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Predictive Analytics in Information Systems Research 

July 31, 2010 

 

This research essay highlights the need to integrate predictive analytics into information systems (IS) 

research, and shows several concrete ways in which this can be accomplished. Predictive analytics 

include empirical methods (statistical and other) that generate data predictions as well as methods 

for assessing predictive power. Predictive analytics not only assist in creating practically useful 

models, they also play an important role alongside explanatory modeling in theory building and 

theory testing. We describe six roles for predictive analytics: new theory generation, measurement 

development, comparison of competing theories, improvement of existing models, relevance 

assessment, and assessment of the predictability of empirical phenomena. Despite the importance of 

predictive analytics, we find that they are rare in the empirical IS literature. The latter relies nearly 

exclusively on explanatory statistical modeling, where statistical inference is used to test and evaluate 

the explanatory power of underlying causal models. However, explanatory power does not imply 

predictive power and thus predictive analytics are necessary for assessing predictive power and for 

building empirical models that predict well. To show the distinction between predictive analytics and 

explanatory statistical modeling, we present differences that arise in the modeling process of each 

type. These differences translate into different final models, so that a pure explanatory statistical 

model is best tuned for testing causal hypotheses and a pure empirical predictive model is best in 

-known explanatory paper on TAM to a predictive 

context to illustrate these differences and show how predictive analytics can add theoretical and 

practical value to IS research.
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Predictive Analytics in Information Systems Research 

INTRODUCTION 

In the last decade, the IS field has made great strides in employing more advanced statistical 

modeling techniques to support empirical research. It is now common to see IS researchers use 

structural equation modeling (Marcoulides and Saunders 2006) and increased attention is being paid 

to issues such as formative constructs (Petter et al. 2008) and selection bias (Li and Hitt 2008). At 

the same time, many opportunities for further improvement remain. In this research essay we 

address a particularly large gap, namely, the near-absence of predictive analytics in mainstream 

empirical IS literature. This gap presents an important opportunity, because predictive analytics are 

useful for generating new theory, developing new measures, comparing competing theories, 

improving existing theories, assessing the relevance of theories, and assessing the predictability of 

empirical phenomena.  

Predictive analytics include statistical models and other empirical methods that are aimed at creating 

empirical predictions, as well as methods for assessing the quality of those predictions in practice, 

i.e.,  predictive power. Aside from their practical usefulness, predictive analytics play an important 

role in theory building, theory testing, and relevance assessment. Hence, they are a necessary 

component in scientific research (Kaplan 1964; Dubin 1969).  

We show that despite prediction being a core scientific activity, empirical modeling in IS has been 

dominated by causal-explanatory statistical modeling, where statistical inference is used to test causal 

hypotheses and to evaluate the explanatory power of underlying causal models. Yet, contrary to 

common belief, explanatory power does not imply predictive power (Dawes 1979; Forster and 

Sober 1994). In addition, when statistical explanatory models are built for the purpose of testing 
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hypotheses rather than for generating accurate empirical predictions, they are less useful when the 

main goal is high predictive power. 

The dominance of causal-explanatory statistical modeling and rarity of predictive analytics for theory 

building and testing exists not only in IS but in the social sciences in general, as well as in other 

disciplines such as economics and finance. In contrast, in fields such as computational linguistics and 

bioinformatics, predictive analytics are commonly used and have lead to theoretical advances. In 

computational linguistics: the mathematical and computational work has given us deep insights into the working 

of language  [and] will contribute to psycholinguistic research which studies the human processing of language  

(Joshi, 1991). In bioinformatics: 

 (Gifford, 

2001). 

We begin  and then 

describe sources of differences between them. Next, the role of predictive analytics in scientific 

research is discussed, followed by the results of an IS literature search indicating the rarity of 

predictive analytics. The last part of the paper presents methods for assessing predictive power and 

for building predictive models. The methods are -known explanatory 

study of TAM into a predictive context. We conclude with a discussion. 

 

ATORY STATISTICAL MO E 

 

We define empirical modeling and the related terms 

explanatory statistical model, explanatory power, predictive analytics, and predictive power.   
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Empirical Models for Explanation  

In the context of empirical modeling, we use the term explanatory statistical model to describe a 

statistical model that is built for the purpose of testing causal hypotheses that specify how and why 

certain empirical phenomena occur (Gregor 2006).  Causal theoretical models being at the core, a set 

of causal hypotheses are then derived and tested using statistical models and statistical inference. 

Explanatory statistical modeling includes two components: 

(1) Explanatory statistical models, which include any type of statistical model used for testing causal 

hypotheses. In IS, as in the social sciences in general, it is common to assume causality at the 

theoretical level and then test causal hypotheses using association-type statistical models1 such 

as regression models and structural equation models that rely on observational data. 

(2) Methods for evaluating the explanatory power of a model (e.g., statistical tests or measures such as 

R2), which indicates the strength of the relationship.  

Examples of explanatory-oriented research in the IS literature, studied via explanatory statistical 

modeling, include finding determinants of auction prices (Ariely and Simonson 2003); explaining the 

diffusion and non-diffusion of e-commerce among SMEs (Grandon and Pearson 2004); explaining 

attitudes towards online security and privacy (Malhotra et al. 2004); and understanding the 

antecedents and consequences of online trust (Gefen et al. 2003). 

 

                                                           

1 The use of association-type models for causal inference is common in the social sciences, although it is 
The 

justification for using such models for causal inference is that given a significant association that is consistent 
with the theoretical argument, causality is inherited directly from the theoretical model. 
2 We use the terms predictive power and predictive accuracy interchangeably, as is common in predictive analytics. 
3 Predictive models rely on association rather than causation, and assume that the prediction context is 
probabilistically identical to the context under which the model was built. Hence, if an important causal factor 
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Empirical Models for Prediction  

 Predictive analytics include two components:  

(1) Empirical predictive models (statistical models and other methods such as data mining 

algorithms) designed for predicting new/future observations or scenarios. 

(2) Methods for evaluating the predictive power of a model.  

Predictive power (or predictive accuracy2) refers to a  to generate accurate predictions 

of new observations temporally, i.e., observations in a future time 

period, or cross-sectionally, i.e., observations that were not included in the original sample used to 

build the model. Examples of predictive-oriented research using predictive analytics in the context 

of IS include predicting the price of ongoing eBay auctions (Wang et al. 2008a); predicting future 

box-office sales based on online movie ratings (Dellarocas et al. 2006); and predicting repeat visits 

and the likelihood of purchase of online customers (Padmanabhan et al. 2006).  

Note that the above definition of prediction refers to empirical prediction rather than theoretical prediction, 

where the latter describes an assertion that arises from a causal theory (e.g., 

we predict that X will be associated with Y  ).  In the remainder 

, modeling  in the sense of empirical 

models, empirical modeling, and empirical prediction.  

Empirical Models for Explanation and Prediction  

Another theory type by Gregor (2006) is Both of these goals are 

desirable, and many empirical models indeed aim to achieve both. However, explanation and 

prediction are perhaps best thought of as two separate modeling goals not entirely mutually 

exclusive, but with a tension between them. Since the best explanatory statistical model will almost 

                                                           

2 We use the terms predictive power and predictive accuracy interchangeably, as is common in predictive analytics. 
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always greatly differ from the best predictive model (Forster and Sober 1994, Konishi and Kitagawa 

2007, Shmueli 2010), any model that tries to achieve both goals will have to somewhat compromise. 

Such comprises are common and can take several forms. For instance, when the main purpose is 

causal explanation but a certain level of predictive power is desired, one can build an explanatory 

statistical model and then, in a second stage, assess its predictive power using predictive analytics, 

perhaps modifying the model if it does not achieve the minimum desired level of predictive power. 

