 
r = 0.07–0.31. This corresponds with PA reported for HS 
family-derived DMY datasets in other studies, including 
perennial ryegrass (Grinberg et al. 2016) (r = 0.01–0.32), 
alfalfa (Annicchiarico et al. 2015) (r = 0.0–0.35) and switch-
grass (Ramstein et al. 2016) (r = 0.09–0.50). High PA (up 
to r = 0.58) for Comb DTH, almost twice that of within-
environment HA traits, is in agreement with studies in other 
monocot plant species (Spindel et al. 2015; Thavamaniku-
mar et al. 2015; Zhao et al. 2014) and is likely influenced by 
simpler genetic architecture and higher heritability (Fè et al. 
2015a; Elgersma 1990).

MP-based models were also effective within each of 
the individual populations in the training set, although 
PA was variable amongst populations and on average 
lower (10–32%) than PA observed in the training set as a 
whole. Given the small size of the individual populations, 
it is difficult to compare MP-based prediction models with 

within-population models, as cross-validation correlations 
in the latter could only be based on very small validation 
sets; when we investigated this we observed nearly half 
within-population models yielded r ≤ 0.05 and high stand-
ard error for those estimates (data not presented). In dairy 
cattle, where robust comparison of pure-against multi-breed 
approaches has been completed, the experience from vari-
ous studies is of either a small increase or no change in PA 
when using a multi-breed training set for predicting GEBVs 
within a single breed. The efficacy of a multi-breed train-
ing approach was influenced by trait architecture and the 
statistical model used (Erbe et al. 2012; Hayes et al. 2009a; 
Pryce et al. 2011) and was most advantageous for breeds 
with few individuals represented in the training set (Olson 
et al. 2012). In plant species, training sets for genomic pre-
diction are often smaller than for animals and, in empirical 
studies where training set composition has been manipulated 
to achieve higher numbers, the effect of size on PA has not 
been straightforward. For example, Grinberg et al. (2016) 
assembled larger training sets by combining data from differ-
ent generations and pools of a ryegrass breeding programme. 
The effect of training set size on PA was inconsistent and 
it was concluded that any benefit to PA from expanding the 
size of the training population may be confounded in part 
by genetic divergence amongst the different contributing 
groups. Ramstein et al. (2016) observed that pooling data 
from two small switchgrass breeding populations provided 
no benefit over single population genomic prediction mod-
els, and also attributed this to the extent of genetic diver-
gence between the contributing populations. In flax, You 
et al. (2016) reported PA increased significantly when pool-
ing certain biparental populations into training sets, but not 
all combinations. Population combinations that resulted in 
greater PA, compared with single population models, were 
not necessarily the largest and were most effective for low 
heritability traits. In the current dataset, a clear influence 
of genetic structure on the efficacy of the MP training set 
approach was difficult to discern. For example, PA was posi-
tive in Pop IV, despite the relative genetic divergence of 
this population from the other four in the training set. Over-
all, the increase in training set size achieved by combining 
populations may have been sufficient to mitigate any nega-
tive influence of genetic divergence amongst the individual 
populations.

Perennial forage species are generally bred for broad 
adaptation, as the market for cultivars adapted to specific 
environments is considered too small to justify development 
costs (Chapman et al. 2017). Genomic prediction models 
that predict mean DMY potential of genotypes across envi-
ronments would, therefore, serve current industry breed-
ing practice. For the MP training set, across-environment 
BLUP adjusted means for HA were successfully generated 
for only the combination of the two Ruakura environments 
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(Rua STD + SEV) and of the two severe grazing treatments 
(Comb SEV),—specific cases where environments showed 
a degree of phenotypic correlation (Supplementary Figure 
S4, Table S2). Under standard grazing, pooling HA data for 
the MP training set from all three locations failed to resolve 
significant genotypic variation amongst families and com-
bining HA data across all five environments (locations, treat-
ment) was similarly unsuccessful. Our results suggest that 
developing a genomic prediction model for inference of HA 
across all New Zealand environments may be difficult to 
achieve due to substantial genotype-by-environment inter-
action and relatively high-pooled error variance (Table 2). 
An alternative approach to implementing genomic predic-
tion for mean performance across environments may be to 
incorporate GEBV’s, estimated for a range of single-envi-
ronment HA, into selection indices that weight HA across 
target environments (Jahufer and Casler 2015). However, 
the correlated response will depend on the type, positive or 
negative, and magnitude of the genetic correlation among 
the target environments.

Higher PA’s (r = 0.36, 0.43) were, nevertheless, achieved 
in the current study in two cases where data were success-
fully pooled across environments, Comb SEV and Rua 
STD + SEV. The higher PA that resulted from pooling data 
in these cases may be a consequence of underlying genetic 
correlation between environments, effectively increasing the 
number of measurements per genotype and the reliability of 
the HS-family BLUP’s for those traits, which has implica-
tions for the design of future training experiments that utilise 
these trial formats.

