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Predictive ability of logistic regression, auto-logistic regression

and neural network models in empirical land-use change

modeling – a case study
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aDepartment of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan,
ROC; bDepartment of Horticulture, National Chun Hsing University, Taichung, Taiwan, ROC;
cInstitute for Environmental Studies, VU University Amsterdam, Amsterdam, The Netherlands

(Received 26 February 2009; final version received 16 February 2010)

The objective of this study is to compare the abilities of logistic, auto-logistic and
artificial neural network (ANN) models for quantifying the relationships between land
uses and their drivers. In addition, the application of the results obtained by the three
techniques is tested in a dynamic land-use change model (CLUE-s) for the Paochiao
watershed region in Taiwan. Relative operating characteristic curves (ROCs), kappa
statistics, multiple resolution validation and landscape metrics were used to assess the
ability of the three techniques in estimating the relationship between driving factors and
land use and its subsequent application in land-use change models. The validation results
illustrate that for this case study ANNs constitute a powerful alternative for the use of
logistic regression in empirical modeling of spatial land-use change processes. ANNs
provide in this case a better fit between driving factors and land-use pattern. In addition,
auto-logistic regression performs better than logistic regression and nearly as well as
ANNs. Auto-logistic regression and ANNs are considered especially useful when the
performance of more conventional models is not satisfactory or the underlying data
relationships are unknown. The results indicate that an evaluation of alternative techni-
ques to specify relationships between driving factors and land use can improve the
performance of land-use change models.

Keywords: auto-logistic regression; artificial neural networks; landscape metrics;
empirical land-use change model

1. Introduction

Land-use change models have been developed to analyze the interaction between driving

factors and land-use changes, and to predict land-use change patterns and variations in space

and time. Apart from being learning tools for unraveling the driving forces and system

dynamics, land-use change models play an important role in exploring possible future

developments in the land-use system (Verburg et al. 2006b). The diverse modeling

approaches that have evolved in recent years have motivated researchers to review and

classify the different approaches (Agarwal et al. 2002, Verburg et al. 2004).

Such classification systems are based primarily on the dominant land-use change

processes addressed by the model, the simulation technique used in the model or the

underlying theory (Verburg et al. 2004). The variety of land-use change models include
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stochastic models, optimization models, dynamic process-based simulation models and

empirical models (Li and Yeh 2002, Verburg et al. 2002, Dai et al. 2005, Castella et al.

2007, Dendoncker et al. 2007). Most land-use change models rely on an inductive approach

in which the model specification is based on statistical associations between the land-use

change of interest and a suite of explanatory variables that provide insight into the change

(Overmars and Verburg 2005). Empirically parameterized models generally utilize statistical

techniques to compute land-use change probabilities, indicating the likelihood of occurrence

of a specific land-use type at a location (Almeida et al. 2008).

The relationship between land use and its drivers is often estimated using logistic

regression prior to empirical land-use modeling (Lin et al. 2008). When using a logistical

regression approach, one must be cautious about spatial autocorrelations that often exist

in spatially referenced data because they may violate the assumption of the model (Hu

and Lo 2007). An autocovariate can be used to correct for the effect of spatial

autocorrelation. Called auto-logistic regression, this approach increases the predictive

accuracy and model versatility (Dennis et al. 2002, Svenning and Skov 2002, Koutsias

2003, Boll et al. 2005, Betts et al. 2006, Piorecky and Prescott 2006, Dendoncker et al.

2007).

Quantifying all the potential interactions between the different drivers of land use in a

logistic regression model is difficult given (1) the lack of understanding of all of these

factors, (2) the lack of sufficient information and (3) the restrictions of the functional form of

the logistic regression model (Ojima et al. 1994, Lambin and Geist 2006). Artificial neural

networks (ANNs) were developed to mimic the brain’s interconnected system of neurons so

that computers could be made to imitate the brain’s ability to sort patterns and learn by trial

and error, and thereby observe the relationships in data (Pijanowski et al. 2002). Moreover,

ANNs can take any nonlinear complex relationship between the driving variables and land

use into account (Pijanowski et al. 2002, 2005, Dai et al. 2005). In recent years, a number of

researchers have successfully applied ANN models in land-use change modeling

(e.g., Pijanowski et al. 2002, Mas et al. 2004, Dai et al. 2005, Pijanowski et al. 2005,

Almeida et al. 2008, Liu and Seto 2008). In addition, ANNs have been integrated with other

models, such as cellular automata (CA), for land-use change modeling (Li and Yeh 2001,

2002, Almeida et al. 2008). Apart from the different capacities of these empirical techniques

to quantify the relationship between driving factors and land use, it is also important to

analyze how the results of these techniques can be used in dynamic simulation models.

Pijanowski et al. (2005) have shown that it is not always the empirical model with the best fit

that provides the most accurate land-use simulation.

