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IMPORTANCE The incremental value of polygenic risk scores in addition to well-established
risk prediction models for coronary artery disease (CAD) is uncertain.

OBJECTIVE To examine whether a polygenic risk score for CAD improves risk prediction
beyond pooled cohort equations.

DESIGN, SETTING, AND PARTICIPANTS Observational study of UK Biobank participants enrolled
from 2006 to 2010. A case-control sample of 15 947 prevalent CAD cases and equal number
of age and sex frequency–matched controls was used to optimize the predictive performance
of a polygenic risk score for CAD based on summary statistics from published genome-wide
association studies. A separate cohort of 352 660 individuals (with follow-up to 2017) was
used to evaluate the predictive accuracy of the polygenic risk score, pooled cohort equations,
and both combined for incident CAD.

EXPOSURES Polygenic risk score for CAD, pooled cohort equations, and both combined.

MAIN OUTCOMES AND MEASURES CAD (myocardial infarction and its related sequelae).
Discrimination, calibration, and reclassification using a risk threshold of 7.5% were assessed.

RESULTS In the cohort of 352 660 participants (mean age, 55.9 years; 205 297 women
[58.2%]) used to evaluate the predictive accuracy of the examined models, there were 6272
incident CAD events over a median of 8 years of follow-up. CAD discrimination for polygenic
risk score, pooled cohort equations, and both combined resulted in C statistics of 0.61
(95% CI, 0.60 to 0.62), 0.76 (95% CI, 0.75 to 0.77), and 0.78 (95% CI, 0.77 to 0.79),
respectively. The change in C statistic between the latter 2 models was 0.02 (95% CI, 0.01 to
0.03). Calibration of the models showed overestimation of risk by pooled cohort equations,
which was corrected after recalibration. Using a risk threshold of 7.5%, addition of the
polygenic risk score to pooled cohort equations resulted in a net reclassification improvement
of 4.4% (95% CI, 3.5% to 5.3%) for cases and −0.4% (95% CI, −0.5% to −0.4%) for noncases
(overall net reclassification improvement, 4.0% [95% CI, 3.1% to 4.9%]).

CONCLUSIONS AND RELEVANCE The addition of a polygenic risk score for CAD to pooled
cohort equations was associated with a statistically significant, yet modest, improvement in
the predictive accuracy for incident CAD and improved risk stratification for only a small
proportion of individuals. The use of genetic information over the pooled cohort equations
model warrants further investigation before clinical implementation.
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C ardiovascular disease (CVD) is the leading cause of
death worldwide.1 Targeted CVD primary prevention
strategies require timely identification of people at

increased risk to focus effective lifestyle or pharmacological
interventions. Risk prediction models have been developed
to estimate the probability of developing cardiovascular
outcomes in asymptomatic individuals.2 Currently, risk
assessment guidelines from the American College of Cardiol-
ogy and American Heart Association recommend lipid-
lowering treatment for individuals with 10-year absolute risk
of atherosclerotic CVD greater than 7.5% based on pooled
cohort equations.3

Over the past 10 years, considerable progress has been
made in identifying genetic variants/single-nucleotide poly-
morphisms (SNPs) that are associated with coronary artery
disease (CAD).4 Germline genetic variants are attractive bio-
markers because they are stable throughout the lifetime and
could potentially provide information about disease predis-
position from an early age. While most common genetic vari-
ants individually make a small contribution to disease risk,
taken together in the form of genetic or polygenic risk scores,
they may enhance predictive ability for CAD and more effi-
ciently stratify those at increased risk of future disease.5

Recently, studies6,7 using (1) newly discovered genetic
variants for CAD and (2) novel methods to generate polygenic
risk scores that use genome-wide variation rather than only
genome-wide significant variants showed improved perfor-
mance of polygenic risk score for CAD prediction compared
with earlier studies.8-12 However, the added value of poly-
genic risk score on top of well-established and validated risk
prediction models was not examined and, therefore, the
clinical utility of polygenic risk score in risk prediction
remains unclear. Here, using the UK Biobank cohort, the aim
was to evaluate the potential of the polygenic risk score to
improve risk prediction for CAD over and above pooled
cohort equations and, in secondary analysis, QRISK3 models
currently used for risk stratification in US and UK clinical
practice, respectively.

