
Lorenzo‑Almorós et al. Cardiovasc Diabetol          (2019) 18:140  

https://doi.org/10.1186/s12933‑019‑0935‑9

REVIEW

Predictive and diagnostic biomarkers 
for gestational diabetes and its associated 
metabolic and cardiovascular diseases
A. Lorenzo‑Almorós1, T. Hang1, C. Peiró2, L. Soriano‑Guillén3, J. Egido1,5, J. Tuñón4 and Ó. Lorenzo1,5* 

Abstract 

Gestational diabetes mellitus (GDM) is defined as the presence of high blood glucose levels with the onset, or 
detected for the first time during pregnancy, as a result of increased insulin resistance. GDM may be induced by dys‑
regulation of pancreatic β‑cell function and/or by alteration of secreted gestational hormones and peptides related 
with glucose homeostasis. It may affect one out of five pregnancies, leading to perinatal morbidity and adverse 
neonatal outcomes, and high risk of chronic metabolic and cardiovascular injuries in both mother and offspring. 
Currently, GDM diagnosis is based on evaluation of glucose homeostasis at late stages of pregnancy, but increased 
age and body‑weight, and familiar or previous occurrence of GDM, may conditionate this criteria. In addition, an 
earlier and more specific detection of GDM with associated metabolic and cardiovascular risk could improve GDM 
development and outcomes. In this sense, 1st–2nd trimester‑released biomarkers found in maternal plasma includ‑
ing adipose tissue‑derived factors such as adiponectin, visfatin, omentin‑1, fatty acid‑binding protein‑4 and retinol 
binding‑protein‑4 have shown correlations with GDM development. Moreover, placenta‑related factors such as sex 
hormone‑binding globulin, afamin, fetuin‑A, fibroblast growth factors‑21/23, ficolin‑3 and follistatin, or specific micro‑
RNAs may participate in GDM progression and be useful for its recognition. Finally, urine‑excreted metabolites such as 
those related with serotonin system, non‑polar amino‑acids and ketone bodies, may complete a predictive or early‑
diagnostic panel of biomarkers for GDM.
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Background
During pregnancy, women must adapt her body systems 

to support nutrient and oxygen supply for the growth 

of the fetus and subsequent lactation [1]. Inappropriate 

adaptation of maternal physiology may lead to compli-

cations of pregnancy, such as gestational diabetes melli-

tus (GDM). The American Diabetes Association (ADA) 

has categorized GDM as an independent type of diabe-

tes, caused and developed by different mechanisms, and 

requiring specific diagnosis and treatment approaches 

[2]. GDM may originate from specific gene mutations 

and/or dysregulation of placental hormones and β-cell 

injury, and can be favoured by advanced age, gynaecolog-

ical alterations and diabesogenic factors. GDM is usually 

developed after the 2nd trimester of pregnancy, between 

the 24th and the 28th week of gestation [1, 3], and it can 

trigger serious and long-term consequences for fetal and 

maternal health, in particular, those on metabolism and 

cardiovascular physiology [4]. According to the Inter-

national Association of Diabetes and Pregnancy Study 

Groups (IADPSG), GDM may complicate 15–20% preg-

nancies, and has being augmented in the last 20 years in 

all ethnic groups as much as 27% [5]. However, the exact 

prevalence of GDM remains unknown, possibly due to 

the different diagnostic criteria.
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The original classification of GDM, dated from 1949, 

was based on age at onset of GDM and on duration of 

associated metabolic and cardiovascular complications, 

ranging from “type A” (more favourable) to “type F” 

(more deleterious) [6]. Recently, new principles includ-

ing glucose homeostasis, body weight and family his-

tory of GDM, have been considered for clinical practice. 

Also, a specific distinction has been made between pre-

gestational diabetes and GDM, since the prevalence of 

diabetes along with overweight and obesity have been 

increasing worldwide at younger ages [7]. Unfortunately, 

current criteria for GDM diagnosis, based on glucose 

homeostasis, cannot anticipate or detect all GDM cases 

neither distinguish those women under cardiovascular 

risk [8]. The knowledge of new biomarkers for premature 

detection of GDM with/without associated cardiovas-

cular risk could advance the appropriated management 

of these patients. In particular, alteration of those bio-

markers would classify GDM subjects to initiate early 

adjustments of specific detrimental factors and tissue 

responses, in both mother and fetus.