One commonly used model for land-use simulation is the Conversion of Land Use and

its Effects (CLUE-s) model. The CLUE-s model has been successfully applied in simulating

land-use changes in response to different spatial and nonspatial policies (Verburg et al.

2006a; Castella and Verburg 2007, Castella et al. 2007, Lesschen et al. 2007, Lin et al.

2007a, 2007b, 2008). In this model, logistic regression analyses are commonly used to

calculate the probabilities of land-use changes prior to the allocation procedure. To our

knowledge, the allocation results of CLUE-s modeling based on alternative specifications of

the relationships between drivers and land use by logistic regression, auto-logistic regression

and ANNs have not been compared previously.

The objective of this study is to demonstrate the abilities of logistic regression, auto-

logistic regression and ANN models to quantify the relationships between land-use patterns

and their drivers. Specifically, we assess the efficiency of the three models in CLUE-s

modeling for simulating land-use changes in the Paochiao watershed region in Taiwan.
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2. Methods and materials

2.1. Study watershed

The Paochiao watershed is bordered to the northeast by the Tamsui River Basin in northern

Taiwan (Figure 1). The study area is located at 25.00�N, 121.62�E. The area of the watershed
is 98.61 km2. The elevation distribution is between 8 and 683 m and the mean elevation is

215 m. In the model, the dimensions are 128 (rows) by 211 (columns) and each cell size is

equal to 80 m. Due to the population increase in the Taipei metropolitan area, land-use

patterns have changed over the last decade. The main processes of change include urbaniza-

tion as a threat to forest, agricultural land and other land uses. These processes of change are

representative for many rural areas in the neighborhood of metropolitan areas.

Four SPOT (Satellite Pour l’Observation de la Terre) satellite images acquired on

27 March 1990, 25 December 1993, 16 July 1998 and 2 January 2000 were selected for

land-use classification in this study. The images were classified using supervised classifica-

tion, performed by the ERDAS IMAGINE software with 1/5000 black and white aerial

photographs provided by the Aerial Survey Office of the Taiwan Forest Bureau, with

maximum likelihood and fuzzy methods (Lin et al. 2008). In the study, a total of 300

training areas were used to evaluate the final accuracy of each SPOT image. The training area

Figure 1. The location of the Paochiao watershed and the land-use distribution pattern in 2000.
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numbers per class are 133 training areas for forest, 78 training areas for built-up land, 43

training areas for agricultural land, 19 training areas for grassland, 12 training areas for bare

land and 15 training areas for water. The land-use classes distinguished include forest, built-

up land, agricultural land, grassland, water and bare land. The land uses covered forest

(74.8%), built-up land (15.3%), agricultural land (8.2%), grassland (0.8%), water (0.7%) and

bare land (0.2%) of the area in 2000. The kappa values for classification of the images for

1990, 1993, 1998 and 2000 were 0.86, 0.85, 0.86 and 0.84, respectively. The land-use

classes of forest, built-up land, agricultural land and grassland had high classification

accuracy rates (92–96%, 85–96%, 73–90% and 63–90%, respectively), but the classification

accuracy rate for bare land was low (42–60%).

The socio-economic and biophysical driving factors of land-use allocation in the study

area were selected based on the knowledge of the study area and factors frequently identified

in land-change studies (Geist and Lambin 2002). A more detailed analysis of the driving

factors for the same case study area is presented by Lin et al. (2008). The factors used include

distance to transport, elevation, slope, distance to river, distance to built-up land, distance to

urban planning area, soil drainage, soil erosion coefficient and population density. Data for

all types of land-use and driving factors were inputs to the logistic regression, auto-logistic

regression, and ANN models to calculate probability maps for the occurrence of each land-

use type. Based on the land-use change probabilities calculated by the above models, the

land-use change model (CLUE-s) simulated backward land-use patterns in 1993 and 1998

for the validation. A variety of methods such as kappa and multi-resolution validation were

used to compare the simulation results for 1993 and 1998 with independent observations of

land cover in those years. Finally, a simulation for the period 2001–2015 was made for which

the change in landscape patterns by landscape metrics was analyzed with the Patch Analyst

extension for ArcView (McGarigal and Marks 1995, Elkie et al. 1999).

2.2. Quantification of land use and drivers

2.2.1. Logistic regression

The logistic regression provides the probability of the presence/absence of each land use at

each location based on their drivers (Verburg et al. 2004). The logistic regression quantifies

the relationships between different types of land use and their drivers, which is specified by

pil ¼
exp b0l þ

P

k

j¼1

bjlxji

 !

1þ exp b0l þ
P

k

j¼1

bjlxji

 ! ; (1)

where pil is the probability of the occurrence of land-use class l at grid cell (pixel) i, k is the

number of driving factors, xji is the value of cell i for the driving factor j, b0l is the estimated

constant and bjl is the coefficient of driving factor j for land use l in the logistic model.