Methods
Study Participants
The UK Biobank includes 502 536 volunteers aged 40 to 69
years at baseline recruited through UK National Health Ser-
vice registers. Participants attended 1 of 20 dedicated assess-
ment centers nationally during 2006 to 2010.13 The study
received ethical approval from the National Health Service’s
National Research Ethics Service North West (11/NW/0382).
All participants provided written informed consent for the
study and completed a computer-based questionnaire on
lifecourse exposures, medical history, and treatments and
underwent a standardized portfolio of clinical measure-
ments. Biomarkers were measured in stored serum and red
blood cells as described in detail elsewhere.14 Our study
design is shown in Figure 1.

Our primary end point was CAD, taking advantage of
large genome-wide association studies (GWAS) for CAD.15 In

secondary analysis, CVD was examined (CAD as well as
angina and stroke). The study population was divided into
(1) a tuning set for the optimization of parameters of the poly-
genic risk score calculation (case-control study) comprising
prevalent CAD cases (prevalent cases were defined by date of
CAD event preceding the date of assessment or self-reported
history of CAD at baseline) and randomly selected age and
sex frequency–matched controls and (2) an independent
cohort study (testing set) of participants with no history of
CVD at baseline followed up for incident CAD events
(Figure 1). The 2 data sets (tuning case-control and cohort
testing set) had no overlapping participants. We aimed to
maximize sample size for the incident analysis by using the
prevalent cases of CAD for the polygenic risk score tuning.
We were able to use prevalent cases along with matched con-
trols for the polygenic risk score calculation as the genetic
information is fixed at birth and therefore precedes these
events. Study design for the CVD analysis is shown in eFig-
ure 1 in the Supplement.

Definition of Variables for Risk Scores
The primary analysis was based on the pooled cohort equa-
tions model. Secondary analysis on the UK-recommended
QRISK3 score is presented in the eMethods, eTables, and
eFigures in the Supplement.16 We matched the predictors of
the updated pooled cohort equations17 to the variables avail-
able in the cohort. The pooled cohort equation algorithm
includes information on age, sex, race and ethnicity, smok-
ing, total and high-density lipoprotein cholesterol, systolic
blood pressure, and diabetes. Information on ethnicity was
gathered via a self-reported questionnaire with a predefined
list of categories. For the UK-based QRISK3 score in second-
ary analysis, the model uses a larger set of variables including
body mass index, family history of heart disease, area depri-
vation score (Townsend), smoking intensity, and a number of
prevalent conditions including chronic kidney disease stages
3 through 5, atrial fibrillation, migraine, rheumatoid arthritis,
systemic lupus erythematosus, mental illness, erectile dys-
function, and antihypertensive medication use.18 Details on
the definition of each variable are included in the eMethods
in the Supplement.

Key Points
Question Do polygenic risk scores have incremental value over
and above prediction models that are currently used in clinical
practice for cardiovascular risk stratification in general
populations?

Findings In this observational study of 352 660 individuals with
no history of cardiovascular disease at baseline, the addition of a
polygenic risk score to pooled cohort equations clinical risk score
was associated with a modest but statistically significant
improvement in discriminative accuracy for incident coronary
artery disease (CAD) compared with pooled cohort equations
alone (incremental C statistic, 0.02).

Meaning The use of genetic information over the pooled cohort
equations model warrants further investigation before clinical
implementation.
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Cardiovascular Outcomes
For all participants, retrospective and prospective linkage
to electronic health data was available, including hospital
episode statistics data on hospital admissions and Office
for National Statistics cause of death data. Hospital episode
statistics include coded data on diagnoses and operations.
We defined CAD and CVD from hospital episode statistics
and mortality data using the International Classification of
Diseases and the Office of Population Censuses and Surveys’
Classification of Interventions and Procedures version 4
codes for CAD and CVD,18,19 along with related codes for self-
reported diagnoses and previous procedures (eTables 1 and 2
in the Supplement). This definition of CAD includes myocar-
dial infarction and its related sequelae, whereas the CVD
definition additionally includes angina, nonhemorrhagic
stroke, and transient ischemic attack.

The recorded episode date, admission date, or operation
date in hospital episode statistics was considered the date of
the event. If none of these were available, one of elective
date, episode end, or discharge date was used. For individu-
als with multiple CAD or CVD hospitalizations, the date of
the earliest event was used as the date of event. Fatal CAD
or CVD events from mortality data were included in the
main outcomes. Prevalent disease at baseline was defined
using self-reported and/or hospital episode statistics data
with date of event preceding the date of attendance at study
assessment center. Follow-up time for each participant was
calculated as the number of days from assessment date until
either event of interest, competing event (other cause of
death), or censorship date according to origin of the hospital

data (England: March 31, 2017; Scotland: October 30, 2016;
Wales: May 30, 2016).