Maternal adaptations of metabolism 
and cardiovascular system during pregnancy
Specific metabolic and cardiovascular changes occur in 

women to acclimate to the pregnant state. Some modi-

fications appear very early in pregnancy, even before 

the formation of a functional placenta [9]. The maternal 

pancreatic β-cell mass expands due to both hyperpla-

sia and hypertrophy of islets, enhancing insulin secre-

tion [10]. Thus, maternal insulin sensitivity is frequently 

increased, subsequently with lipogenesis and lipid stor-

age at the adipose tissue. Also, alterations in cardiac size, 

morphology and function must respond to hormonal and 

metabolic demands. In this sense, the stimulation of sys-

temic vasodilation, blood perfusion and cardiac output 

increases blood volume to handle with the oxygen and 

nutrient request [11]. However, later, by the 2nd–3rd tri-

mester of pregnancy and coinciding with the fast growth 

of fetus, a decrease in insulin sensitivity and an induc-

tion of lipolysis and hepatic gluconeogenesis is observed 

[12]. Insulin receptors and signaling are also ameliorated, 

and β-cells react by producing more insulin to maintain 

an euglycemic state [13, 14]. Also, heart increases rate, 

wall thicknesses and contractility, stimulating ventricu-

lar compliance [15]. Importantly, evidence in human and 

mostly in animal models have confirmed a placental con-

trol of metabolism and cardiovascular homeostasis.

Placental regulation of metabolism and cardiovascular 

system

From the 6th week of pregnancy, placenta releases a vari-

ety of molecules with physiological effects on metabolism 

and cardiovascular system for both mother and fetus 

[16]. Among placental factors, progesterone and oes-

trogen are key steroid hormones for controlling insulin 

sensitivity [17]. Both steroids prompt pancreatic hyper-

trophy, though progesterone reduces insulin-stimulated 

glucose uptake and oestrogen stimulates systemic insu-

lin sensitivity. They also exert opposite effects on food 

intake and vascular physiology. Progesterone stimulates 

appetite and fat deposition, as well as neuropeptide-Y 

expression for vasoconstriction, whereas oestrogen pro-

motes leptin-dependent satiety and vasodilatation [18]. 

Moreover, progesterone decreases cardiomyocyte apop-

tosis, and triggers metabolic shift from carbohydrate to 

lipid, as a main energetic substrate for the myocardium 

[19]. Other placental factors can also modulate metabolic 

and cardiovascular function during pregnancy. Leptin 

reduces food intake during gestation [20], and neuroac-

tive hormones as melatonin and serotonin, improve glu-

cose tolerance and insulin sensitivity [21]. Also, oxytocin 

reduces glucose and insulin intolerance, food intake and 

adiposity, and lowers blood pressure and cardiac oxida-

tion/inflammation [22]. Furthermore, a fine metabolic 

and cardiovascular control will depend on release of the 

prolactin and growth hormone (PRL-GH) family. PRL 

induces β-cell proliferation and insulin secretion, while 

GH promotes the cardiac metabolic shift to lipid and 

reduces insulin signalling [23]. PRL triggers food intake 

through leptin inhibition, but GH decreases appetite by 

attenuation of ghrelin and neuropeptide-Y expression 

[24, 25]. Finally, activin-A and relaxin are also discharged 

to enhance glucose tolerance and vascular function [26, 

27]. Thus, during pregnancy, maternal adaptations for 

metabolic and cardiovascular needs should be finely 

regulated by placental factors. The inappropriate and/or 

unbalanced delivery or action of these molecules might 

increase the risk of GDM and associated cardiovascular 

pathologies [16].

GDM aetiology and associated risk factors
Given the prevalence of GDM along family members, a 

genetic predisposition has been suggested [28]. Some 

of the genetic variants for GDM coincide with those of 

type-II diabetes (T2DM) [29]. Mutations in insulin, insu-

lin receptor, insulin-like growth factor-2, glucokinase, 

PRL-GH family, hepatocyte nuclear factor-4A, plasmi-

nogen activator inhibitor 1 (PAI-1) and melatonin recep-

tor 1B, among others, have been recognized [30, 31]. 