Or, when the main purpose is prediction but a certain level of interpretability is required (e.g., 

because the logic underlying the model needs to be explained to stakeholders), then predictive 

analytics can focus on predictors and methods that produce a relatively transparent model, while 

perhaps sacrificing some predictive power. Hence, designing a model for both causal explanation 

and empirical prediction requires understanding the tensions between the two goals and the 

difference between explanatory and predictive power. 

In the remainder of the paper we focus on the distinction between explanatory statistical modeling 

and predictive analytics. While we recognize the existence of modeling for a dual goal as described 

above, the exposition is eased if we present both types in their respective canonical forms to more 

clearly dissipate the current ambiguity between them. This approach also helps highlight the roles 

that predictive analytics play in scientific research, roles that differ yet complement those of 

explanatory statistical modeling. 

 

WHY EMPIRICAL EXPLANATION AND EMPIRICAL PREDICTION DIFFER 

In the philosophy of science literature, there has been much debate over the difference between 

 1994; Forster 2002; Sober 2002; Hitchcock 
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and Sober 2004; Dowe et al. 2007). Dubin (1969) argued that predictive and explanatory goals are 

distinct, yet both are essential to scientific research:  

Theories of social and human behavior address themselves to two distinct goals of science: (1) prediction and 

] I will not, however, conclude that they 

are either inconsistent or incompatible.  

In the context of IS research, Gregor (2006) proposed a taxonomy of five theory types, among them 

 

We do not intend to contribute to the discussion at the philosophical level. Instead, we consider the 

difference between explaining and predicting in the context of empirical modeling. Within this realm, 

we emphasize two differences: (1) between explanatory and predictive modeling, and (2) between 

explanatory power and predictive accuracy. 

Statisticians recognize that statistical models aimed at explanation are different from those aimed at 

prediction, and that explanatory power and predictive accuracy are two distinct dimensions of 

empirical models. For example, Konishi and Kitagawa (2007, p.2) note,  

There may be no significant difference between the point of view of inferring the true structure and that of 

making a prediction if an infinitely large quantity of data is available [and] if the data are noiseless. 

However, in modeling based on a finite quantity of real data, there is a significant gap between these two 

points of view, because an optimal model for prediction purposes may be different from one obtained by 

. 

 In other words, the goal of finding a predictively accurate model differs from the goal of finding the 

true model (see also Sober (2006, p.537)). Why does the goal of analysis lead to such differences at 

the empirical level? The reason is the different level on which the two types of empirical models 

operate, as well as the notion of causality. Whereas explanatory statistical models are based on 
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underlying causal relationships between theoretical constructs, predictive models rely on associations between 

measurable variables.  The operationalization of theoretical models and constructs into empirical 

models and measurable data creates a disparity between the ability to explain phenomena at the 

conceptual level and to generate accurate predictions at the observed level.  

A related fundamental difference between explanatory and predictive empirical modeling is the 

metric optimized: whereas explanatory modeling seeks to minimize model bias (i.e., specification 

error) to obtain the most accurate representation of the underlying theoretical model, predictive 

modeling seeks to minimize the combination of model bias and sampling variance. However, there exists a 

tradeoff between model bias and sampling variance (Geman et al. 1992; Friedman 1997), which 

implies that improving predictive power sometimes requires sacrificing theoretical accuracy (higher 

bias) for improved empirical precision (lower variance) (Hastie et al. 2008, p.57). Although a 

properly specified explanatory statistical model will often exhibit some level of predictive power, the 

large statistical literature on cross-validation, shrinkage, and over-fitting shows that the best-fitting 

model for a single dataset is very likely to be a worse fit for future or other data (e.g., Stone 1974; 

Copas 1983; Hastie et al. 2008). In other words, an explanatory model may have poor predictive 

power, while a predictive model based on the same data may well possess high predictive power3.  

Finally, the prospective nature of predictive modeling, where a model is built for predicting new 

observations, is different from explanatory empirical modeling, where a model is built to 

retrospectively test a set of existing hypotheses. One implication, for example, is that in a predictive 

model all predictor variables must be available at the time of prediction, while in explanatory 

modeling there is no such constraint.  Consider the example of a linear regression model: although it 

                                                           

3 Predictive models rely on association rather than causation, and assume that the prediction context is 
probabilistically identical to the context under which the model was built. Hence, if an important causal factor 

predictive power might drop drastically. See also the discussion in footnote 9. 
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can be used for building an explanatory statistical model as well as a predictive model, the two 

resulting models will differ in many ways. The differences are not only in the statistical criteria used 

to assess the model, but are prevalent throughout the process of modeling: from the data used to 

estimate the model (e.g., variables included and excluded, form of the variables, treatment of missing 

data), to how performance is assessed (model validation and evaluation), and how results are used to 

support research. We discuss and illustrate these and other issues in later sections.   

Shmueli (2010) summarizes the aforementioned sources of differences between empirical 

explanatory modeling and predictive analytics into four dimensions: causation-association, theory-

data, retrospective-prospective, and bias-variance.  The theory-data dimension means that predictive 

modeling relies more heavily on data whereas explanatory modeling relies more heavily on theory. 

However, in the context of scientific research, the data-driven nature of predictive analytics is 

integrated with theoretical knowledge throughout the entire model building and evaluation process, 

albeit in a less formal way than in explanatory statistical modeling (see the Discussion for further 

details and examples). 

In summary, the different functions of empirical explanatory modeling and predictive analytics, and 

the different contexts in which they are built and later operate (testing causal-theoretical hypotheses  

versus generating data predictions), lead to many differences in the model building process, which 

translate into different final models. The final models will differ in terms of explanatory power as 

well as predictive power.  Table 1 summarizes key differences that arise in explanatory and 

predictive empirical modeling. A more detailed discussion of the differences that arise in the model 

building process is presented in the section on Building Predictive Models. 
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Table 1: Differences between empirical explanatory modeling and predictive analytics 

Step Description 

Analysis goal Explanatory statistical models are used for testing causal hypotheses. 

Predictive models are used for predicting new observations and assessing 

predictability level. 

Variables of interest Explanatory: operationalized variables are only used as instruments to 

study the underlying conceptual constructs and the relation between them.  

Predictive: The observed, measurable variables are the focus. 

Model building: 

Optimized Function  

In explanatory modeling the focus is on minimizing model bias. Main risks 

are type I and II errors. In predictive modeling the focus is on minimizing 

the combined bias and variance. The main risk is over-fitting. 

Model building: 

Constraints 

Explanatory: empirical model must be interpretable, must support 

statistical testing of the hypotheses of interest, must adhere to theoretical 

model (e.g., in terms of form, variables, specification).                                             

Predictive: must use variables that are available at time of prediction.  

Model evaluation Explanatory power is measured by strength-of-fit measures and tests (e.g., 

R2 and statistical significance of coefficients).                                         

Predictive power is measured by accuracy of out-of-sample predictions. 

 
THE ROLES OF PREDICTIVE ANALYTICS IN SCIENTIFIC RESEARCH 
 
We now focus on the value of predictive analytics to theory building, theory testing, and relevance 

assessment. We show that predictive analytics help develop and examine theoretical models through 

a different lens than explanatory statistical models, and are therefore necessary in addition to 

explanatory statistical models in scientific research. In particular, we describe six roles of predictive 

analytics in research. 

Role 1: Generating New Theory 

T

argument, in the context of grounded theory, that both quantitative and qualitative data can be used 

for theory building. The authors stress the importance of using quantitative data for generating new 

theory: quantitative data are often used not for rigorous demonstration of theory but as another 

way to discover more theory  (Glaser and Strauss 1980, p. 235). 
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Predictive analytics are valuable for theory building especially in fast-changing environments, such as 

the online environment, which poses many challenges for economic, psychological, and other 

theoretical models traditionally employed in IS. An example is auctions, where classical auction 

theory has only found limited applicability in the move from offline to online auctions, and where 

empirical research of online auctions has raised new theoretical and practical questions that classical 

auction theory does not address (Bajari and Hortacsu 2004; Bapna et al. 2008; Pinker et al. 2003).  