Polygenic Risk Score
Detailed information about genotyping and imputation
in this study has been provided elsewhere.20,21 Briefly,
DNA samples of study participants were genotyped using
initially custom Affymetrix arrays (49 950 participants) for
the UK Biobank Lung Exome Variant Evaluation study and
subsequently the UK Biobank Axiom array, designed to opti-
mize imputation performance across the genome.20,21

Genotype imputation was based on a merged sample of
UK10K sequencing and 1000 Genomes Project imputation
reference panels. Imputation was centrally carried out by
the study using an algorithm implemented in the IMPUTE2
program.22 Genetic principal components to account for
population stratification were centrally computed. We
derived polygenic risk score for CAD as a weighted sum of
risk alleles, using summary statistics from the largest GWAS
on CAD that excluded participants from the present study
(CARDIoGRAMplusC4D) (Figure 1).15

For the tuning (testing of different model parameters to
optimize the model’s discrimination) of the polygenic
risk score, we implemented 2 methods: (1) clumping and
thresholding using PRSice-2 software (version 2.1.11)
and (2) lassosum23; detailed information on description and
choice of polygenic risk score methods are described in
the eMethods in the Supplement. Briefly, clumping and
thresholding use several P value thresholds to maximize pre-
dictive ability of polygenic risk score. Lassosum implements

Figure 1. Study Design and Flowchart for Coronary Artery Disease (CAD)

Selection of PRS in case-control studyA

Selected participants and analytical steps

15 947 CAD prevalent cases with random
age and sex frequency-matched
controls in the case-control study

Data source

502 536 UK Biobank population

Summary statistics from CARDIoGRAMplusC4D
GWAS meta-analyses on 60 801 CAD cases and
123 504 controls

503 European participants in the linkage
disequilibrium reference panel (derived
from 1000 Genomes Project data)

Calculate PRS using different methods:
clumping and thresholding and lassosum

PRS with maximal predictive ability
(as measured by AUC) is selected

Cohort studyB

352 660 Participants (nonoverlapping with
case-control set)
6272 Incident CAD over 8 y of follow-up

149 876 Excluded
80 103 Case-control tuning seta

54 178 Missing PCE variables
15 216 Missing genetic data

379 Data mismatch

Calculate risk scores using published
coefficients of the PCE

Evaluate predictive performance for CAD
of PCE, PRS, and both combined

502 536 Participants in the UK Biobank

To select the method with the
best discrimination based on area
under the curve (AUC), clumping
and thresholding and lassosum
were used to calculate polygenetic
risk scores (PRS) applied to a
case-control set (prevalent cases).
For this calculation, summary data
from the largest genome-wide
association study (GWAS) on CAD
(CARDIoGRAMplusC4DREF15) that
excludes UK Biobank and data on
linkage disequilibrium were used.
The resulting PRS was applied to
a nonoverlapping set of participants
from the UK Biobank with no
preexisting cardiovascular disease,
aged 40 to 69 years at baseline, and
who were followed up for incident
CAD events. In this population, the
pooled cohort equations (PCE) model
was calculated and different models
(PRS, PCE, and PCE enhanced with
PRS) were compared in terms of their
predictive accuracy based on
discrimination, calibration, and
reclassification metrics.
a CAD and cardiovascular disease

tuning sets combined.
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a penalized regression model and accounts for linkage dis-
equilibrium (LD) between SNPs using an external reference
panel (eFigure 1 in the Supplement).24 Lassosum is a
recently proposed polygenic risk score method, which for
CAD has been shown to perform as well as or better than the
widely used LDpred method.23,25 Lassosum has model para-
meters (s and lambda) that must be tuned, which we carried
out in the case-control sample of prevalent CAD cases and
sex and age frequency–matched controls, adjusting for geno-
type batch and first 10 genetic principal components. We ran
lassosum (version 0.4.3) on 2 sets of SNPs with INFO score
thresholds of 0.3 and 0.999, containing approximately
6.7 million and approximately 1 million SNPs, respectively.
We then computed the area under the curve (AUC) of the re-
ceiver operating characteristic using logistic regression for
prevalent CAD (and CVD in secondary analyses) and selected
the polygenic risk score with the highest AUC for subsequent
analyses. We calculated heritability estimates for genetic
variants and CAD based on (1) LDHub to calculate the LD score
regression (LDSR) (h2