Moreover, Chinese, Southeast Asian, Middle Eastern or 

Indian backgrounds were linked with higher prevalence 

of GDM [32]. However, the aetiology of GDM has been 

traditionally connected to a dysregulation of placental 

hormones favouring the discharge or effect of those that 

interfere with insulin sensitivity [14]. In fact, alteration 
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in progesterone and oestrogen delivery was correlated 

with GDM development [33]. Also, leptin was up-reg-

ulated in GDM women [34] and mutant female mice 

in leptin receptor lead to spontaneous development of 

GDM during pregnancy [35]. Furthermore, other stud-

ies have concluded that GDM may be mainly originated 

from β-cell injury. The β-cell number can decrease 41% in 

GDM mothers [36], potentially due to delivery of “toxic” 

adipokines [37]. In this sense, high levels of IFN-γ and 

TNF-α from  CD4+-Th1 cells damaged pancreatic islets 

by controlling the activation of transcription factors (i.e., 

FOXD3, FOXM1, HNF4α) and related proliferative and 

survival genes [38]. Also, dietary restriction of trypto-

phan reduced serotonin synthesis and β-cell expansion, 

leading to glucose intolerance and increased GDM risk 

[39].

In addition to genetic mutations, unbalanced hormone 

secretion and/or β-cell injury, some other potential risk 

factors have been suggested for GDM. In particular, the 

presence of polycystic ovarian syndrome and a clini-

cal history of previous GDM or previous macrosomia 

in the new-born [28]. Moreover, the National Institute 

for Health and Clinical Excellence (NICE) and ADA 

concluded that increased age, and mainly body weight, 

correlated with GDM incidence [28]. Pregnant women 

under 20  years-old did not present GDM, whilst 33.3% 

of them showed GDM at 20–29 years-old, and 58.3% at 

30–39  years-old [34]. Importantly, obesity can trigger 

GDM development. Although body mass index (BMI) 

is not appropriately descriptive for obesity during preg-

nancy, this anthropomorphic parameter was linked to 

GDM occurrence [40]. Adipose tissue and placenta can 

produce a similar pattern of cytokines, which explains 

the fact that obese women are at higher risk of GDM 

[41]. Thus, an excessive body weight is frequently pre-

sent in GDM women, worsening maternal (and fetal) 

alterations in metabolism and cardiovascular system [42, 

43]. Indeed, maternal obesity and GDM may be associ-

ated with a state of chronic, low-grade inflammation by 

which offspring are programmed to develop adult dis-

orders [44]. In this line, intakes of fat and sweet diets 

before gestation were also associated with elevated risk 

of GDM, whereas meals based on fruits, vegetables and 

fish provoked opposite trends [45]. The low ingestion 

of polyunsaturated fat [46], ascorbic acid [47] and vita-

min D [48] were related to GDM, but addition of fibre to 

diets reduced its prevalence [49]. Also, overproduction of 

ketone bodies [i.e., α-hydroxybutyrate (AHBA)], typical 

in obesity, paralleled the impairment of insulin secretion 

during gestation and GDM [50]. In addition, maternal 

obesity can promote by itself birth defects in offspring. 

A recent metanalysis collecting data from 1980 has pro-

vided robust evidence of a positive association between 

maternal BMI and the risk for fetal congenital heart 

defects [51]. Altogether, predisposition to GDM may be 

favoured by age and diabesogenic factors, and influenced 

by previous gynaecological alterations of the subject.

Maternal pathologies associated to GDM 
development
A systemic low-grade inflammation is physiologically 

prompted during pregnancy by humoral immunity in 

order to maintain a safe environment and to avoid fetal 

rejection [52]. However, by transcriptomics, Radaelly’s 

laboratory found in placenta a highly expressed pro-

inflammatory pattern mainly of endothelial factors, 

reflecting chronic inflammation with signs of major 

vascular dysfunction [53]. Among these factors, recep-

tors for interleukin (IL)-8, IL-1 and leptin, together with 

pentraxin-related gene (PTX-3) were upregulated. Other 

authors demonstrated high levels of pro-inflammatory 

serum high sensitive C-reactive protein (hs-CRP) [54], 

E-selectin, osteoprotegerin, adhesion molecules (VCAM-

1, ICAM-1), symmetric dimethylarginine (SDMA) 

and a disintegrin and metalloproteinase (ADAM) [55]. 