The new types of datasets available today are rich in detail: they include and combine information of 

multiple types (e.g., temporal, cross-sectional, geographical, and textual), on a large number of 

observations, and with high level of granularity (e.g., clicks or bids at the seconds level). Such data 

often contain complex relationships and patterns that are hard to hypothesize, especially given 

theories that exclude many of newly-measurable concepts. Predictive analytics, which are designed 

to operate in such environments, can detect new patterns and behaviors and help uncover potential 

new causal mechanisms, in turn leading to the development of new theoretical models. One example 

is the use of predictive analytics for forecasting prices of ongoing online auctions. The predictive 

approach by Jank and Shmueli (2010, Chapter 4) relies on quantifyin

price velocity and price acceleration patterns, from the auction start until the time of prediction, and 

integrating these dynamics into a predictive model alongside other common predictors (e.g., item 

characteristics and auction properties) nonexistent in 

classic auction theory, including such empirical measures in predictive models has been shown to 

produce significantly more accurate price predictions across a range of items, auctions formats, and 

marketplaces than models excluding such information. The predictive approach thus discovered the 

new concept and its role in online auctions. 

A second example is the study by Stern et al. (2004), in which predictive analytics were used to 

detect factors affecting broadband adoption by Australian households, resulting in the discovery of a 
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new technophilia A third example is the work by Wang et al. (2008b), who 

studied the relationship between how firms disclose security risk factors in a certain period and their 

subsequent breach announcements.  Using predictive analytics with textual data,  the textual content 

of security risk factors was found to be is a good predictor of future breaches, shedding light on a 

relatively unexplored research area.  

Role 2: Developing Measures 

A second aspect of how predictive analytics support theory building is in terms of construct 

operationalization. This aspect is a more specific instance of new theory generation, since the 

development of new theory often goes hand in hand with the development of new measures (Van 

Maanen et al. 2007; Compeau et al. 2007). 

Predictive analytics can be used to compare different operationalizations 

. Szajna (1994) notes, 

in the context of technology assessment instruments, that predictive validity provides a form of 

construct validation. The study by Padmanabhan et al. (2006) used predictive analytics to show the 

advantage of multi-source (user-centric) measures of user behavior over single-source (site-centric) 

measures for capturing customer loyalty.  

Role 3: Comparing Competing Theories 

Given competing theoretical models, explanatory statistical models can be used as a means of 

comparison. However, unless the theoretical models can be formulated in terms of nested statistical 

models (i.e., one model contains another as a special case), it is difficult to compare them 

statistically. Predictive analytics offer a straightforward way to compare models (whether explanatory 

or predictive), by examining their predictive accuracy. The study on project escalation by Keil et al. 

(2000) provides a good illustration of this aspect. They compared four explanatory (logistic 
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regression) models for testing the factors affecting project escalation, each model using constructs 

from one of four theories (self-justification theory, prospect theory, agency theory, and approach 

avoidance theory). All models exhibited similar explanatory power. The authors then proceeded to 

test the predictive accuracy of the models using predictive analytics. They discovered that the 

models based on approach avoidance and agency theories performed well in classifying both 

escalated and non-escalated projects, while models based on self-justification and prospect theories 

performed well only in classifying escalated projects, but did not perform well in their classification 

of non-escalated projects. They further examined the different factors through the predictive lens 

and discovered that the completion effect construct, derived from approach avoidance theory, had 

high discriminatory power. Another example is the aforementioned study by Padmanabhan et al. 

(2006), who used predictive analytics to identify factors impacting the gains from user-centric data. 

A third example is the study by Collopy et al. (1994), who compared diffusion models with simpler 

linear models for forecasting IS spending, and showed the higher predictive power of linear models. 

Finally, Sethi and King (1999) used predictive analytics to compare linear and nonlinear judgment 

models for obtaining user information satisfaction (UIS) measures. 

Role 4: Improving Existing Models 

Predictive analytics can capture complex underlying patterns and relationships, and thereby improve 

existing explanatory statistical models. One example is Ko and Osei-  

examining the impact of investments in IT on hospital productivity. The authors chose predictive 

analytics to resolve the mixed conclusions of previous explanatory models, and found that the 

impact of IT investment was not uniform and that the rate of IT impact was contingent on the 

amounts invested in the IT Stock, non-IT Labor, non-IT Capital, and possibly time.  Their 

predictive approach enabled them to capture the more complex non-linear nature of the 

relationship, which in turn can be used to improve existing theoretical models (e.g., by including 
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moderated relationships). Another example is Keil et al.  (2000) study on determining the factors 

that explain why some projects escalate and others do not. The authors, using predictive analytics to 

test an explanatory model, discovered that using factors from self-justification and prospect theories 

accurately predicted escalation, but poorly predicted non-escalation. Their finding indicates that 

separate theoretical models are needed for escalation phenomena and non-escalation phenomena. 

Such a theoretical nuance was not easily available from the explanatory metrics derived from the 

explanatory statistical model, i.e. the statistical significance of the model and the coefficients for the 

variables representing the different constructs.  

Role 5: Assessing Relevance 

Scientific development requires empirically rigorous and relevant research. In the words of Kaplan 

(1964, p.350): n the basis of a certain 

explanation, we have good reason and perhaps the best sort of reason, for accepting the 

. Predictive analytics are useful tools for assessing the distance between theory and 

practice. Although explanatory power measures can tell us about the strength of a relationship, they 

do not quantify In contrast, assessing 

predictive power can shed light on the actual performance of an empirical model.  

The Keil et al. (2000) study described above also illustrates how predictive analytics can be used to 

assess practical relevance. The authors found that the best model correctly classified 77% of the 

escalated projects and 71% of the non-escalated projects. These values are practically meaningful, as 

they give an idea of the impact of applying the theory in practice: how often will a project manager 

l? When costs estimates of escalation and 

non-escalation are available, practical relevance can be further quantified in monetary terms, which 

could be used to determine the financial feasibility of preventive or corrective actions.  
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The study by Padmanabhan et al. (2006) also evaluates relevance: In addition to showing the 

practical usefulness of multi-source data, the authors quantified the magnitude of the gains that can 

be achieved by using user-centric data. In addition, they identified measures of user loyalty and 

browsing/buying intensity that accurately predict online purchase behavior, illustrating the practical 

use of a theory (related to measurement development). Another example is the study by Wu et al. 

(2005), who developed an explanatory model for studying the effect of advertising and website 

characteristics on sales. The authors used predictive assessment to validate their model and to assess 

its practical relevance for managerial consideration. 

Besides assessing the relevance of the model as a whole, predictive analytics can also be used for 

assessing the practical relevance of individual predictors. For example, Collopy et al. (1994) showed 

that adding a price-adjustment predictor to models for IS spending greatly improves predictive 

power (i.e., reduces prediction error on out-of-sample data). It is worth re-emphasizing that this 

predictive assessment is fundamentally different from assessing statistical significance. In some 

cases, including statistically significant predictors can decrease predictive accuracy in at least two 

ways. First, additional predictors increase the variance, which may outweigh the predictive gain from 

their inclusion. Second, large sample sizes might inflate statistical significance of effects in an 

explanatory model, even if their addition to a predictive model worsens predictive accuracy due to 

increased variance from measurement error or over-fitting (Lin et al. 2008). Data collection costs 

also play a role here: a variable with a statistically significant but small standardized beta in a 

regression model, may suggest only a marginal increase in predictive accuracy, not worth the cost 

and effort of collecting that predictor in the future. 
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Role 6: Assessing Predictability 

Predictive models play an important role in quantifying the level of predictability of measurable 

phenomena (Ehrenberg & Bound, 1993), by creating benchmarks of predictive accuracy. Knowledge 

of predictability (or un-predictability) is a fundamental component of scientific knowledge (see, e.g., 

Taleb 2007; Makridakis and Taleb 2009; Makridakis et al. 2009). A very low level of predictability 

can spur the development of new measures, collection of data, and new empirical approaches. 

