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Abstract

This experimentation explores the utilization of argon-assisted electrical discharge machining (AAEDM) of high-carbon 
high-chromium die steel. High-pressure argon gas in conventional EDM was utilized to assess the surface roughness (SR). 
Analysis of variance was connected to decide the critical parameters influencing SR. In this study, a mathematical model 
has been instigated to get to know SR by using Buckingham pi-theorem while applying the AAEDM process. The fit sum-
mary confirmed that the quadratic model is statistically appropriate, and the lack-of-fit is insignificant. Root-mean-square 
error and absolute standard deviation, obtained through response surface method, were also used for developing the 
model and for its predicting abilities through ANN. The experiment and anticipated estimates of SR during the process, 
obtained by dimensional analysis and ANN, were found to be in accord with each other. However, the ANN technique 
proved to be more fitting to the response as compared to the dimensional analysis.
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1 Introduction

Electrical discharge machining (EDM) is a material removal 
process and is widely used for the precision work. It has a 
wide range of application in mold and die making, auto-
motive, aerospace and surgical components [1]. One of 
the real difficulties experienced amid EDM is flushing of 
debris from discharge gap. The accumulation of debris in 
the discharge gap results in an arcing and short circuit. 
This decreases a surface finish and surface integrity [2].

So as to improve machinability of EDM process, 
researchers explored different avenues regarding a few 
traditional, propelled calculation and imaginative meth-
odologies. Because of the intricate and discretionary 
nature of different procedures and countless components, 
there is a necessity to develop most appropriate method-
ology. Tsai and Wang [3] utilized dimensional investiga-
tion method to decide surface roughness (SR) in various 
specimens made from different materials. The electrical 

and thermal properties of workpiece alongside significant 
process parameters were selected to accomplish the ideal 
model. The model created by the authors’ was observed to 
be as per the test output. Yahya and Manning [4] examined 
the variables impacting material removal rate (MRR) amid 
the conventional EDM process. They distinguished critical 
variables through analysis of variance so as to build up 
a numerical model for MRR based on dimensional inves-
tigation. Kumar and Khamba [5] examined the titanium 
alloy specimens machined by EDM and built up a µ-model 
to govern MRR by utilizing Buckingham pi-hypothesis 
approach. Patil and Brahmankar [6] come up with a mathe-
matical model to anticipate MRR in wire electric discharge 
machining. They built up a model by using nonlinear esti-
mation method as well as dimensional investigation. Bob-
bili et al. [7] did a similar report on wire electric discharge 
machining of materials used in defense for making arms by 
dimensional technique identified with MRR and SR. They 
thought about workpiece material’s thermal properties, 
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and machine electrical parameters are key factors to build 
up the mathematical model for MRR and SR. Kumar et al. 
[8] have created numerical model to foresee TWR utiliz-
ing dimensional investigation amid powder-blended EDM 
of titanium composites. Their discoveries proposed that 
warm conductivity of example eminently influenced the 
TWR amid machining of cryogenic-treated workpiece.

Over the most recent couple of decades, different 
researchers have proposed distinctive soft computing 
tools to set up a relationship between machining param-
eters and prominent output responses like MRR and SR. 
Mandal et al. [9] used ANN to develop models to study the 
MRR and the absolute tool wear rate. Furthermore, they 
applied a non-dominating sorting genetic algorithm to 
find the optimum value of process responses. Assarzadeh 
and Ghoreshi [10] applied ANN to develop models and 
to get optimal value of responses, namely the MRR and 
the SR, during the EDM operation. Pradhan et al. [11] pro-
posed two different ANN-based models for prediction of 
the SR during the EDM process. Their findings established 
that back-propagation neural network model gives more 
accurate results than radial basis function neural network 
model. Pataowari et al. [12] developed models to deter-
mine average layer thickness and material transfer rate 
during EDM operation by applying ANN. Kumar et al. [13] 
applied ANN paired with Taguchi technique for modeling 
and optimization of the SR. Kumar and Choudhury [14] 
used ANN techniques to determine the SR and wheel wear 
during electrical discharge diamond grinding (EDDG) of 
high-speed steel (HSS) specimen. They observed that 
ANN-based model makes more precise assessment in 
comparison with regression-based model. Agarwal et al. 
[15] developed models to determine the MRR and the SR 
during EDGC by applying an ANN method. Kar et al. [16] 
optimized the SR parameters during electro-discharge 
coating process by applying fuzzy logic coupled with the 
Taguchi technique. Prakash et al. [17] obtained optimum 
value of the input parameters in powder-mixed EDM by 
using the Taguchi-based RSM coupled with a non-domi-
nated sorting genetic algorithm.