Similarly, a pro-inflammatory pattern of upregulated 

adipokines (i.e., IL-6 and hs-CRP) and diminished anti-

inflammatory adiponectin was also observed in adipose 

tissue from GDM women [56]. Remarkably, this pro-

inflammatory milieu, together with the dysregulated 

secretion of placental factors and/or β-cell injury, could 

trigger metabolic and cardiovascular diseases in GDM 

women and offspring [57].

Metabolic and cardiovascular disorders in GDM women

The risk of T2DM in women after GDM is elevated in the 

first 5 years [58], raising up to 50% risk after 10 years [59], 

and 70% after 28 years [60]. Other study established a ten 

times more likely to develop T2DM within 10 years com-

pared to normal pregnancies [61]. Also, GDM has been 

related with the development of post-parturition meta-

bolic syndrome, mainly in obese women [62]. Fasting glu-

cose, insulin resistance and β-cell dysfunction remained 

after pregnancy [63]. Levels of E-selectin and ICAM-1, 

fibrinogen, IL-6, tissue inhibitor of metalloproteinase-1 

(TIMP-1) and PAI-1 [60, 64, 65], but not adiponectin 

[66], were prominent in women with previous GDM. 

Also, subclinical inflammation associated with elevated 

levels of TIMP-1 were observed in women 4 years after 

GDM [44]. However, it is not clear whether GDM may 

be an independent cause of these anomalies or they can 

be a consequence of related comorbidities such as ath-

erosclerosis, hypertension or obesity [67]. In this sense, 

the development of postpartum T2DM and metabolic 

syndrome was independently correlated with endothelial 



Page 4 of 16Lorenzo‑Almorós et al. Cardiovasc Diabetol          (2019) 18:140 

dysfunction and increased carotid intima-media thick-

ness in GDM women [65].

On the other hand, maternal cardiovascular adapta-

tions (i.e., increased heart rate, ventricular walls and 

vasodilatation) return after delivery in normal pregnan-

cies. Cardiac output also decreases within the first hour 

postpartum and reaches baseline levels after 2  weeks 

[68]. However, GDM gestations have been linked with 

subclinical alterations in cardiac structure (i.e., increased 

thicknesses of left ventricular wall and intraventricu-

lar septum) and diastolic dysfunction [69]. Also, it was 

related to preeclampsia and vasculopathies, specifi-

cally, arterial stiffness, endothelial dysfunction and ath-

erosclerosis [44, 70, 71]. More worrying, GDM has been 

positively linked with a 66% increase of long-term car-

diovascular injuries [72]. An elevated rate of hospitaliza-

tions due to cardiovascular failures, and independently of 

high BMI, was detected in GDM women after parturition 

[43]. The long-term US CARDIA (Coronary Artery Risk 

Development in Young Adults) registry demonstrated 

an increase of left ventricular mass, and abnormalities in 

left ventricular relaxation and systolic dysfunction in 609 

women, 20  years after GDM [73]. Also, left ventricular 

hypertrophy and diastolic dysfunction remained 8 weeks 

after delivery [74], and elevation of the triglyceride/HDL-

lipoprotein ratio was associated with previous GDM in 

300 women after 5  years of childbirth [75]. In addition, 

GDM was associated with a 56% higher risk of upcom-

ing cardiovascular events, and a 2.3-fold increased risk of 

cardiovascular incidents in the first decade postpartum, 

independently of progression to T2DM [76]. Coronary 

artery disease and stroke were greater in 332 women 

with previous GDM, independently of T2DM, metabolic 

syndrome or obesity incidence [77]. Increased rates of 

myocardial infarction and angina pectoris were observed 

7  years after delivery, but, however, were stimulated by 

obesity, advanced age and hypertension [43].

Fetal and child comorbidities associated with GDM
Since GDM develops from the 2nd–3rd trimester of preg-

nancy, GDM pregnancies have not been associated with 

congenital malformations as pre-gestational diabetes do 

[78]. However, GDM represents high risk for perinatal 

morbidity and adverse neonatal outcomes compared to 

normal pregnancies. The excess of plasma glucose and 

lipids in GDM mothers was linked to cardiac hypertro-

phy [79] and dysfunction [80] in fetus. Hyperinsulinemia 

promoted insulin resistance, which also stimulated car-

diac hypertrophy [81]. Also, the increased glucose, amino 

acids, and fatty acids assimilation observed in GDM pla-

centa, stimulated endogenous fetal production of insulin 

and insulin-like growth factor-1 (IGF-1), which induced 

macrosomia [82]. Thus, the risk of stillbirths after GDM 

is four times higher than in normal pregnancies [83]. 