2.2.2. Auto-logistic regression

Auto-logistic models account for spatial autocorrelation through the addition of an auto-

covariance variable, which is calculated for a specific neighborhood size (Piorecky and

Prescott 2006). The formula used to express auto-logistic regression is as follows:
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p0il ¼
exp b0l þ

P

k

j¼1

bjlxji þ clCOVil

 !

1þ exp b0l þ
P

k

j¼1

bjlxji þ clCOVil

 ! ; (2)

where p0il is the probability of the occurrence of land use l that accounts for spatial

autocorrelation at pixel i; b0l, bjl, and cl are estimated coefficients for each land use and

the autocovariate (COVil) is calculated by

COVil ¼

P

j2Ni

wijyjl

P

j2Ni

wij

; (3)

where Ni represents the neighborhoods around the pixel i,wij is the weight factor determined

by the inverse of the Euclidean distance between i and j within the neighborhoods and yjl
represents the occurrence of land-use l at pixel i.

In this study, geostatistics approaches determine the specific neighborhood sizes for each

land use. A relatively consistent set of best-fit models with minimum RSS (model reduced

sum of squares) and maximum r2 values were generated by least-squares model fitting of

indicator semivariance models in GS+ (geostatistical software; Gama Design, 1995). The

ranges of the exponential indicator semivariance models of forest, built-up land, agricultural

land, grassland and bare land were 800, 670, 750, 506 and 160 m, respectively. These ranges

of indicator semivariograms were set as the neighborhood sizes for the autocovariate

calculation.

2.2.3. Artificial neural networks

An ANN consists of an interconnected group of artificial neurons that process information

using a connectionist approach to computation. Neural networks are hierarchically

arranged layers of interconnected units that process information in a highly parallel

processing fashion (Pijanowski et al. 2002). Each unit, called a node (analogous to a

neuron), is connected to other units in network by a weighted connection so that each unit

receives input from many nodes in the previous layer (Pijanowski et al. 2002). The most

common neural network is a multilayer perceptron (MLP), which contains three types of

layers: input, hidden and output (Pijanowski et al. 2002). A number of neurons are

arranged in an input layer, one or more hidden layers and an output layer. There are two

neural processing phases: learning and recall. The learning process adapts the connection

weights in an ANN to produce the desired output. Then, the recall process attempts to

retrieve information based on the weights derived by the learning process, and predict

output data of the new example. The ANNs in this article are feedforward networks with

one input layer, one hidden layer and one output layer. Although there are several ways to

construct the ANNs, back-propagation networks appear to be the most widely used in

practice (Pijanowski et al. 2002). The neural network is designed to have a flexible number

of inputs depending on the number of predictor variables presented to it, as well as an equal

number of hidden units as input units, and a single output.
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All input grids that existed in Arc/Info Grid format were normalized in the range 0.0 to

1.0 and converted to ASCII representations (called a pattern file). The pattern file contained

information from the nine inputs, which were the driving factors. The output of the ANNs

represents the likelihood of a land-use type at each pixel. The ANNs predict outputs based on

the weights derived by the learning process. The functions can be written as follows:

Oj1 ¼ f
X

i

Oiwi; j1 � bj1

 !

(4)

Ojn ¼ f
X

jn�1

Ojn�1wjn�1; jn � bjn

 !

(5)

Ok ¼ f
X

jn

Ojnwjn;k � bk

 !

(6)

where Oi denotes the input; Ok denotes the output; Ojn, Ojn�1, . . ., Oj1 denote the hidden

units in n th, (n� 1)th, . . ., 1st hidden layer; i, j and k denote the input unit, hidden unit and

output unit, respectively;w denotes a connected weight; b represents the bias value and f is a

transfer function.

There is a three-layer feedforward network in the study. The neural networks are

designed to have nine inputs based on the number of driving factors presented to it. The

transfer functions in the model are a hyperbolic tangent sigmoid function for a hidden layer

and a linear function for the output layer. The total available data have been divided into two

sets, training and validation set: the cells (samples) of the entire map in 2000 were used to

train the ANN, and the cells of the entire map in 1993 and 1998 were used to calculate

goodness of fit for validation. The training stopping criterion is MSE = 10–5. If the criterion

is not met, the ANN training algorithm will continue.

2.3. CLUE-s – an empirical land-use change model

An empirical land-use model, called the Conversion of Land Use and its Effects (CLUE-s)

model, was employed to simulate future land-use patterns in the study area (Verburg et al.

2002, Verburg and Overmars 2009). The model combines an empirical specification of

relationships between driving factors and land-use allocation with the dynamic simulation of

competition among land uses due to changes in regional-level demand for the different land-

use types. Conversion elasticities and specific conversion rules are implemented to account

for the costs of land-use conversion and to restrict unlikely conversions. Details of the model

can be found in Verburg and Overmars (2009).