LDSR = 0.0728, SE = 0.0054, using only
HapMap 3 SNPs with 1000 genomes minor allele frequency
>5%) and (2) the genomic-relatedness–based restricted
maximum-likelihood (GREML) approach (h2

GREML = 0.22,
SE = 0.03, using only SNPs with MAF >1%).26

Statistical Analysis
We excluded participants with missing genetic data, mis-
matched data (eg, reported and genetic sex), or missing data
on predictors, with the exception of imputation of missing
smoking intensity data (light, moderate, heavy smoker) among
current smokers for the QRISK3 model only (Figure 1 and the
eMethods in the Supplement).

We calculated the updated pooled cohort equations
score, and used the baseline hazard and weights for each
constituent predictor variable, as previously published.17

We examined several models separately: (1) pooled cohort
equations; (2) polygenic risk score for CAD; (3) age and sex;
(4) age, sex, and polygenic risk score; and (5) pooled cohort
equations and polygenic risk score. We used Cox proportional
hazards regression with time of follow-up as the underlying
time variable. The proportionality assumption was visually
inspected using the scaled Schoenfeld residuals. We assessed
the discrimination and calibration of models in the total
cohort population, and separately in men and women and in
those aged younger than 55 years old and those aged 55 years
old and older. The discrimination of each model was assessed
using Harrell’s C statistic and its 95% CI.27-29 The C statistic is
a rank-order statistic for predictions against true outcomes,
with values ranging from 0.5 (no discrimination) to a theo-
retical maximum of 1.0. Calibration of the original models
and their subsequent recalibration were graphically assessed
by plotting the observed probability (Kaplan-Meier esti-
mates) against the mean predicted probability within tenths
of the predicted probabilities. For recalibration, we estimated
the baseline survival function in the cohort (intercept) and
combined this with the predicted hazard ratios from the pub-
lished model to obtain recalibrated predicted probabilities.
We calculated the calibration slope (b = 1 indicates perfect

calibration) and the Greenwood-Nam-D’Agostino P value to
quantitatively assess calibration of the models30; this tests
the null hypothesis that the observed and expected prob-
abilities are identical in each group.

We calculated the net reclassification improvement (NRI)
at the current recommended threshold for treatment in the
United States (7.5%) and United Kingdom (10%), the associ-
ated integrated discrimination improvement (IDI), and the cat-
egory-free NRI.31 A brief explanation of these metrics is in-
cluded in eMethods in the Supplement.

In secondary analyses, we used CVD instead of CAD as the
outcome of interest and QRISK3 instead of pooled cohort equa-
tions as the baseline model. Additionally, as a sensitivity analy-
sis, we recalculated pooled cohort equations (and QRISK3) af-
ter excluding individuals taking lipid-lowering medications.
Due to the potential for type I error caused by multiple com-
parisons, findings for secondary and sensitivity analyses should
be interpreted as exploratory.

Statistical analyses were performed in R software, ver-
sion 3.3 (R Project for Statistical Computing).32 We consid-
ered 2-sided P values less than .05 statistically significant.

Results
The case-control study comprised 15 947 participants with
prevalent CAD and an equal number of controls for the tun-
ing of the polygenic risk score (eTable 3A in the Supplement).
The independent cohort study had 352 660 participants
(mean age, 55.9 years), with a median follow-up of 8 years
(interquartile range, 1.3) with 6272 incident CAD events. The
median follow-up for CAD cases was 4.4 years (interquartile
range, 5.4). Participants excluded due to missing covariates
had similar baseline characteristics (demographic, lifestyle,
and comorbidities) as those included in the cohort analysis
(eTable 3B-eTable 3E in the Supplement).

In the case-control analysis (see eTable 3A in the
Supplement for descriptive characteristics), among the ap-
proaches to obtain the polygenic risk score for CAD, the las-
sosum method applied to 1 037 385 SNPs using an INFO Score
threshold greater than 0.999 showed the highest AUC of 0.63
(95% CI, 0.62-0.64) (eTable 4 in the Supplement).