Predictive models can also set benchmarks of potential levels of predictability of a phenomenon: if 

newer models with more sophisticated data and/or analysis methods result in only small 

improvements in predictive power, that level represents the meanwhile predictability of the 

phenomenon (at least until proven otherwise).  

A predictive accuracy benchmark is also useful for evaluating the difference in predictive power of 

existing explanatory models. On the one hand, an explanatory model that is close to the predictive 

benchmark may suggest that our theoretical understanding of that phenomenon can only be 

increased marginally4. On the other hand, an explanatory model that is very far from the predictive 

benchmark would imply that there are substantial practical and theoretical gains to be obtained from 

further research. For example, Collopy et al. (1994) compared the predictive power of explanatory 

diffusion models for IS spending with that of predictive models, showing the superiority of the 

 methods, Collopy et al s work nevertheless provided a predictability benchmark for IS 

spending behavior, which lead Gurbaxani and Mendelson to further develop improved explanatory 

empirical models for IS spending (thereby also supporting Role 4). 

                                                           

4 For instance, Venkatesh et al. (2003, p.471) cl  
the variance in intention, it is possible that we may be approaching the practical limits of our ability to explain 

While we do not necessarily disagree with their 
conclusion, ideally such statements would be couched in terms of predictive accuracy instead of explained 
variance. 
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PREDICTIVE ANALYTICS IN THE INFORMATION SYSTEMS LITERATURE 
 
To investigate the extent to which predictive analytics are integrated into mainstream empirical IS 

research, a search of the literature was conducted. 

searched all fulltext articles in MIS Quarterly (MISQ) and Information Systems Research (ISR) 

between 1990 - 20065 

pre-testing of the search string revealed that although expanding the search to use additional terms 

none of the additional hits were 

relevant for our purposes; All relevant items had already been captured by the more restrictive 

search terms. The search returned a total of over 250 papers. Every article was then manually 

examined for an explicit predictive goal, or for predictive claims made based on the empirical model. 

We excluded articles that used predictive language in a generic sense (e.g., 

predict tha as well as articles that 

were qualitative or purely theoretical. We also excluded articles that, although explanatory in nature, 

se last comprised a majority of the papers 

found. The total number of relevant predictive articles after the above filtering produced 52 articles 

(18 in ISR and 34 in MISQ).  

We subsequently investigated whether empirical papers with predictive claims evaluated predictive 

power properly. The 52 articles were therefore checked for two distinguishing criteria of predictive 

testing:  

1. Was predictive accuracy based on out-of-sample assessment? (e.g., cross-validation or a 

holdout sample). This criterion is well-established in predictive testing (see, e.g., 

Mosteller and Tukey 1977, and Collopy et al. 1994) 

                                                           

5   During this period there were a total of 692 articles published in MISQ and 380 in ISR. 



18 

 

2. Was predictive accuracy assessed with adequate predictive measures (e.g., RMSE, 

MAPE, PRESS6, overall accuracy or other measures computed from a holdout set), or 

was it incorrectly inferred from explanatory power measures? (e.g., p-values or R2) 

It should be noted that both criteria are necessary for testing the predictive performance of any 

empirical model, as they test predictive performance regardless of whether the goal is explanatory 

and/or predictive (see also next section on assessing predictive power).  

Based on these criteria, each of the 52 articles was classified as one of four types (see Table 2): 

 Predictive Goal - Adequate:  predictive goal stated; adequate predictive analytics used 

 Predictive Goal - Inadequate : predictive goal stated; inadequate predictive analytics used 

 Predictive Assessment - Adequate : explanatory goal stated; predictive power properly assessed 

 Predictive Assessment - Inadequate : explanatory goal stated; predictive power incorrectly inferred 

from explanatory power 

 
Table 2: Summary of Literature S
MISQ (1990-2006) according to predictive goal/claims and use of predictive analytics 
 ISR MISQ Total 

Initial hits (predictive OR predicting OR forecasting, 1990-2006) 95 164 259 

Relevant papers (empirical with predictive goal or claims of predictive 
power) 

18 34 52 

Predictive Goal - Adequate  4 1 5 

Predictive Goal - Inadequate  8 10 18 

Predictive Assessment  Adequate 1 1 2 

Predictive Assessment  Inadequate 5 22 27 

                                                           
6
 RMSE = Root mean squared error. MAPE = Mean absolute percentage error. PRESS = predicted residual sum of 

squares 
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Two major findings emerge from this literature study:  

1. Empirical predictive goals and claims are rare: From over 1,000 published articles, only 23 of 

the empirical articles stated one or more goals of analysis as predictive, and only 29 made 

predictive claims regarding their explanatory model.  

2. Predictive analytics are rare: Only 7 papers (out of the 52) employed predictive analytics in 

one form or the other. The remaining 45 papers, although stating a predictive goal or making 

predictive claims, did not employ predictive analytics and instead inferred predictive power 

from explanatory power. Table 4 in the appendix lists several illustrative quotes from articles 

where measures of explanatory power are used for supporting predictive claims.  

In summary, it can be seen from the literature search that predictive analytics are rare in mainstream 

IS literature, and even when predictive goals or statements about predictive power are made, they 

incorrectly use explanatory models and metrics. This ambiguity between explanatory and predictive 

empirical modeling and testing leads not only to ambiguity in matching methods to goal, but at 

worst may result in incorrect conclusions for both theory and practice (e.g., Dawes 1979). Hence, we 

next describe how predictive power should be evaluated and then describe the main steps and 

considerations in building predictive models. 

 

ASSESSING PREDICTIVE POWER (OF ANY EMPIRICAL MODEL) 

new observations accurately. In 

contrast, explanatory power refers to the strength of association indicated by a statistical model. A 

statistically-significant effect or relationship does not guarantee high predictive power, because the 

precision or magnitude of the causal effect might not be sufficient for obtaining levels of predictive 

accuracy that are practically meaningful. To illustrate a practical IS setting where this phenomenon 

might occur, consider a TAM-based study on the acceptance of a radically new information system. 
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In such a setting, potential users have great uncertainty evaluating the usefulness of the system 

(Hoeffler 2002), resulting in a much larger variance for the Perceived Usefulness (PU) construct. 

While PU may still be statistically significant as in almost all TAM studies, its larger variance will 

substantially reduce the gains in predictive accuracy from including it in the model, perhaps even to 

the point of reducing predictive accuracy. 

Most importantly, since the same data were used to fit the model and to estimate explanatory power, 

performance on new data will almost certainly be weaker (Mosteller and Tukey 1977, p.37).  

The first key difference between evaluating explanatory versus predictive power lies in the data used 

for the assessment. While explanatory power is evaluated using in-sample strength-of-fit measures, 

predictive power is evaluated using out-of-sample prediction accuracy measures. A popular method 

to obtain out-of-sample data is to initially partition the data randomly

empirical model, 

accuracy (Hastie et al. 2008, p.222; Berk 2008, p.31).  In time series, the holdout set is chosen to be 

the last periods of the series (see Collopy et al. 1994). With smaller datasets, where partitioning the 

data can significantly deteriorate the fitted model (in terms of bias), methods such as cross-validation 

are used. In cross-validation the model is fitted to the large majority of the data, and tested on a 

small number of left-out observations. The procedure is then repeated multiple times, each time 

leaving out a different set of observations, and finally the results from all repetitions are aggregated 

to produce a measure of predictive accuracy (see Chapter 7.10 in Hastie et al. 2008 for further details 

on cross-validation). 

- , where an empirical model fits the training data 

so well that it underperforms in predicting new data (see Breiman 2001a, p.204). Hence, besides 

avoiding fitting the training data too closely (Friedman, 2006), it is also important to compare the 
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 performance on the training and holdout sets; a large discrepancy is indicative of over-

fitting, which will lead to low predictive accuracy on new data.  

The second difference between explanatory and predictive power assessment is in the metrics used. 