In this study, regional-level land-use demands in the CLUE-s model were set according

to simulation results obtained by the SLEUTH (Slope, Land use, Exclusion, Urban extent,

Transportation, Hillshade) model (Clarke et al. 1997) for 2001–2025 made in another study

(Lin et al. 2008). It was assumed that the area of the water body remained constant during the

simulation period. Areas with slope . 21% were defined as a restricted area (Lin et al.

2008). Land-use transition rules allow forested land, agricultural land, grassland, and bare

land to be converted to any of these land-use classes or to built-up land.
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2.4. Comparison of results

Relative operating characteristics (ROCs), kappa statistics, a multi-resolution validation

procedure and landscape metrics were used to compare, validate and analyze the behavior

of the three different model specifications.

2.4.1. Relative operating characteristic

The area under the ROC curve was calculated to measure the explanatory power of each

model (Boll et al. 2005). The ROC curve is constructed by calculating the sensitivity and

specificity of the resulting classification for each possible classification. The ROC is a

measure for the goodness of fit of a logistic regression model similar to the r2 statistic in

ordinary least-squares regression. ROC values above 0.7 are generally considered good

while values exceeding 0.9 are considered to indicate an excellent model fit. Since the ROC

method is considered a proper measure to evaluate the goodness of fit (Swets 1986, Manel

et al. 2001), we applied it to assess the fit of the logistic regression, auto-logistic regression

and ANN models.

2.4.2. Kappa statistics

For the calculation of a kappa statistic, the simplest assessment is to measure the proportion

of agreement between two observed maps (the observed and simulated data) accounting for

the proportion of observed agreement (p0) and the proportion of chance agreement (pe). The

kappa statistics can be calculated as (Congalton and Mead 1983, Jensen 1996, Sousa et al.

2002, Pijanowski et al. 2005, Saito et al. 2005)

k ¼ p0 � pe

1� pe
¼

P

c

i¼1

pii �
P

c

i¼1

p
iT
p
Ti

1�
P

c

i¼1

p
iT
p
Ti

(7)

where p0 � pe is the difference between the proportion of observed agreement and that of

agreement by chance, while 1� pe is interpreted as the maximum possible correct classifi-

cation beyond that expected by chance (Cook 1998); c is the number of categories; piT
indicates the proportion of cells in category i of observed change, taken from the marginal

totals of the last column of the contingency matrix; pTi indicates the proportion of cells in

category i of the simulation, taken from the marginal totals of the last row of the contingency

matrix and pii indicates the proportion of cells in the same category, i, on both observed

changes and simulation results, taken from the diagonal elements of the contingency matrix.

2.4.3. Multi-resolution validation procedure

Another method to compare the observed and simulated results is the multiple resolution

procedure. This method compares the maps over a range of resolutions in order to account

for both small location errors and larger errors in a differentiated manner. The details of the

method are described in Costanza (1989) as well as in Castella and Verburg (2007). The fit at

a particular sampling window size (Fw) is calculated as follows:
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Fw ¼

P

tw

j¼1

1�
P

pc

i¼1

ai;S � ai;R

� �

j

tw
(8)

where Fw is the fit for sampling window size w; w is the dimension of one side of the

sampling window; ai;S is the number of cells of category i in the simulations in the sampling

window; ai;R is the number of cells of category i in the references in the sampling window; pc
is the number of different categories in the sampling windows; j is the sampling window of

dimensionw byw, which slides through the scene one cell at a time and tw is the total number

of sampling windows in the scene for window size w.

To use these measures to determine an overall degree of fit between two maps, a

weighted average of the fit over a range of window sizes is calculated. This can be done

by giving exponentially less weight to the fit at lower resolution, shown as follows:

Ft ¼

P

w

Fwe
�Dðw�1Þ

P

w

e�Dðw�1Þ (9)

where Ft is a weighted average of the fits over all window sizes and D is a constant that

determines how much weight is to be given to small vs. large sampling windows (D = 0.2 in

this study)

2.4.4. Landscape metrics

In order to test the influence of the different model specifications on the development of

spatial patterns of land use, an additional comparison was made based on landscape metrics

for the validation period (1990, 1993 and 1998) and the simulation for 2001–2015.

Landscape metrics were calculated using the Patch Analyst in the GIS software ArcView

3.2a (Elkie et al. 1999), which is designed to compute a wide variety of landscapemetrics for

categorical map patterns. In this study, the followingmetrics were used (Table 1): the number

of patches (NP), mean patch size (MPS), total number of edges (TE), mean shape index

(MSI), mean nearest neighbor (MNN) and interspersion and juxtaposition index (IJI)

(McGarigal andMarks 1995). Given the relatively small changes in landscape pattern during

the validation period, we only compared the behavior of the models in terms of landscape

metrics for the period 2001–2015.