In cohort analysis, 54 178 individuals were excluded due
to missing data on at least 1 covariate required for pooled
cohort equation calculation. The discrimination of the poly-
genic risk score for CAD was lower than in the tuning case-
control set (C statistic, 0.61 [95% CI, 0.60-0.62]) (Table)
with associated overlapping distributions of polygenic risk
score for CAD among incident CAD cases and noncases
(Figure 2). The hazard ratio of polygenic risk score for CAD
(per SD increase) for CAD was 1.32 (95% CI, 1.30-1.34;
P = 2.3 × 10−209). Discrimination of the pooled cohort equa-
tions model measured by the C statistic was 0.76 (95% CI,
0.75-0.77) for CAD reflected by less overlapping distribu-
tions between incident cases and noncases compared with
polygenic risk score (Table and Figure 2). Subgroup analysis
by age group (younger or older than 55 years) and men and
women separately showed overall higher discrimination in
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women than men and higher in younger age groups rather
than older age groups (Table). The addition of polygenic
risk score for CAD to the recalibrated pooled cohort equa-
tions model showed a statistically significant improvement
in discrimination, with the C statistic increasing to 0.78
(95% CI, 0.77-0.79) and an associated change from pooled
cohort equations alone of 0.02 (95% CI, 0.01-0.03) (Table
and Figure 3). Results for individuals not receiving lipid-

lowering medications at baseline (n = 306 421) showed simi-
lar discrimination performance (Table).

When the observed and predicted cumulative incidences
of CAD events were compared across each tenth of predicted
risk, pooled cohort equations overestimated risk across
the range of predicted probabilities (calibration graphs in
eFigure 2 in the Supplement). On recalibration by fitting
the predicted log–hazard ratios as covariates in the model,

Table. C Statistics for Coronary Artery Disease in the Full Population and Stratified by Age Class
(Older or Younger Than 55 Years of Age) and Sexa

C Statistic (95% CI)

All
Participants Aged
<55 y

Participants Aged
≥ 55 y Men Women

All Participants N = 352 660 n = 147 985 n = 204 675 n = 147 363 n = 205 297

Events, No. 6272 1350 4922 4493 1779

Polygenic risk
score

0.61 (0.60-0.62) 0.64 (0.63-0.66) 0.60 (0.59-0.61) 0.61 (0.60-0.62) 0.61 (0.60-0.63)

Age and sex 0.73 (0.72-0.74) 0.73 (0.72-0.75) 0.68 (0.68-0.69) 0.64 (0.63-0.65) 0.68 (0.67-0.70)

Polygenic risk
score + age and
sex

0.76 (0.75-0.76) 0.76 (0.75-0.78) 0.71 (0.70-0.72) 0.68 (0.67-0.69) 0.71 (0.70-0.73)

Pooled cohort
equations

0.76 (0.75-0.77) 0.78 (0.76-0.80) 0.71 (0.71-0.72) 0.68 (0.67-0.69) 0.74 (0.73-0.75)

Polygenic risk
score + pooled
cohort equations

0.78 (0.77-0.79) 0.80 (0.79-0.82) 0.74 (0.73-0.74) 0.71 (0.70-0.72) 0.76 (0.74-0.77)

Participants Not Receiving Lipid-Lowering Treatment at Baseline

n = 306 421 n = 140 266 n = 166 155 n = 122 546 n = 183 875

Events, No. 4792 1149 3643 3381 1411

Polygenic risk
score

0.61 (0.60-0.62) 0.65 (0.63-0.66) 0.61 (0.60-0.62) 0.62 (0.61-0.63) 0.61 (0.60-0.63)

Age and sex 0.74 (0.73-0.75) 0.74 (0.72-0.75) 0.69 (0.68-0.70) 0.65 (0.64-0.66) 0.69 (0.67-0.71)

Polygenic risk
score + age and
sex

0.76 (0.76-0.77) 0.77 (0.75-0.79) 0.72 (0.71-0.73) 0.70 (0.69-0.71) 0.72 (0.70-0.73)

Pooled cohort
equations

0.77 (0.76-0.78) 0.78 (0.77-0.80) 0.72 (0.71-0.73) 0.69 (0.68-0.70) 0.75 (0.73-0.76)

Polygenic risk
score + pooled
cohort equations

0.79 (0.78-0.80) 0.80 (0.79-0.82) 0.74 (0.73-0.75) 0.72 (0.71-0.73) 0.76 (0.75-0.78)

a Cox proportional hazard models for
coronary artery disease using
recalibrated models for polygenic
risk score, pooled cohort equations,
and both combined.