From the study of the previous research work, one could 
not find any conceivable effort on a meticulous model, in 
view of thermo-mechanical characteristics, which would 
guarantee a superior surface finish in gas-based EDM. Not 
very many examinations are there on the correlation of 
statistical and soft computing models. The greater part of 
the exploration has been centered on correlation of the 
soft computing models in EDM. Comparative investigation 

among semi-experimental and ANN models has not been 
tended to the writing.

In context of the previously mentioned predicaments, the 
motivation behind the current examination is to investigate 
and build up a model to anticipate SR by using high-pressure 
argon gas through multi-hole rotary tool in conventional 
EDM. Response surface method (RSM) based on design of 
experiment technique is applied for blueprints of the experi-
mentation. Statistical analysis of the experimental data has 
been made during analysis of variance (ANOVA). ANOVA 
enables to get insight into the machining process and distin-
guish between the factors which have significant effects on 
the process responses. Based on the obtained results, ANN- 
and semiempirical-based models have been developed to 
assess the effects of different machining factors on SR during 
argon-assisted electrical discharge machining (AAEDM) pro-
cess. The efficacy of the established models in predications 
of machinability has been compared at the end.

2  Experimental work

2.1  Electrodes material

The test was led on D3 die steel, utilizing copper as tool 
material. The specimen of dimension (20 × 15 × 15 mm) 
was utilized for experimentation. Table 1 demonstrates 
the chemical constitution of the chosen workpiece.

A perforated tool was utilized to ensure that a stream of 
high-speed argon gas goes through the tool. So as to guar-
antee powerful exchange of heat from the surface of the 
tool, a tool having 8.35 mm diameter and 70 mm length 
was picked. The perforated tool is shown in Fig. 1a, and the 
connection utilized amid the analysis is shown in Fig. 1b.

2.2  Experimental procedure

The period of machining during the process was set at 
15 min for each and every trial. The rotary electrode-assisted 
die-sinking EDM was carried out on an EDM machine (Model 
Smart ZNC, Electronica, India). Commercial kerosene oil was 
utilized as the dielectric medium. During the experiment, 
five procedure factors, namely discharge current, pulse-on 
time, duty cycle, tool speed and gas pressure were chosen. 
The estimation of these factors was fixed based on prelimi-
naries experiments and machine limit. Argon gas under suf-
ficient pressure has been utilized in pass on conventional 
EDM activity to keep the oxidation response, odds of flame 

Table 1  Chemical composition 
of specimen

Cr C Si Mn P S Fe

10.05 2.30 0.40 0.30 0.05 0.03 Rest
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and dangers amid the machining task. Table 2 exhibits the 
machining parameters run utilized for the present work. 
The acetone was used as cleaning agent for machined 
workpiece. Mitutoyo make tester was utilized to quantify 
the surface roughness of the machined workpiece. So as 
to guarantee a precise machining time computation, elec-
tronic clock (exactness of 0.1 s) was utilized.