In contrast to explanatory power, statistical significance plays a minor role or no role at all in 

assessing predictive performance. In fact, it is sometimes the case that removing predictors with 

small coefficients, even if they are statistically significant (and theoretically justified), results in 

improved prediction accuracy (see Wu et al. 2007; for a simple example see Appendix A in Shmueli 

2010).  

Similarly, R2 is an explanatory strength-of-fit measure, but does not indicate predictive accuracy (see, 

e.g., Copas 1983, p.237; Berk 2008, p. 29).  We especially note the widespread misconception of R2 

as a predictive measure, as seen in our literature survey results (see Table 4) and even in textbooks 

(e.g., Mendenhall and Sinich 1989, p.158). A model with a very high R2  indicates a strong 

relationship within the data used to build that model, but the same model might have very low 

predictive accuracy in practice (Barrett 1974). 

In terms of predictive performance measures, popular metrics are out-of-sample error rate and 

statistics such as PRESS, RMSE and MAPE or cross-validation summaries. A popular metric for 

variable selection is the Akaike Information Criterion (AIC)7. Akaike derived the AIC from a 

predictive viewpoint, where the model is not intended to accurately infer the true distribution , but 

rather to predict future data as accurately as possible (see, e.g., Konishi and Kitagawa 2007 and Berk 

2008). AIC is useful when maximum likelihood estimation is used, but otherwise too complicated to 

compute. 

                                                           
7
 Although an in-sample metric, AIC is based on estimating the discrepancy between the in-sample and out-

of-sample error rate, and adding this discrepancy to the in-sample error (Hastie et al., 2001, p. 203). 
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Specialized predictive measures: When asymmetric costs are associated with prediction errors 

(i.e., costs are heftier for some types of errors than for others), a popular measure is the average 

cost per predicted observation . When the goal is to accurately predict the top tier  of a population 

rather than the entire population (a goal particularly common in marketing and personnel 

psychology but often of interest in IS, e.g., predicting the most likely adopters of a new technology 

or predicting the biggest barriers to successful IS implementation), then model building relies on all 

observations , which will lead to a 

different final model. Lift charts are commonly used in this context (see, e.g., Padmanabhan et al. 

2006 and Shmueli et al. 2010). Note that due to its focus on a particular segment of the population, a 

model with good lift need not necessarily exhibit a low overall error rate. 

In short, since metrics for assessing predictive power are only based on the observed values and the 

predicted values from the model, they can be evaluated for any empirical model that can generate 

predictions. In contrast, since explanatory power assessment relies on statistical estimation and 

statistical inference, assessing explanatory power is straightforward only with statistical models, but 

not with every empirical model. 

 

BUILDING PREDICTIVE MODELS 

In this section we present a brief overview of steps and considerations in the process of building a 

predictive model, which differ from explanatory statistical model building. We illustrate these in the 

 For a 

detailed exposition of the differences between predictive and explanatory model building from a 

statistical methodological perspective see Shmueli (2010). 
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A schematic of the model building steps in explanatory and predictive modeling is shown in 

Figure 1. Although the main steps are the same, within each step a predictive model dictates 

different operations and criteria. The steps will now be described in more detail.  

Figure 1: Schematic of the steps in building an empirical model (predictive or explanatory) 

 

Goal Definition   

One common goal in predictive modeling is to accurately predict an outcome value for a new set of 

observations. This goal is known in predictive analytics as prediction (for a numerical outcome) or 

classification (for a categorical outcome). A different goal, when the outcome is categorical (e.g., 

adopter/non-adopter), is to rank a new set of observations according to their probability of 

earlier). This 

goal is known in predictive analytics as ranking. 

Data Collection and Study Design  

Experimental versus observational settings: Observ  

experimental data if they better represent the realistic context of prediction in terms of the 

uncontrolled factors, the noise, the measured response and other factors.  This is unlike explanatory 

studies, where experiments are preferable for establishing causality (e.g., Rosenbaum 2002, p.11). 

Data collection instrument: Focus is on measurement quality and relation to data at time of prediction. 

In predictive analytics, closeness of the collected data (used for modeling) to the prediction context 

is a main consideration. Ideally, the data used for modeling and for prediction consist of the same 

variables and are drawn in a similar fashion from the same population. This consideration often 
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overrides explanatory considerations. For instance, whereas obtrusive collection methods are 

disadvantageous in explanatory modeling due to the bias that they introduce, in predictive analytics 

obtrusiveness is not necessarily problematic if the same instrument is employed at the time of 

prediction. Similarly, secondary data (or even primary data) can be disadvantageous in predictive 

analytics if they are too different from the measurements available at the time of prediction, even if 

they represent the same underlying construct.  

Sample size: In predictive analytics, required sample sizes are often larger than in explanatory 

modeling for several reasons. First, predicting individual observations has higher uncertainty than 

estimating population-level parameters (for instance, a confidence interval for the mean is narrower 

than a prediction interval for a new observation). Second, the structure of the empirical model is 

often learned directly from the data using data-driven algorithms rather than being constructed 

directly by theory. Third, predictive analytics are often used to capture complex relationships. 

Hence, increasing sample size can reduce both model bias and sampling variance. Finally, more data 

are needed for creating holdout datasets to evaluate predictive power. Guidelines for minimum 

sample size needed in predictive analytics are difficult to specify, as the required sample size depends 

on the nature of the data, the properties of the final model, and the potential predictive power, all of 

which are typically unknown at the start of the modeling process. Moreover, setting the sample size 

apriori would limit the ability to use the wide range of available predictive tools or to 

combine the results of multiple models, as is commonly done in predictive analytics.  

Data dimension: The initial number of variables is usually large, in an effort to capture new sources of 

information and new relationships. Justification for each variable is based on combining theory, 

domain knowledge, and exploratory analysis. Large secondary datasets are often used in predictive 

analytics due to their breadth. 
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Hierarchical designs: In hierarchical designs (e.g., a sample of students from multiple schools), sample 

allocation for predictive purposes calls for increasing group size at the expense of the number of 

groups (e.g., sample heavily in a small number of schools). This strategy is the opposite when the 

goal is explanatory (Afshartous and de Leeuw 2005). 

Data Preparation 

Missing values: Determining how to treat missing values depends on (1) whether the missingness is 

informative of the response (Ding and Simonoff 2010) and (2) whether the missing values are in the 

training set or in the to-be-predicted observations (Saar-Tsechansky and Provost 2007).  Missingness 

can be a blessing in a predictive context, if it is sufficiently informative of the response. For instance, 

missing data for perceived usefulness in a TAM survey might be caused by a basic unfamiliarity with 

the technology under investigation, which in turn increases the likelihood of non-adoption. Methods 

for handling missing values include removing observations, removing variables, using proxy 

variables, creating dummy variables that indicate missingness, and using algorithms such as 

classification and regression trees for imputation. Note that this treatment of missing values in a 

prediction context is different from that in the explanatory case, which is guided by other principles 

(see Little and Rubin (2002)). 

Data partitioning: The dataset is randomly partitioned into two parts  is used to fit 

models. A holdout set is used to evaluate predictive performance of the final chosen model. A third 

dataset might be used for model tuning and model selection (Hastie et al 2008, p. 

222). If the dataset is too small for partitioning, cross-validation techniques can be used. 

Exploratory Data Analysis (EDA) 

EDA consists of summarizing data numerically and graphically, reducing their dimension, and 

handling outliers.  
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Visualization: In predictive modeling, EDA is used in a free-form fashion to support capturing 

relationships that are perhaps unknown or at least less formally formulated. This type of exploration 

-driven 

2002). Interactive visualization supports exploration 

across a wide and sometimes unknown terrain, and is therefore useful for learning about 

measurement quality and associations that are at the core of predictive modeling. 

Dimension reduction: Due to the often large number of predictors, reducing the dimension can help 

reduce sampling variance (even at the cost of increasing bias), and in turn increase predictive 

accuracy. Hence, methods such as principal components analysis (PCA) or other data compression 

methods are often carried out initially. The compressed variables can then be used as predictors. 