Figure 2. Density Plots of the Adjusted Polygenic Risk Score and the Pooled Cohort Equations for Coronary Artery Disease Cases
and Controls in Cohort Analysis

De
ns

ity

Adjusted Polygenic Risk Score

Polygenic risk scoreA

0.60.40.20–0.2–0.4–0.6

De
ns

ity

Pooled Cohort Equations Score

Pooled cohort equationsB

14121086

Noncases (n = 346 388)
Cases (n = 6272)

After calculating the polygenic risk score on the selected single-nucleotide polymorphisms, residual values of the polygenic risk score are plotted from regression
against sex, age, batch, and the first 10 principal components.
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calibration was improved for pooled cohort equations and for
pooled cohort equations plus polygenic risk score for CAD (eFig-
ure 2 and eTable 5 in the Supplement).

When polygenic risk score for CAD was added to the pooled
cohort equations model, predicted risk changed by less than
1% for 79.5% of participants, and changed by 5% or more for
1.1% of participants (Figure 4A). At a risk threshold of 7.5%, 526
of 6272 cases (8.4%) were correctly reclassified to the higher-
risk category and 250 of 6272 cases (4.0%) incorrectly moved
to the lower-risk category. For the noncases, 5284 of 346 388
(1.5%) correctly moved down the 7.5% risk threshold, whereas
6723 of 346 388 (1.9%) incorrectly moved up (Figure 4B).

Overall, the NRI was 4.4% (95% CI, 3.5% to 5.3%) for cases
and −0.4% (95% CI, −0.5% to −0.4%) for noncases (Figure 4C).
After addition of the polygenic risk score for CAD to pooled co-
hort equations according to the IDI metric, the increase in risk
difference between cases and noncases was 0.006 (95% CI,
0.006 to 0.007) (Figure 4C).

Secondary Analyses
The median follow-up among CVD cases was 4.5 years (inter-
quartile range, 4.0). When CVD was examined as the out-
come of interest for pooled cohort equations (see eFigure 1
in the Supplement for study design), all prediction metrics
(C statistic, NRI, and IDI) were smaller and the incremental
value of polygenic risk score for CVD over and above pooled
cohort equations was smaller (increase in C statistic, 0.007
[95% CI, 0.002-0.012]) than for CAD (eTables 5 and 6 and
eFigures 3-6 in the Supplement).

The incremental value of polygenic risk score for CAD
over and above QRISK3, which is the predictive model cur-
rently recommended in UK clinical practice, was also exam-
ined. For these analyses, 56 108 individuals with missing data
for at least 1 QRISK3 covariate were excluded, and smoking
intensity was imputed among current smokers for 7827 with
missing intensity data (eMethods in the Supplement). Dis-

crimination of QRISK3 and QRISK3 enhanced with polygenic
risk score for CAD and reclassification analysis for a cutoff of
7.5% and 10%, respectively (as currently used in the United
Kingdom), are presented in eTables 7-9 in the Supplement.
QRISK3 performed slightly better than pooled cohort equa-
tions with regard to discriminative accuracy for incident CAD
(C statistic, 0.79 [95% CI, 0.79-0.80]). The incremental value
of polygenic risk score for CAD was smaller when added to
QRISK3 compared with when added to pooled cohort equa-
tions (incremental C statistic, 0.015 [95% CI, 0.008-0.023]).

Discussion
In this analysis, adding genetic information to the pooled
cohort equations clinical risk score was associated with only
modest improvements in predictive accuracy for CAD and
did not strongly influence the predicted probabilities for
most participants.

Several other studies have investigated the potential for
genetic variants to improve CAD risk prediction. They
reported weak or no evidence for added value from risk
scores based on GWAS significant variants9-12 or LD-based
approaches to select SNPs from GWAS findings.8 More
recently, Khera et al7 and Inouye et al,6 using different meth-
ods to construct polygenic risk score with thousands or mil-
lions of genetic variants, supported a role for genetic infor-
mation in risk assessment of CAD using UK Biobank data.
However, both studies had limitations including the unavail-
ability at that time of cholesterol measurements. Therefore,
they did not assess the predictive accuracy of polygenic risk
score over existing risk prediction models, such as pooled
cohort equations or QRISK3, which are used in clinical prac-
tice, nor did they assess model calibration. In the present
study, recalibrated pooled cohort equations plus polygenic
risk score was used to assess and improve model calibration.