As described by others (Heffner et al. 2010; Resende et al. 
2014), GS may be used to increase the rate of genetic gain 
per unit time by reducing the length of the generation inter-
val. In forage species, Annicchiarico et al. (2015) illustrated 
that for DMY, which typically requires multi-year pheno-
typic assessment, GS using a prediction model with even 
modest PA has the potential to deliver more than three-fold 
increase in efficiency over a conventional scheme, by reduc-
ing the length of the generation interval from 3 years to 1. 
Additionally, by enabling the breeder to access the within-
family ¾ additive genetic variation that is ordinarily difficult 
to leverage (Casler and Brummer 2008), GS also offers a 
means to increase the rate of genetic gain in a single cycle 
of selection. Simulation based on our experimental data 
showed that ∆Gc from a single cycle of selection for HA 
could be almost doubled relative to conventional HS family 
selection, using among-family selection based on phenotype 
in combination with within-family selection by GS with a 
moderate PA (r = 0.27) and high-selection intensity. In a 
practical breeding sense, 3 years of field evaluation could 
be used to phenotype and rank HS families, enabling selec-
tion of the best families. The phenotypic data generated 
in the field phase would also be used, in conjunction with 

maternal parent genotypic data, to generate a genomic pre-
diction model that is then applied for the within-HS family 
selection component. Because GS occurs within the same 
generation used to train the prediction model, erosion of PA 
over more than one cycle of selection (see below) is not a 
factor in this situation.

Persistency of PA when applying a genomic prediction 
model long term, over successive cycles of selection, will 
be affected by the relative contributions to PA of three 
sources of information: pedigree relationships captured by 
SNPs; linkage between QTL and SNPs; or ancestral LD 
between QTL and SNPs (Habier et al. 2007, 2013; Müller 
et al. 2017). PA due to ancestral LD is expected to persist 
across generations while the impact of genetic relatedness, 
which decays rapidly over generations, has been shown to 
be the prevalent component of PA in GBLUP approaches 
in particular (Habier et al. 2007; Zhong et al. 2009). It 
is not possible to quantify the contributions of these dif-
ferent components to PA of prediction models developed 
with the current dataset. However, LD decayed rapidly in 
the individual populations of the training set, and there-
fore, LD underlying the MP training set as a whole would 
be expected to be low. Given the absence of long range 
LD and the observation that PA was unchanged despite a 
25-fold reduction in SNP marker density (from 1.02 M to 
44 K SNPs), it is reasonable to conclude that PA estimated 
for the MP genomic prediction models is predominantly 
due to the capture of genetic relationships between train-
ing and validation sets. A practical implication of this is 
that retraining of the genomic prediction models might be 
needed in each generation to fully exploit pedigree rela-
tionships, as this source of PA erodes rapidly over genera-
tions. However, some level of SNP-QTL LD may exist 
across the training set, given (a) the efficacy of the MP 
models across the full range of populations in the set and 
(b) the prevalent contribution of only three principal germ-
plasm sources in New Zealand ryegrass breeding (Stewart 
2006). Validation of longer term PA, by completing suc-
cessive cycles of GS and progeny evaluation from train-
ing set-related and independent populations, will enable 
empirical evaluation of PA decay and the contribution of 
population-wide SNP QTL-LD to the genomic prediction 
models established in this study.

Only small differences in PA were found amongst the 
analytical approaches assessed, and there was no obvi-
ous interaction with trait type or repeatability/heritability. 
GBLUP and KGD, a modified GBLUP approach developed 
to deal with GBS genotypes associated with low-read depth 
and without imputing missing data, were most often equal 
to or slightly superior to another genomic linear method, 
RR while the non-parametric machine-learning method, RF 
ranked lowest overall. This may reflect conditions (limited 
size and multi-population composition of the training set) 
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that favour the ability of GBLUP methods to capture genetic 
relationship information in the SNP dataset. Expansion to a 
larger training set, based on a single population, may iden-
tify differences in PA of different analytical approaches in 
ryegrass. This should include the application of Bayesian 
methods, which were not assessed here, but which were 
found to be superior to GBLUP in achieving high PAs when 
using a multi-breed training set (Hayes et al. 2009a).

We have demonstrated that a ryegrass training set com-
posited from multiple breeding populations, in conjunction 
with genotyping-by-sequencing as a source of molecular 
marker information, provides an encouraging basis for tun-
ing a GS engine to specific applications in terms of traits, 
locations and farm systems. At the scale of training used in 
this study, cross-validation prediction accuracies estimated 
for within and across-environment HA have the potential to 
deliver a significant enhancement of genetic gain inside a 
single cycle of selection, if used for within-HS family selec-
tion at relatively high selection intensity. Validation of PA 
via multiple selection cycles in independent populations is 
required to determine (a) model persistence and efficacy over 
more than one selection cycle from the training generation 
and (b) transferability of the constructed models to popula-
tions unrelated to the training set. Sown rows, used in this 
training experiment instead of larger plots, have been shown 
to be correlated with sward yield and persistence in large 
rectangular plots (1.5 m × 5 m) in a ryegrass breeding pro-
gramme (Dr. M. Z. Z. Jahufer, unpublished data). Neverthe-
less, validation of the genomic prediction models described 
here will require that experimental synthetic developed by 
GS are assessed in larger plots and future genomic selection 
training systems should ideally use larger plot formats that 
more closely resemble on-farm swards.
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