3. Results

3.1. Logistic regression, auto-logistic regression and ANN models

The logistic regression model was used to predict the probabilities for all land-use classes

and measure the coefficients between land uses and their driving factors (Table 2). For the

forest class in the watershed, the distance to major roads, elevation, slope, distance to a built-

up land and soil drainage were positively associated with the likelihood to find forest at the

location, while the distance to a river and population density negatively correlated with the

probability. Population density positively is correlated with the occurrence of built-up land,

but the distance to a built-up land is negatively correlated with the probability for built-up

land. The obvious correlation of current built-up land with the distance to built-up land is
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directly responsible for the perfect model fit. To predict the probability of agricultural land,

the fitted logistic model used three positive coefficient factors (elevation, distance to urban

planning area and soil erosion) and three negative coefficient factors (distance to major

roads, slope and distance to built-up land). To predict the probability of grassland, three

positive coefficient factors (distance to river, distance to urban planning area and soil

Table 1. Landscape metrics.

Name Equation Note

Number of patches (NP) NP ¼ ni Patch size metrics

Mean patch size (MPS) MPS ¼ 1

ni

X

ni

j¼1

aij Patch size metrics

Total edge (TE) TE ¼
X

m

k¼1

eik Edge metrics

Mean shape index (MSI) MSI ¼

P

ni

j¼1

0:25pij
ffiffiffiffi

aij
p

ni
Shape metrics

Mean nearest neighbor (MNN) MNN ¼

P

ni

j¼1

hij

ni
Diversity metrics

Interspersion and juxtaposition index (IJI) IJI ¼

�
P

m

k¼1

eik
P

m

k¼1

eik

ln eik
P

m

k¼1

eik

0

B

@

1

C

A

ln m� 1ð Þ 100ð Þ Diversity metrics

Note: ni is the number of patches in land-use class i ; aij is the jth patch area (m2) in land-use class i ; mis the total
number of patch classes; eik is the total length (m) of the edge between patch classes i and k; pij is the jth patch
perimeter (m) in land-use class i ; hij is the distance (m) from the jth patch to the nearest neighboring patch of the
same class i, based on the edge-to-edge distance.

Table 2. Logistic regression model for land-use classes.

Variablea Forest Built-up land Agricultural land Grassland Bare land

DTransport 0.164*** – -0.205*** – -0.546*
DEM 0.267*** – 0.239*** – –
Slope 0.958*** – -0.470*** -0.469*** –
DRiver -0.122*** – – 0.189* –
DBuild 1.326*** -190.711* -0.207*** – –
DZone – – 0.119*** 0.273** 0.533***
SDr 0.082*** – – – –
SErosin 0.088** – 0.314*** 0.349** 0.491*
PDens -0.063* 0.052 – – 0.196***
Constant 1.875 -174.469 -2.577*** -4.915 -6.349
ROCb 0.866 1 0.653 0.647 0.715

Note: ‘–’ represents variable is not selected; *p , 0.05; **p , 0.01; ***p , 0.001;.
aDTransport represents the minimum distance to a major road, DEM represents the altitude, Slope represents the
slope, DRiver represents the minimum distance to a river, DBuild represents the minimum distance to a built-up
land, DZone represents the minimum distance to an urban planning area, SDr represents the soil drainage, SErosin
represents the soil erosion coefficient and PDens represents the population density.
bROC represents the area under the ROC curve.
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erosion) and one negative coefficient factor (slope) were used to fit the logistic model.

Finally, the distance to an urban planning area, soil erosion and population density positively

correlated with the probability for bare land, while the distance to major roads negatively

correlated with the probability for bare land in the watershed. In addition, the ROC values for

the logistic regression model are in the range 0.647–1 (Figure 2).

In Table 3, the auto-logistic regression model for predicting forest areas in the watershed

has five positive coefficients for the driving factors (i.e., distance to major roads, distance to

river, distance to built-up land, soil drainage and forest autocovariate) and four negative

coefficient factors (i.e., elevation, slope, soil erosion and population density). For agricul-

tural land, the driving factors were elevation, distance to urban planning area, soil erosion

and the agricultural land autocovariate, each of which has positive coefficient in the auto-

logistic regression for agricultural land. The distance to major roads, slope and distance to

Table 3. Auto-logistic regression model for land-use classes.