3  Analysis of experimental data

A total of 32 experiments were conducted using central 
composite rotatable design (CCRD) with independent vari-
ables at five different levels with actual units. ANOVA was 
performed to distinguish the essential factors affecting SR 
amid the AAEDM procedure. The ANOVA of second-order 
model is given in Table 3. For the model, the estimation of 
‘Prob > F’ is observed to be less than 0.05 (95% certainty). 
Consequently, it is apparent that the factors in the model 
impacted the response. Equation (1) represents the regres-
sion model of SR.

(1)

SR = − 5.39 − (0.019 × Ip) − (0.0145 × Ton)

+ (15.9 × DC) + (0.000883 × RPM)

+ (1.16 × GP) + (0.000956 × Ip × Ton)

+ (0.0117 × Ton × DC) − (1.76 × DC × GP)

Fig. 1  Schematic images of a Tool, b Experimental setup employed [18]

Table 2  Process parameters with their range

Parameters Levels

− 2 − 1 0 1 2

Discharge current (Ip) (A) 3 4 5 6 7

Pulse-on time (Ton) (μs) 100 200 300 400 500

Duty cycle (DC) 0.52 0.58 0.64 0.70 0.76

Tool rotation (rpm) 100 300 500 700 900

Gas pressure (AP) (mm Hg) 3 6 9 12 15

Table 3  ANOVA table for SR

Source DF Seq.SS MS F P R
2

Regression 7 5.334 0.762 50.03 0 0.9359 Fstandard
(0.05,7,24);

= 2.87 

Fregression > F
standard
(0.05,7,24)

 

Fstandaed
(0.05,19,24);

= 2.91 Flack - of - fit <standard

(0.05,19,24)
 

Model is adequate and lack-of-fit is insignificant

Linear 5 3.964

Interaction 2 1.370

Residual error 24 0.365 0.015

Lack-of-fit 19 0.332 2.68 0.139

Pure error 5 0.0015

Total 31 0.7332
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3.1  Dimensional analysis for evaluating the surface 
roughness during AAEDM process

The dimensional analysis is a technique utilized to get 
specific details about a given physical problem. With the 
dimensional investigation, one can get a total arrangement 
of dimensionless parameters. The dimensional investiga-
tion technique is essentially used to lessen the multifaceted 
nature of a physical issue by decreasing the quantity of vari-
ables, which may not altogether influence a given issue [3]. 
The different attributes of physical quantities used for devel-
opment of semiempirical model are given in Table 4.

On the off chance that the concerned physical issue has 
‘n’ factors and in the event that ‘k’ means essential dimen-
sions, dimensional investigation lessens the issue to just 
π-dimensionless terms. Normally, ‘n-k’ breaks even with the 
quantity of dimensionless π-terms that oversee the issue.

If the concerned physical issue has ‘n’ factors and if ‘k’ vari-
able, in the present case, the rank of a matrix is five and there 
are eleven factors. Along these lines, according to Bucking-
ham π-speculation, there are six π-terms. In like way, the 
measurement equation for the connection is

(2)Function: SR = f
(

Ip, Ton, RPM, GP, DC, K , �, �,Cp, �
)
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[
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where Z is the dimensionless constant and �,� , γ, � and 
� are unidentified exponents. The nonlinear estimation 
method is utilized to decide the dimensionless constant 
and obscure exponents.

The values of Z  , � , �  , � ,� and � are found to be 
23207823.51, 0.1938, − 0.1091, 0.3412, 0.0567 and 0.3538, 
respectively. Equation (4) is represented in the given form:

3.2  Prediction of SR in AAEDM by ANN

In this work, MATLAB programming was utilized to struc-
ture the best ANN engineering. The information layer is 
related to discharge current, pulse-on time, duty cycle, 
tool speed and discharge gas pressure. The yield layer is 
compared to the SR. In this model, the information layer 
is related to a hidden layer neuron, and the hidden layer is 
related to yield layers. After broad preliminaries and based 

on working of the system, ANN display for the SR was pro-
duced. In these models, one hidden layer consists of 15 
neurons, five input and one output neurons as shown in 
Fig. 2. For swift and supervised learning, Levenberg–Mar-
quardt back-propagation neural network algorithm was 
used during training of the network [11–13]. The network 
performance is measured using mean square error (MSE). 
MSE can be calculated as