Figure 3. Receiver Operator Characteristic Curves and C Statistics for Different Models in Cohort Analyses
of 352 660 Participants Aged 40 to 69 Years Old Over a Mean of 8 Years of Follow-up
With 6272 Incident Coronary Artery Disease (CAD) Events
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As previously shown, novel predictors, such as polygenic
risk score, are more likely to show improved prediction over
baseline models that are not well calibrated or not optimally
defined.33 Specifically, the incremental value of novel predic-

tors depends on the discrimination potential of the baseline
model. The same predictor may show greater discrimination
when added to a poorly compared with a well-specified base-
line model.33 Inouye et al6 examined the incremental value of

Figure 4. Change in Predicted Probabilities and Risk Reclassification
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A, Change in the predicted probabilities (expressed as a percentage) of the
recalibrated model with pooled cohort equations (PCE) after the addition of the
polygenic risk score (PRS) for coronary artery disease (CAD). The x-axis is the
predicted probability from the original PCE model, and the y-axis is the
difference in 10-year probabilities of an event between the PRS-augmented
model and PCE. A random draw of 1% of the participants is represented on the
scatter plot. Histograms along the x- and y-axes are based on all participants.
The associated table shows the percentage of participants whose predicted
probabilities changed by less than the given thresholds. B, Predicted
probabilities by PCE and PCE plus PRS, with dotted lines showing the 7.5%
threshold. The associated table shows the numbers reclassified according to a
7.5% risk threshold. Rows corresponding to an improved classification with the
PCE + PRS model are denoted by a plus sign and a deterioration of the
classification by a minus sign. C, Table of net reclassification improvement (NRI)
and integrated discrimination improvement (IDI). The NRI is defined by (1) in the

continuous case, the sum of proportions of cases and noncases with improved
combined score (ie, higher combined score for cases denoted by P[up|case]
{where P indicates probability} and lower for noncases denoted by
P[down|noncase]) minus the sum of proportions with deteriorated combined
score (ie, P[up|noncase]) and P[down|case]), and (2) in the categorical case, as
changes in 7.5% predicted probability. A positive NRI indicates a better
combined score overall. The IDI measures the increase in the difference of
average probabilities of an event in cases (PPCE+PRS[case] and PPCE [case]) and
noncases (PPCE+PRS[noncase]) and PPCE [noncase]). The higher the IDI, the
more discriminant the combined score. In this case, the increase in risk
difference between cases and noncases after addition of the PRS for CAD to
PCE was only 0.6%, indicating a small difference.
a NRI = P(up|case) − P(down|case) − P(up|noncase) + P(down|noncase).
b IDI = PPCE+PRS(case) − PPCE+PRS(noncase) − PPCE(case) + PPCE(noncase).
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genetic information compared with a CVD risk factor model
(though without cholesterol levels) with a C statistic of 0.67
whereas in the present study, pooled cohort equations had a
C statistic of 0.76. This difference might explain some of the
seemingly large improved risk prediction from addition of poly-
genic risk score in the study by Inouye et al6 compared with
the present results. Similarly, the slightly greater improve-
ment in discrimination here by addition of polygenic risk score
to clinical models in men compared with women may reflect
the poorer performance of these models in men, as previ-
ously reported.19,34

Genotyping is already becoming a relatively inexpensive
measure, requiring only a one-off assessment that can be
obtained from birth. Germline genetic variants are therefore
appealing as putative predictors of lifetime disease risk. How-
ever, the potential implementation of polygenic risk score in
clinical practice needs careful evaluation. First, in this study,
state-of-the-art polygenic risk score only modestly improved
prediction. The number of people meaningfully changing risk
category and, therefore, receiving different treatment strate-
gies based on genetic information is relatively small, with
improvements mainly seen among cases reclassified to
higher risk by addition of polygenic risk score to pooled
cohort equations whereas noncases had worse reclassifica-
tions (more noncases moved to the higher-risk category than
were correctly reclassified to the lower-risk category). The
relative benefit of those correct vs incorrect reclassifications
in cases and noncases needs to take into account the risk-
benefit profile of statins in a decision analysis and subse-
quent economic evaluation.35 Still, the largest number of
CAD and CVD events still occur among lower-risk categories
( below treatment thresholds) arguing for continued
population-based approaches to lower CVD risk such as pro-
grams to increase physical activity, improve nutrition, and
prevent smoking.36