Variablea Forest Built-up land Agricultural land Grassland Bare land

DTransport 18.544 – -0.111* – -0.081
DEM -138.912 – 0.188*** – –
Slope -1.557 – -0.439*** -0.753 –
DRiver 3.044 – – -0.342 –
DBuild 21.449 -168.948 -0.105* – –
DZone – – 0.090* 0.478* 0.423*
SDr 5.509 – – – –
SErosin -19.459 – 0.240*** -0.002 0.051
PDens -3.873 0.131 – – -0.242
Autocov 372.999 10.586 0.211*** 14.424 8.044
Constant 354.732 -152.401 -2.583 -6.538 -6.717
ROCb 1 1 0.654 0.975 0.825

Note: ‘–’ represents variable is not selected; *p , 0.05; **p , 0.01; ***p , 0.001.
aDTransport represents the minimum distance to a major road, DEM represents the altitude, Slope represents the
slope, DRiver represents the minimum distance to a river, DBuild represents the minimum distance to a built-up
land, DZone represents the minimum distance to an urban planning area, SDr represents the soil drainage, SErosin
represents the soil erosion coefficient and PDens represents the population density.
bROC represents the area under the ROC curve.

Figure 2. Relative operating characteristics (ROCs) for the three models.
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built-up land are negatively correlated with the predicted probability for agricultural land.

The distance to built-up land is negatively correlated with the probability for built-up land,

while population density and the built-up land autocovariate are positively correlated with

probability for built-up land. Two factors, distance to urban planning area and grassland

autocovariate, are positively correlated with the probability for grassland. Three factors

(slope, distance to a river and soil erosion) are negatively correlated with the probability for

grassland. To predict the probability of bare land, the fitted auto-logistic model used three

positive coefficient factors (distance to an urban planning area, soil erosion and the bare land

autocovariate) and two negative coefficient factors (the distance to major roads and popula-

tion density). Accordingly, the models’ ROC values for the auto-logistic regression model

were in the range 0.654–1 (Figure 2). The results demonstrate that the auto-logistic regres-

sion is superior to logistic regression.

The ANN models used in this study were a three-layer, feedforward network, and the

hidden layer contained 20 neurons. The ROC values of the ANN models for forest, built-up

land, agricultural land, grassland and bare land are 0.92, 1.00, 0.836, 0.873 and 0.903,

respectively (Figure 2). The high ROC values indicate the very good fit of the model to the

observations which may be explained by the capacity of ANNs to capture complex, non-

linear relationships.

3.2. Model goodness of fit results

Model goodness of fit results for both simulations between 1993 and 1998 are shown in

Table 4. The overall accuracy and kappa statistics for ANN-CLUE-s are higher than the

values for both Autologistic-CLUE-s and Logistic-CLUE-s. The accuracy of the ANN-

CLUE-s model is best for both years and all resolutions (Figure 3). The overall agreement

increases as the resolution becomes coarser for both the models because location disagree-

ment becomes agreement as the resolution becomes coarser. Table 4 also shows the Ft values

of three models in 1993 and 1998, which highlights that the ANN-CLUE-s model has the

best fit. The Ft values represent a weighted average of the agreement over the window size

varying between 1 pixel (80 m) and 20 pixels (1600 m). Ft is generally used to determine an

overall degree of fit between two maps across multiple resolutions (Costanza 1989).

3.3. Land-use change scenario for 2001–2015

Based on the probabilities calculated by the logistic regression, auto-logistic regression and

ANN models, the CLUE-s model was applied to simulate land-use patterns in the study

watershed from 2001 to 2015. Figure 4 shows the land-use maps of the Logistic-CLUE-s,

Autologistic-CLUE-s and ANN-CLUE-s models for 2015. In all three simulation results the

Table 4. Model goodness of fit results for the three model implementations for 1993 and 1998.

Year Model Overall accuracy (%) Kappa Multi-resolution goodness of fit (Ft)

1993 ANN-CLUE-s 92.3 0.80 0.947
Autologistic-CLUE-s 89.5 0.72 0.915
Logistic-CLUE-s 86.3 0.64 0.892

1998 ANN-CLUE-s 90.5 0.75 0.933
Autologistic-CLUE-s 86.1 0.64 0.892
Logistic-CLUE-s 84.6 0.60 0.887

International Journal of Geographical Information Science 75

D
o
w

n
lo

ad
ed

 b
y

 [
V

ri
je

 U
n
iv

er
si

te
it

 A
m

st
er

d
am

] 
at

 0
4
:1

9
 1

0
 D

ec
em

b
er

 2
0
1
1
 



built-up land gradually increases along the river while the locations of forested land,

agricultural land and grassland change and their sizes decrease. The areas of agricultural

land, forest land and grassland decrease by 51%, 12% and 43% respectively during the

period while the built-up area increases by 87%. The maps show that the most developed and

dynamic areas of the Paochiao watershed are located in the middle and downstream areas,

especially in areas with low elevations.

Figure 3. Proportion agreement at multiple resolutions for the three models and the reference map for
(a) 1993 and (b) 1998.