(5)

SR = (23207.82)X

(

I�C1.5
p

k1.5�0.5

)0.1938

X

(

Ton�C
2
p
�

K

)−0.1091

X

(

RPMK

�C2
p
�

)0.3412

X

(

GP

�CP�

)0.0567

X (DC)0.3538

Table 4  Various attributes of physical quantities

Factors Symbol Value Dimensions

Process parameters

Current Ip

[

QT
−1
]

Pulse-on time T
on

[T]

Rotation RPM
[

T
−1
]

Gas pressure GP
[

ML
−1
T
−2
]

Duty cycle − [1]

Material properties

Thermal conductivity K 50 W/m–K
[

MLT
−3
θ
−1
]

Electrical conductivity � 0.01824 S/m
[

M
−1
L
−3
TQ

2
]

Density � 7700 kg/m3 [

ML
−3
]

Sp. Heat Cp 0.46 Cal/S mole °C
[

L
2
T
−2
θ
−1
]

Melting point � 1421  0C [θ]

Response

Surface roughness SR [L]
Fig. 2  ANN structure 5-15-1 [11]
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where X is the number of output nodes, Y is the total num-
ber of training data, pj is output of the jth neuron and qj 
is the predicted value of jth neuron [19]. Here, as per the 
available design matrix 32 experiment data, a total of 24 
data were arbitrarily selected for the training of ANN net-
work. The remaining eight data, which were not consid-
ered for training, were used for testing of the ANN model.

In the present ANN model for the SR during simulating, 
the value of correlation coefficient (R) is 0.999 as shown 
in Fig. 3. From the statistical point of view, a network can 
more precisely correlate the process input to the output 
response if the value of the correlation coefficients is closer 
to 1. Therefore, for wide range of machining conditions, 
a selected BP neural network effectively maps the pro-
cess factors for the process output responses [9]. Figure 4 
shows the comparison of actual and predicted value of 
the SR by FFBP-ANN. From the plot, one can observe an 
accord between the measured and the anticipated val-
ues as attained by the FFBP-ANN models. The accuracy 
of the developed model was evaluated by applying the 

(6)MSE =
1

X × Y

X
∑

i=1

Y
∑

j=1

(

pj − qj
)

root-mean-square error (RMSE) [19]. The following equa-
tion is used to obtain the RMSE.

where T is the total training data, Xi is the value of the 
measured data, and Yi is the value, predicted by the ANFIS 
model.

(7)RMSE =

√

√

√

√
1

T

T
∑
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(

X
i
− Y

i

)2

Fig. 3  Linear regression analy-
sis between the experimental 
values and predicted values by 
FFBP-ANN for training, valida-
tion, testing and overall SR
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The adequacy of the developed model was checked 
by the mean square error (MSE), root-mean-square error 
(RMSE), standard deviations and is given in Table 5. From 
these estimates, it can be inferred that the instigated 
model empowers progressively exact prediction.

3.3  Comparison of predicted SR by ANN 
and Semiempirical models

A comparison of predicted values of response by sem-
iempirical and ANN models and measured values corre-
sponding to each trial of the AAEDM process for the SR 
are shown in Table 6. The accuracy of expectation model 
was assessed by using the standard deviation, MSE, RMSE 
and is given in Table 5. From these estimates, a conclusion 
may be drawn that the ANN model empowers increasingly 
true and exact prediction in comparison of semiempirical 
model. A comparison of the experiment and anticipated 
estimates of SR by ANN and semiempirical models is 
shown in Fig. 5. From figure (Refer Fig. 5), the ANN model 
proved to be more fitting to the response as compared 
to the semiempirical. The trial results and models expec-
tation estimations of SR amid the AAEDM procedure 