Choice of Variables 

Predictive models are based on association rather than causation between the predictors and the 

response. Hence variables (predictors and response) are chosen based on their observable qualities. 

The response variable and its scale are chosen according to the predictive goal, data availability, and 

measurement precision. Two constraints in choosing predictors are their availability at the time of 

prediction (ex-ante availability8), and their measurement quality. The choice of potential predictors is 

often wider than in an explanatory model, due to the objective of discovering new relationships. 

Predictors are chosen based on a combination of theory, domain knowledge, and empirical evidence 

of association with the response. Although in practical prediction the relation between the predictors 

and underlying constructs is irrelevant, construct consideration can be relevant in some theoretical 

development research (see Discussion section). Note that although improving construct validity 

reduces model bias, it does not address measurement precision which affects sampling variance; and 

                                                           

8 For instance, including the number of bidders in an online auction as a covariate is useful for explaining the final price, 
but cannot be used for predicting the price of an ongoing auction (because it is unknown until the auction closes). 
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prediction accuracy is determined by both model bias and sampling variance. For this reason, when 

proxy variables or even confounding variables can be measured more precisely and are more 

strongly correlated with the measured output than proper  causal variables, those can be better 

choices for a predictive model than the predictors. For the same reason, in 

predictive models there is typically no distinction between predictors in terms of their causal priority 

as in mediation analysis, and considerations of endogeneity and model identifiability are irrelevant. 

In fact, under-specified models can produce better predictions (Wu et al. 2007). For instance, 

Montgomery et al. (2005) showed that it is often beneficial to exclude the main effects in a model 

even if the interaction term between them is present.  

Choice of Potential Methods 

Data-driven algorithms: Predictive models often rely on non-parametric data mining algorithms (e.g., 

classification trees, neural networks and k-nearest-neighbors) and non-parametric smoothing 

methods (e.g., moving average forecasters, wavelets). The flexibility of such methods enables them 

to capture complex relationships in the data without making restricting statistical assumptions. The 

price of this flexibility is lower transparency (

(interpretabili   Breiman 2001a, p.206). However, correct specification and model 

transparency are of lesser importance in predictive analytics than in explanatory modeling.  

Shrinkage methods: Methods such as ridge regression and principal components regression (Hastie et 

al. 2008, Chapter 3) sacrifice bias for a reduction in sampling variance, resulting in improved 

prediction accuracy (see, e.g., Friedman and Montgomery 1985). Such methods predictor 

coefficients or even set them to zero, thereby effectively removing the predictors altogether. 

Ensembles: A popular method for improving prediction accuracy is using ensembles, i.e., averaging 

across multiple models that rely on different data or reweighted data, and/or employ different 
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models or methods. Similar to 

risk can be achieved through diversification, the underlying idea of ensembles is that combining 

models reduces the sampling variance of the final model, which results in better predictions. Widely-

used ensemble methods include bagging (Breiman, 1996), random forests (Breiman, 2001b), 

boosting (Shapire, 1999), and variations of these methods. 

Evaluation, Validation and Model Selection 

Model Evaluation: To evaluate the predictive performance of a model, predictive accuracy is measured 

by applying the method to a holdout set and generating predictions.  

Model Validation: Over-fitting is the major focus in predictive analytics (Stone 1974, Copas 1983, 

Hastie et al. 2008). Assessing over-fitting is achieved by comparing the performance on the training 

and holdout sets, as described earlier. 

Model Selection: One way to reduce sampling variance is to reduce the data dimension (number of 

predictors). Model selection is aimed at finding the right level of model complexity that balances bias 

and variance, in order to achieve high predictive accuracy. This consideration is different from 

explanatory considerations such as model specification. For instance, for purposes of prediction 

(Vaughan and Berry 2005, online). Variable selection and stepwise-

type algorithms are useful, as long as the selection criteria are based on predictive power (i.e., using 

predictive metrics as described in the section on Assessing Predictive Power). 

Model Use and Reporting 

Studies that rely on predictive analytics focus on predictive accuracy and its meaning. Performance 

measures (e.g., error rates and classification matrices) and plots (e.g., ROC curves and lift charts) are 

geared towards conveying predictive accuracy and if applicable, related costs. Predictive power is 

compared against naive and alternative predictive models (e.g., Armstrong 2001). In addition, the 
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treatment of over-fitting is often discussed. An example of a predictive study report in the IS 

literature is Padmanabhan et al. (2006). Note the overall structure: the placement of the section on 

in the Appendix; the lack of causal statements or 

hypotheses; the reported measures and plots; the emphasis on predictive assessment; reporting 

model evaluation in practically relevant terms; and the translation of results into new knowledge. 

 

EXAMPLE: PREDICTIVE MODEL FOR TAM 

To illustrate how the considerations mentioned above affect the process of building a predictive 

model, and to contrast that with the explanatory process, we will  IS explanatory 

study into a predictive one in the context of the TAM model (Davis 1989). In particular, we chose 

2003)  further denoted GKS. In brief, the study examines the role of trust and IT assessment 

(perceived usefulness and ease of use) in o ions (denoted as 

behavioral intention, or BI). The authors collected data via a questionnaire, filled by a sample of 400 

online purchase of a CD or book. The final relevant dataset consisted of 213 observations and was 

used to test a set of causal hypotheses regarding the effect of trust and IT assessment on purchase 

intentions. The goal of the GKS study was explanatory, and the statistical modeling was 

correspondingly explanatory.  

We now approach the same topic from a predictive perspective. 
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Goal Definition   

Possible research goals include benchmarking the predictive power of an existing explanatory TAM 

revealing more complicated 

relationships between the inputs and BI, and validating the predictive validity of constructs.  

In terms of empirical goal, consider the goal of predicting BI for shoppers that were not part of the 

original sample. The original GKS data can be used as the training set to build (and evaluate) a 

model that predicts BI. This model can then be deployed in a situation where a similar questionnaire 

is administered to potential shoppers from the same population, but with the BI questions excluded 

(whether to shorten questionnaire length, to avoid social desirability issues in answers, or for another 

reason). According to his/her responses, s BI is predicted (and, for instance, an 

immediate customization of the online store takes place).   

The overall net benefit of the predictive model would be a function of the prediction accuracy and, 

possibly, of costs associated with prediction error.  For example, we may consider asymmetric costs, 

such that erroneously predicting low BI (while in reality a customer has high BI) is more costly than 

erroneously predicting high BI. The reason for such a cost structure could be the amount of effort 

that an e-vendor invests in high-BI customers. Or, the opposite cost structure could be assumed, if 

an e-vendor is focused on retention.  

An alternative predictive goal could be to rank a new set of customers from most likely to least likely 

to express high BI, for the purpose of identifying, say, the top or bottom 10% of customers. 

For the sake of simplicity, we continue with the first goal described above, without considering 

costs. Table 3 summarizes the main points and compares the explanatory and predictive modeling 

processes that are described next. 
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Data Collection and Study Design  

Experimental versus observational settings: Due to the predictive context, the GKS observational survey is 

likely preferable to an experiment, because the is similar to the 

predictive context  would be.  

Instrument: In choosing a data collection instrument, attention is first given to its relation to the 

prediction context. For instance, using a survey to build and evaluate the model is most appropriate 

if a survey will be used at the time of prediction. The questions and measurement scales should be 

sufficiently similar to those used at the time of prediction. Moreover, the data to be predicted should 

be from the same population as the training and evaluation data and should have similar sample 

properties9, so that the training, evaluation and prediction contexts are as similar as possible. Note 

that bias created by the obtrusive nature of the survey or by self-selection is irrelevant, because the 

same mechanism would be used at the time of prediction. The suitability of a retrospective 

questionnaire would also be evaluated in the prediction context, e.g., whether a retrospective recount 

of a purchase experience is predictive of future BI. In designing the instrument, the correlation with 

BI would also be taken into account (ideally through the use of pre-testing). For instance, the seven-

point Likert scale might be replaced by a different scale (finer or coarser) according to the required 

level of prediction accuracy.  