76 Y.-P. Lin et al.

D
o
w

n
lo

ad
ed

 b
y

 [
V

ri
je

 U
n
iv

er
si

te
it

 A
m

st
er

d
am

] 
at

 0
4
:1

9
 1

0
 D

ec
em

b
er

 2
0
1
1
 



Figure 4. Spatial land-use distribution in the watershed simulated by CLUE-s based on (a) logistic
regression, (b) auto-logistic regression and (c) ANN in 2015.
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Figure 5 shows the land-use change between land uses in 2000 and 2015. Each model

provides various forecasting results, especially with regard to spatial pattern of land uses.

The land-use change maps show that land-use changes simulated by Logistic-CLUE-s are

spread over the entire study watershed. Simulated built-up and agricultural lands were

spread over the downstream and mid-stream areas, and agricultural lands were interspersed

among the built-up lands (Figure 5a). Clustered agricultural land areas simulated by the

Autologistic-CLUE-s model were mostly (66.46%) located in the upstream area, with some

areas (20.32%) in the mid-stream area (Figure 5b). The ANN-CLUE-s simulated agricultural

land clusters in the mid-stream area (44.48%), and some in the upstream area (36.27%)

(Figure 5c).

3.4. Landscape metrics of simulated land-use patterns

Figure 6 shows the landscape metrics at the landscape level of the observed land-use patterns

in 1990, 1993, 1998 and 2000, as well as the land-use patterns simulated by the Logistic-

CLUE-s, Autologistic-CLUE-s and ANN-CLUE-s models for the period 2001–2015.

During the validation periods (1990, 1993 and 1998), the landscape metrics for the number

of patches (NP: Figure 6a) and the mean shape index (MSI: Figure 6c) associated negatively

with the mean patch size (MPS: Figure 6b) and the total number of edges (TE: Figure 6d),

respectively. For the period 2001–2015, the trend of theMPS values in Autologistic-CLUE-s

simulated land-use patterns is similar to that of ANN-CLUE-s patterns. Moreover, the trends

of the mean nearest neighbor (MNN: Figure 6e) at the landscape level are similar in the three

models. However, the trend of the interspersion and juxtaposition index values (IJI:

Figure 6f) for the simulated land-use patterns based on auto-logistic regression is higher

than that of the other models. The reason is that because each land-use pattern, especially that

for agricultural land, is more dispersed in the Autologistic-CLUE-s model (Figure 4),

juxtaposed agricultural lands with other land-use classes yield high IJI values.

Figures 7–9 show the landscape metrics at the class level for built-up areas, agricultural

land and forested land, respectively. TheMNN trends for built-up areas and agricultural land

are similar in the three models from 2001 to 2015 (Figures 7e and 8e). During the same

period, the trends of the TE values for simulated agricultural land derived by the three

models are similar (Figure 8d); for simulated built-up areas, the trends of the MPS and TE

values derived by ANN-CLUE-s and Logistic-CLUE-s are similar (Figure 7b and d); and the

MSI trends of ANN-CLUE-s and Autologistic-CLUE-s are similar (Figure 7c). For simu-

lated forest lands, with the exception of IJI, the trends of the landscape metrics derived by the

three models are different during the simulation period (Figure 9f). Even so, analysis of the

landscape metrics derived by the different methods implies the same phenomenon overall:

the size of forest patches decreases as built-up patches sprawl.

4. Discussion

4.1. Model goodness of fit by logistic regression, auto-logistic regression and ANNs

Results from the model fit indicate that ANNs are superior to the logistic and auto-logistic

models in this particular case study. The ROC and kappa values of the ANNs in predicting

agricultural land are better than those of the logistic and auto-logistic regression, implying a

complex relationship between agricultural land-use pattern and its drivers. The ROC and

kappa values of the auto-logistic regression and ANNs in predicting bare lands are sig-

nificantly greater than that of the logistic regression, implying that the pattern of bare land
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Figure 5. Land-use changes between 2000 and 2015 using (a) logistic regression, (b) auto-logistic
regression and (c) ANN.
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not only exhibits spatial correlation but also shows a complex relation with its drivers. The

validation results also confirm that ANNs have the potential to produce good models of

urban change (Pijanowski et al. 2005) and constitute a powerful alternative for modeling

spatial land-cover change processes when the performance of conventional models is not

satisfactory (Mas et al. 2004) or the underlying data relationships are unknown (Dai et al.

Figure 6. Results of the simulated landscape metrics at landscape level – (a) NP, (b)MPS, (c)MSI, (d)
TE, (e) MNN and (f) IJI (see Table 1) – based on observed data and simulation results of the CLUE-s
model with different specifications.
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2005). While ANNs can account for nonlinear complex relationships between the driving

variables and changes in land use, ANNs do not directly provide insights in the relationships

between dependent and independent variables. However, with additional techniques, it is

possible to obtain some insight in the associations between driving variables and land use

(Bishop 1995, Pijanowski et al. 2002, Chu and Chang 2009).