Second, assuming polygenic risk score can predict life-
time risk early in life leading to earlier and more targeted pre-
vention, the effect of obtaining genetic risk information at
early ages is unknown. This is particularly important as the
present results showed that a model with polygenic risk score
and age and sex achieves similar discrimination as the pooled
cohort equations model alone. Therefore, genetic informa-
tion, which can be measured from birth, may have a role in
risk prediction when clinical variables cannot be measured in
middle age, eg, unavailability or low uptake of screening pro-
grams in certain populations. Nonetheless, current evidence
shows that provision of genetic information to individuals
does not motivate lifestyle modifications and therefore may
have a limited role in risk communication strategies.37 Fur-
thermore, possible harms of providing genetic information
(such as increased anxiety), especially at younger ages, need
to be evaluated, eg, via randomized clinical trials.

This study has strengths. The presented analysis fol-
lowed risk prediction reporting guidelines38 to assess model
discrimination and calibration and used previously vali-
dated models (pooled cohort equations and QRISK3) that
are currently recommended in US and UK clinical guidance.
The analysis benefited from the large sample size (including

more than 6000 incident CAD events) and application of
differing polygenic risk score methodologies to maxi-
mize predictive ability: clumping and thresholding and the
lassosum method. The lassosum method uses penalized
regression to calculate polygenic risk score while other
recent studies7 have used an alternative method called
LDpred, a Bayesian shrinkage approach; lassosum achieved
slightly improved prediction of CAD over LDpred in the
WTCCC data set.23

Limitations
This study also has several limitations. First, this study was
restricted to participants aged 40 to 69 years who were mostly
of European ancestry and studies in people in other age groups
and ancestries are needed. In addition, the value of continu-
ous assessment of clinical risk factors over the lifetime has not
been examined.

Second, this study evaluated CAD as the primary outcome
whereas pooled cohort equations and QRISK3 were developed
to predict CVD. Nevertheless, in the present study, pooled co-
hort equations and QRISK3 performed better for CAD than CVD,
supporting their use for CAD as well as CVD prediction.

Third, pooled cohort equations and QRISK3 are designed
to predict 10-year risk while median follow-up in this study
was 8 years; this mismatch was, however, at least partially
corrected by the recalibration process. While pooled cohort
equations and QRISK3 overestimated risk in this study, this
may be because the studied population includes a highly
selected group of volunteers who are healthier than the gen-
eral population13; again, this overestimation was corrected on
recalibration. Conversely, before recalibration, polygenic risk
score underestimated the risk in low-risk participants and
overestimated the risk in high-risk participants. This may
have been a result of the tuning process and was again rem-
edied after recalibration. These findings underlie the impor-
tance of comprehensive assessment of calibration and careful
recalibration of polygenic risk score models, a feature not
commonly reported in polygenic risk score investigations.
The high proportion of participants taking lipid-lowering
treatment might also have driven the relatively low event
rate in this population. Nevertheless, results were similar
when analyses were restricted to individuals not taking lipid-
lowering medications.

Fourth, the polygenic risk score in this study included low
frequency and common variants (>0.5%)15 and did not exam-
ine the predictive value of rare genetic variants known to affect
CAD risk such as familial hyperlipidemia.

Fifth, information on other potential important predictors,
such as coronary artery calcium, was not available to examine
the incremental value of genetic information over and above
pooled cohort equations with these additional predictors.

Sixth,theadjudicatedalgorithmthatincorporatesself-report,
death, and hospital inpatient data for the definition of incident
CAD and CVD may have introduced some misclassification.

Seventh, the tuning of the PRS in the case-control analysis
used prevalent CAD cases, which may have introduced survival
bias. However, simulation studies have shown that potential
survival bias has a limited effect on genetic effect estimates of
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subsequent event risk.39 In addition, the case-control and co-
hort samples, although not overlapping, were derived from the
same study, which may limit generalizability.

Eighth, participants with missing data in 1 or more pre-
dictors were excluded from the present analyses. However, in-
dividuals with missing data on covariates were not substan-
tially different on demographic information and main
characteristics compared with those included and therefore
missing data are unlikely to have meaningfully affected the re-
ported estimates.

Conclusions

The addition of a polygenic risk score for CAD to pooled co-
hort equations was associated with a statistically significant,
yet modest, improvement in the predictive accuracy for inci-
dent CAD and improved risk stratification for only a small pro-
portion of individuals. The use of genetic information over the
pooled cohort equations model warrants further investiga-
tion before clinical implementation.
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