Sample size: The final usable sample of 213 observations is considered small in predictive analytics, 

requiring the use of cross-validation in place of a holdout set and being limited to model-based 

                                                           
9 , is the population 
here The 
population to which the predictive model is deployed should be similar to the one used for building and 
evaluating the predictive model, otherwise predictive power is not guaranteed. In terms of sampling, if the 
same biases (e.g., self-selection) are expected in the first and second datasets, then the predictive model can 
be expected to perform properly. Finally, predictive assessment can help test the generalizability of the model 
to other populations by evaluating predictive power on samples from such populations where the BI 
questions are included, thereby serving as holdout samples. 
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methods. Depending on the signal strength and the data properties, a larger sample that would allow 

for use of data-driven algorithms might improve predictive power.                                                     

Data dimension: Using domain knowledge and examining correlations, any additional information 

beyond the survey answers that might be associated with BI would be considered, even if not 

dictated by TAM theory (e.g., the website of most recent purchase, or # of previous purchases).  

Data Preparation 

Missing data: GKS report that the final dataset contained missing values. For prediction, one would 

check whether the missingness is informative of BI, e.g., if it reflects less trusting behavior. If so, 

including dummy variables that indicate the missingness might improve prediction accuracy. 

Data partitioning: Due to the small dataset, the data would not be partitioned. Instead, cross-validation 

methods would be used. When and if another sample is obtained (perhaps as more data are gathered 

at the time of prediction), then the model could be applied to the new sample, which would be 

considered a holdout set. 

Exploratory Data Analysis (EDA) 

Data visualization and summaries: Each question, rather than each construct, would be treated as an 

individual predictor. In addition to exploring each variable, examining the correlation table between 

BI and all the predictors would help identify strong predictor candidates and information overlap 

between predictors (candidates for dimension reduction). 

Dimension reduction:  PCA or a different compression method would be applied to the predictors in 

the complete training set, with predictors including individual questions and any other measured 

variables such as demographics (this procedure differs from the explanatory procedure, where PCAs 

were run separately for each construct.) The resulting compressed predictors would then be used in 

the predictive model, with less or no emphasis on their interpretability or relation to constructs. 
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Choice of Variables 

Ex-ante availability: To predict BI, predictors must be available at the time of prediction. The survey 

asks respondents retrospectively about their perceived usefulness and ease of use as well as BI. 

Given the predictive scenario, the model can be used for assessing the predictability of BI using 

retrospective information, for comparing theories, or even for practical use. In either case, the BI 

question(s) in the original study should be placed last in the questionnaire, to avoid affecting earlier 

answers (a clickstream-based measure of BI, e.g. Hauser et al. (2009), would be another way of 

dealing with this issue), and to obtain results that are similar to the prediction context. In addition, 

each of the other collected variables should be assessed as to its availability at the time of prediction.  

Measurement quality: The quality and precision of predictor measurements are of key importance in a 

predictive version of GKS, but with a slight nuance: while a unidimensional operationalization of 

constructs such as trust, PU and PEOU is desirable, it should not come at the expense of 

measurement precision and hence increased variance. Unobtrusive measures such as clickstream 

data or purchase history (if available) would be particularly valued here. Even though they might be 

conceptually more difficult to interpret in terms of the underlying explanation, their measurement 

precision can boost predictive accuracy.  

Choice of Potential Methods 

Data-driven algorithms would be evaluated (although the small dataset would limit the choices). 

Shrinkage methods could be applied to the raw question-level data, before data reduction. If we are 

predicting BI for people who have survey-answering profiles that are different from those in the 

training data (i.e., extrapolation), then shrinkage methods should be used. The issue of extrapolation 

is also relevant to the issue in GKS of generalizing their theory to other types of users.  
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Ensembles would be considered. In particular, the authors mention the two competing models of 

TAM and TBP which can be averaged to produce an improved predictive model. Similarly, if 

clickstream data were available, one could average the results from a survey-based BI-model and a 

clickstream-based BI-model to produce improved predictions. If real-time prediction is expected 

then computational considerations will affect the choice of methods. 

Evaluation, Validation and Model Selection 

Predictive variable selection algorithms (e.g., stepwise-type algorithms) could be used to reduce the 

number of survey questions, using criteria such as AIC or out-of-sample predictive accuracy. 

Predictive accuracy would be evaluated using cross-validation (due to small sample size), and 

predict each BI by the overall average BI . 

Model Use and Reporting 

The results of the predictive analytics can be used here for one, or more of several research goals:   

(1) Benchmarking the predictive power of existing explanatory TAM models: The paper would 

present the predictive accuracy of different TAM models and discuss practical differences. Also, 

an indication of overall predictability could be obtained. 

(2) Evaluating the actual precision of the survey questions with respect to predicting BI: A 

comparison of the predictive accuracy of different models which rely on different questions. 

(3) Revealing more complicated relationships between the inputs and BI, such as moderating 

effects: Comparing the predictive power of the original and more complex model and showing 

how the added complexity provides a useful contribution. 

(4) Validating assertions about the predictive validity of concepts: GKS (p.73) rem
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assertion in terms of actual prediction would be based on the predictive accuracy associated with 

PU (e.g., by comparing the best model that excludes PU to the model with PU). 

These are a few examples of how the predictive analytics complement explanatory TAM research.  

 

Table 3: Building explanatory versus predictive models: Summary of the Gefen et al. (2003) 
example 

Modeling 
Step  

Explanatory Task Predictive Task 

Goal 
Definition 

Understand the role of trust and 
IT assessment (perceived 
usefulness and ease of use) in 

intensions 

Predict the intention of use (BI) of new B2C 
website customers, or, predict 10% of those 
most likely to express high BI. (Might include 
asymmetric costs). 

Study 
Design  

and Data 

Collection 

Observational data 

                                         

Survey (obtrusive)                                                             

                                       Sample 
size: 400 students (213 usable 
observations)  

Variables: operationalization of 
PU and PEOU, demographics 

Instrument: Questionnaire; seven-
point Likert scale 

                                            Pre-
testing: for validating 
questionnaire 

Observational data  similar to prediction 
context; Variables must be available at 
prediction time 

Survey (obtrusive)  with identical questions and 
scales as at prediction time 

 Sample Size: Larger sample preferable  

Variables: Predictors that strongly correlate with 
BI (questions, demographics, other information)  

Instrument: Questionnaire; BI questions last; 
non-retrospective would be better; scale for 
questions - according to required prediction 
scale, and correlations with BI 

Pre-testing: for trouble-shooting questionnaire 

Data 
Preparation  

Missing Values: some missing 
values reported, action not 
reported 

                                           Data 
Partitioning: none 

Missing Values: Is missingness informative of 
BI? If so, add relevant dummy variables; is 
missingness in training data or to-be-predicted 
data? 

Data Partitioning: sample size too small (213); 
cross-validation used 

Continued on Next page 
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Modeling 
Step  

Explanatory Task Predictive Task 

Exploratory 
Data 
Analysis 

Summaries: Numerical summaries 
for constructs; Pairwise 
correlations between questions;  
Univariate summaries by gender, 
age and other variables. 

Plots: None 

Data Reduction: PCA applied 
separately to each construct for 
purpose of construct validation 
(during pre-testing) 

Summaries: Examine numerical summaries of 
all questions and additional collected variables 
(such as gender, age), correlation table with BI. 