Figure 7. Results of the simulated landscape metrics for built-up areas – (a) NP, (b) MPS, (c) MSI,
(d), TE, (e) MNN and (f) IJI (see Table 1) – based on observed data and simulation results of the CLUE-s
model with different specifications.
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Auto-logistic regression models include one or more neighborhood variables that expli-

citly account for spatial autocorrelation in the data; hence, this allows us to assess the effects

of the different neighborhood variables while statistically considering for the effect of spatial

autocorrelation (Svenning and Skov 2002, Boll et al. 2005). In most cases land-use patterns

Figure 8. Results of the simulated landscape metrics for agricultural land – (a) NP, (b) MPS, (c) MSI,
(d), TE, (e) MNN and (f) IJI (see Table 1) – based on observed data and simulation results of the CLUE-s
model with different specifications.
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exhibit spatial autocorrelation (Verburg et al. 2006b). This is mainly due to the clustered

distribution of landscape features and gradients in environmental conditions that are impor-

tant determinants of the land-use pattern (Verburg et al. 2006b). The average prediction

ability of auto-logistic regression (average ROC value = 0.89) is slightly less than that of the

Figure 9. Results of the simulated landscape metrics for forest areas – (a) NP, (b) MPS, (c) MSI, (d),
TE, (e) MNN and (f) IJI (see Table 1) – based on observed data and simulation results of the CLUE-s
model with different specifications.
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ANNs (average ROC value = 0.91). Moreover, the ability of the auto-logistic regression

model to predict forested areas, built-up areas and grasslands is better than that of the logistic

regression model and the ANN models (Figure 2).

The results of the model comparison made in this study are only valid for the specific

case study at the chosen spatial and temporal scales. In different landscapes, different

processes and different drivers of land-use change may cause different methods to be most

suited for land-use simulation. Therefore, case-specific testing of alternative methods is

preferable above choosing a method based on arbitrary criteria or habit. Although logistic

regression has been widely used to predict land-use changes, ANNs and auto-logistic

regression should be considered when land-use patterns show complex relations or are

spatially autocorrelated.

4.2. Landscape metrics of simulated land uses

Landscape metrics enhance a way to characterize and quantify land-use composition and

configuration both for analyzing the change in landscape composition and patterns as well as

for informing land-use planning. Mapping time-varying spatial metrics is beneficial for

analyzing urban growth as they provide a comprehensive method for describing a process,

comparing cities and making comparisons with theory (Herold et al. 2003, Lin et al. 2008).

They can also be used to assess the performance of land-use models (Herold et al. 2003,

Pijanowski et al. 2005, Lin et al. 2008). Increasing the number of patches (NP), total number

of edges (TE) and interspersion and juxtaposition index (IJI) associated with decreasing

mean patch size (MPS), mean shape index (MSI) and mean nearest neighbor (MNN) show

that land-use patterns in the watershed tend to fragment, and had regular shapes and

interspersion patterns (Lin et al. 2008). Similar to the land-use patterns for the 1990–1998

period, all CLUE-s-simulated land-use patterns tended to fragment and had regular shapes

and interspersion patterns; however, they were relatively less isolated and less interspersed

from 2001 to 2015 compared with the land-use pattern in 1990. Such developments may be

enhanced by the autocorrelation in the independent variables the model is using in its

allocation procedure and the lack of information on local scale conditions such as tenure

and the objectives of individual land managers.

5. Conclusion

Land-use change models, which play an important role in exploring possible future land-use

patterns, have been developed to delineate the driving factors that influence land-use

changes, as well as predict land-use change patterns and variations in space and time

precisely. This study investigates the ability of logistic regression, auto-logistic regression

and ANN models to detect land-use changes and the relationships between land uses and

their drivers for a specific case study. Specifically, it assesses the performance of the three

empirical models as inputs to the dynamic land-use simulation model. In this case, the results

indicate that the CLUE-s model with ANNs constitutes a powerful alternative for models

based on logistic regression, especially when the performance of conventional models is not

satisfactory or the underlying data relationships are unknown. Similar to ANNs, the auto-

logistic regression provides explanatory power along with a relatively high degree of good-

ness of fit and leads to an improvement of performances. The alternative techniques such as

auto-logistic regression and ANNs should be considered when land-use patterns are spatially

autocorrelated or with complex relations.
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This article has indicated that a comparison of alternative techniques to quantify relation-

ships between driving factors and land use leading to different parameterizations of simula-

tion models is useful to improve the performance of land-use models. Future studies could

consider testing if similar effects are observed in other case studies representing similar and

different types of landscape, landscape metrics variation, the effects of the different pro-

cesses of land-use change and different drivers and the grain, level and scale in the empirical

land-use change model.
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