Table 5  Precision of prediction models

Parameters Model MSE RMSE Standard 
deviation

Semiempirical 1.7227 × 10−4 0.0131 0.4986

ANFIS 2.4414 × 10−6 0.0016 0.0151

Table 6  Measured and 
predicted values of responses 
corresponding to each trial of 
AAEDM process

Exp. no. Ip T
on

DC RPM GP Experiment ANN S-empirical

1 4 200 0.58 300 12 4.05 4.24 3.94

2 6 200 0.58 300 6 4.44 4.52 4.38

3 4 400 0.58 300 6 3.65 3.73 3.77

4 6 400 0.58 300 12 4.87 3.67 3.94

5 4 200 0.7 300 6 4.88 5.05 3.82

6 6 200 0.7 300 12 4.89 4.92 4.32

7 4 400 0.7 300 12 3.75 3.75 3.44

8 6 400 0.7 300 6 5.28 5.13 3.82

9 4 200 0.58 700 6 4.40 4.76 4.55

10 6 200 0.58 700 12 5.70 5.68 5.62

11 4 400 0.58 700 12 4.32 4.31 4.83

12 6 400 0.58 700 6 4.31 4.41 5.38

13 4 200 0.7 700 12 4.96 5.13 4.91

14 6 200 0.7 700 6 4.69 4.69 5.46

15 4 400 0.7 700 6 4.88 4.80 4.69

16 6 400 0.7 700 12 4.93 4.93 4.90

17 3 300 0.64 500 9 3.79 3.78 4.15

18 7 300 0.64 500 9 4.72 4.85 4.79

19 5 100 0.64 500 9 4.81 4.83 5.14

20 5 500 0.64 500 9 4.02 3.98 4.31

21 5 300 0.52 500 9 4.31 4.39 4.48

22 5 300 0.76 500 9 4.52 4.51 4.32

23 5 300 0.64 100 9 3.90 3.93 3.70

24 5 300 0.64 900 9 4.68 4.68 5.05

25 5 300 0.64 500 3 4.32 4.22 4.80

26 5 300 0.64 500 15 4.65 4.65 4.46

27 5 300 0.64 500 9 4.41 4.35 4.56

28 5 300 0.64 500 9 4.38 4.35 4.56

29 5 300 0.64 500 9 4.34 4.35 4.56

30 5 300 0.64 500 9 4.31 4.35 4.56

31 5 300 0.64 500 9 4.36 4.35 4.56

32 5 300 0.64 500 9 4.39 4.35 4.56



Vol.:(0123456789)

SN Applied Sciences (2019) 1:995 | https://doi.org/10.1007/s42452-019-1032-0 Research Article

are observed to be as per each other. The normal error 
between the models forecasts, and the trial esteems are 
observed to be under 5%.

4  Conclusions

This work gives insights of knowledge about the better pre-
diction exactness in EDM process; an enhanced point of view 
is proposed to model SR with ANN semiempirical proce-
dures, utilizing RSM plan of experimental strategy. The ANN- 
and semiempirical-based methods were used to develop 
models for predicting the SR during the AAEDM process on 
high-carbon, high-chromium die steel. The following are the 
key findings from the study that can be summed up:

1. A semiempirical-based mathematical model was 
developed to predict the SR during the AAEDM pro-
cess. The predicted value of responses by the model 
was found to be in accord with the measured value of 
each experiment.

2. Soft computing-based model, i.e., FFBP-ANN, was also 
developed for prediction of the AAEDM process per-
formance. Due to lower values of the MSE, RMSE and 
standard deviation, soft computing-based model was 
observed to anticipate more accurately in comparison 
with the mathematical semiempirical model.

3. A comparison was done among the developed models 
to distinguish the most exact one between them. The 
ANN-based model outperformed the mathematical 
semiempirical model in general. However, ANN model 
was found to anticipate reactions most accurately 
when contrasted with semiempirical models.
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