 

Plots: Interactive visualization  

Data Reduction: PCA or other data reduction 
method applied to complete set of questions 
and other variables; applied to entire data (not 
just pre-test) 

Choice of 

Variables 

Guided by theoretical 
considerations 

Predictors chosen based on their association 
with BI; BI chosen according to prediction goal 

Choice of 

Methods 

Structural equations model (after 
applying confirmatory factor 
analysis to validate the constructs) 

Try an array of methods: 

Model-driven and data-driven methods, 
ideally on a larger collected sample: machine-
learning algorithms, parametric and non-
parametric statistical models 

Shrinkage methods - for reducing dimension 
(instead of PCA); for robust extrapolation (if 
deemed necessary); for variable selection 

Ensemble methods  combine several models 
to improve accuracy, (e.g., TAM and TBP) 

Model 
Evaluation, 
Validation 
and 
Selection 

Questions removed from 
constructs based on residual 
variance backed by theoretical 
considerations; constructs included 
based on theoretical considerations 

Explanatory power based on 
theoretical coherence, strength-of-
fit statistics, residual analysis, 
estimated coefficients, statistical 
significance 

Variable selection algorithms applied to original 
questions 

 

 

                                                           
Predictive power Predictive accuracy assessed 
on holdout set (use cross-validation if small 
sample); evaluate over-fitting (compare 
performance on training and holdout data) 

Model Use 
and 
Reporting 

Use: Test causal hypotheses about 
how trust and TAM affect BI 

Statistical Reporting: 

explanatory power metrics (e.g., 
path coefficients), plot of 
estimated path model 

Use: Discover new relationships (e.g., 
moderating effect; unexpected questions or 
features that predict BI), evaluate magnitude of 
trust and TAM effects in practice, assess 
predictability of BI 

Statistical Reporting: predictive accuracy, final 
predictors, method used, over-fitting analysis 
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DISCUSSION 

In this essay we discussed the role of predictive analytics in scientific research; how they differ from 

explanatory statistical modeling; and their current under-representation in mainstream IS literature. 

We also described how to assess the predictive power of any empirical model and how to build a 

predictive model. Predictive models can lead to the discovery of new constructs, new relationships, 

nuances to existing models, and unknown patterns. Predictive assessment provides a straightforward 

way to assess the practical relevance of theories, to compare competing theories, to compare 

different construct operationalizations, and to assess the predictability of measurable phenomena. 

Predictive analytics support the extraction of information from large datasets and from a variety of 

data structures. Although they are more data-driven than explanatory statistical models, in the sense 

that predictive models integrate knowledge from existing theoretical models in a less formal way 

than explanatory statistical models, they can be useful for theory development provided that a 

careful linkage to theory guides both variable and model selection. It is the responsibility of the 

researcher to carefully ground the analytics in existing theory. The few IS papers that use predictive 

analytics demonstrate the various aspects of linking and integrating the predictive analytics into 

theory. One such link is in the literature review step, discussing existing theories and models and 

how the predictive study fits in. Examples are the study by Ko and Osei-Bryson (2008) that relies on 

production theory and considers existing IT productivity studies and models; The predictive work 

by Wang et al. (2008b), which was linked to the body of literature in the two areas of management 

and economics of information security and disclosures in accounting. And finally, the study by Stern 

et al. (2004), which examined existing theoretical models and previous studies of broadband 

adoption and used them as a basis for their variable choice. This study also directly specified the 

potential theoretical contribution: Findings that emerge from the data can be compared with prior theory and 

any unusual findings can suggest opportunities for theory extension or modification  (p.453).  A second link to 
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theory is at the construct operationalization stage. In studies that are aimed at generating new theory, 

the choice of variables should of course be motivated by and related to previous studies and existing 

models. However, if the goal is to assess the predictability of a phenomenon or to establish a 

benchmark of potential predictive accuracy, then construct considerations are negligible. Finally, 

research conclusions should specifically show how the empirical results contribute to the theoretical 

body of knowledge. As mentioned earlier, the contribution can be in terms of one or more of the six 

roles: discovering new relationships potentially leading to new theory, contributing to measure 

development, improving existing theoretical models, comparing existing theories, establishing the 

relevance of existing models, and assessing predictability of empirical phenomena. 

In light of our IS literature survey, a question that arises is whether the under-representation of 

predictive analytics in mainstream IS literature indicates that such research is not being conducted 

within the field of IS, or that such research exists but does not get published in these top two 

journals. A related question is why most published explanatory statistical models lack predictive 

testing.  We do not aim to answer these questions, although we suspect that the situation is partly 

due to the traditional conflation of explanatory power with predictive accuracy. Classic statistical 

education and textbooks focus on explanatory statistical modeling and statistical inference, and very 

rarely discuss prediction other than in the context of prediction intervals for linear regression. 

Predictive analytics are taught in machine learning, data mining and related fields. Thus, the 

unfamiliarity of most IS researchers with predictive analytics may be another reason why we see little 

of it so far in the IS field. We hope that this research essay convinces IS researchers to employ more 

predictive analytics, but not only when the main goal is predictive. Even when the main goal of the 

modeling is explanatory, augmenting the modeling with predictive power evaluation is easily done 

and can add substantial insight. We therefore strongly advocate adopting and reporting predictive 
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power as accepted practice in empirical IS literature. We predict that increased application of 

predictive analytics in the IS field holds great theoretical and practical value. 
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Appendix: Table 4: Illustrative quotes from the literature review 

Article Quote 

Rai, A., Patnayakuni, R., and Seth, N. Firm 
performance impacts of digitally enabled supply 
chain integration capabilities,  MIS Quarterly 
30(2), Jun 2006, pp 225-246. 

examine the explained variance or R2  

Pavlou, P.A., and Fygenson, M. Understanding 
and predicting electronic commerce adoption: 
An extension of the theory of planned 
behavior,  MIS Quarterly 30(1), Mar 2006, pp 
115-143. 

compare it to four models in terms of R2  

Gattiker, T.F., and Goodhue, D.L. What 
happens after ERP implementation: 
Understanding the impact of interdependence 
and differentiation on plant-level outcomes,  
MIS Quarterly 29(3), Sep 2005, pp 559-585. 

benefits as strongly as do task efficiency and data quality 
(as the standardized regression coefficients in Figure 2 

 

Venkatesh, V., Morris, M.G., Davis, G.B., and 
Davis, F.D. "User acceptance of information 
technology: Toward a unified view, MIS 
Quarterly 27(3), Sep 2003, pp 425-478. 

CT, the predictive 
validity of the models increased after including the 
moderating variables. For instance, the variance explained 

 

Wixom, B.H., and Todd, P.A. A theoretical 
integration of user satisfaction and technology 
acceptance, Information Systems Research 16(1), 
Mar 2005, pp 85-102. 

of intention, and the remaining path coefficients are 
generally small (8 of 13 are below 0.1). The explanatory 
power for intention increases marginally from 0.59 to 

 

Jones, Q., Ravid, G., and Rafaeli, S. 
Information overload and the message 

dynamics of online interaction spaces: A 
theoretical model and empirical exploration  
Information Systems Research 15(2), Jun 2004, pp 
194-210. 

 matching 
enabled regression modeling, this approach results in a loss 

 

Jarvenpaa, S.L., Shaw, T.R., and Staples, D.S. 
Toward contextualized theories of trust: The 

role of trust in global virtual teams,  Information 
Systems Research 15(3), Sep 2004, pp 250-267. 

 

Bassellier, G., Benbasat, I., and Reich, B.H. The 
influence of business managers' IT competence 
on championing IT,  Information Systems Research 
14(4), Dec 2003, pp 317-336. 

 

 constructs by 
examining their ability to predict the measured overall IT 
knowledge and IT experience. The second order factor IT 
knowledge explains 71% of the variance in the overall IT 

 

Kraut, R, Mukhopadhyay, T, Szczypula, J, 

Communication: Alternative Uses of the Internet 
 Information Systems 

Research  10(4), Dec 1999, pp 287-303. 

One can predict a participant's current e-mail use from his 
or her use in the prior week much better than one can 
predict a participant's current Web use from his or her prior 

Web use ( e-mail =0.73 versus web=0.56)  (p. 296) 
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