Later, neonates from GDM are at increased risk of hypo-

glycemia due to the high dependence on maternal hyper-

glycemia. Children and adolescents can reach higher 

BMI, glucose intolerance and hypertension, indepen-

dently of macrosomia at birth [84]. Also, they exhibited 

impairment of diastolic function as a prolonged decelera-

tion time associated with early left ventricular diastolic 

filling [81]. Furthermore, females are more likely to expe-

rience GDM in their own pregnancies, contributing to a 

vicious intergenerational cycle of this pathology [30].

GDM treatment
Early intervention for GDM could be crucial to pre-

vent subsequent damage in both mother and fetus [85]. 

Women with GDM are recommended to initiate a change 

of lifestyle, as well as pharmaceutical treatment, if needed 

[86]. For non-obese women with GDM, diets contain-

ing 30–35 kcal per kg of body weight, with 33–40% calo-

ries from carbohydrates, are advised [49]. Also, practical 

exercise before and during pregnancy can preserve glu-

cose homeostasis and improve GDM pathology [87]. In 

particular, moderate exercise (30  min—5  times/week) 

has demonstrated attenuation of insulin resistance, GDM 

and fetal macrosomia in obese and non-obese women 

[88]. More intense activities (> 60  min) could, however, 

provoke hypoglycaemia [89].

Thereafter, if glycemic target is not achieved after 

1–2 weeks of lifestyle changes, the American College of 

Obstetricians and Gynaecologists (ACOG) and NICE 

guidelines recommend pharmacotherapy [90]. In fact, 

maternal hyperglycemia and advanced age or BMI by 

themselves are already indicators of medical requirement 

[91]. Regarding glucose control, rapid-acting insulin 

analogues, long-acting insulin or even premixed prepa-

rations can be useful for GDM. Unfortunately, hypogly-

cemia is frequent in some subjects, suggesting the need 

of alternative administrations, such as those of high doses 

of intermittent insulin injections. Also, sulfonylureas (i.e., 

glyburide) may produce similar effects than insulin, but 

cannot mitigate neonatal hypoglycaemia and macroso-

mia [92]. Interestingly, metformin reduces hyperglycemia 

and weight gain more intensively than insulin, though 

metformin does not decrease neonatal hypoglycaemia or 

macrosomia [93]. Thus, recent data have suggested a life-

style modification followed by glyburide or metformin, 

when fasting glucose is between 95 and 114 mg/dL, or a 

combination of both drugs, when glucose is 115–125 mg/

dL. GDM over 126 mg/dL, should be treated with insu-

lin [94]. New strategies addressing insulin homeostasis as 

well as adiposity, while protecting cardiovascular system, 

could be of special interest [95–97]. However, pharmaco-

logical treatments might negatively affect either mother 
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and offspring with variable degree depending on age and 

background, pregnancy stage and the presence of comor-

bidities [98]. An adequate prediction or early diagnosis of 

GDM by specific, safe and minimally-invasive approaches 

could reduce short and long-term abnormalities in both 

mother and offspring.

GDM diagnosis
Currently, there is not a standardised methodology for 

GDM identification. Universal or selective screening, dif-

ferent glucose tests and diverse glycemia cut-off values, 

are being recognized. These criteria also vary among 

countries and between obstetric and diabetes organiza-

tions [8]. Some international (IADPSG [99]) and national 

(NICE [100]; the German Association for Gynaecology 

and Obstetrics, DGGG [101]; the Journal of Obstetrics 

and Gynaecology Canada, JOGC [102]; and the National 

Institutes of Health, NIH [103]) associations suggest in 

their guidelines a screening for GDM prediction at the 

first prenatal visit with gynaecologist (Table  1). After 

quantifying glucose homeostasis based on different 

parameters [fasting glucose, random glucose or oral glu-

cose tolerance tests (OGTT) following glucose overload], 

GDM can be predicted if specific cut-offs are reached, 

and therapeutic programs are recommended. Otherwise, 

women will be evaluated again at the third trimester. In 

contrast, since high levels of glycosylated haemoglo-

bin (HbA1c) unveiled a (modest) correlation with GDM 

only between the 24th and the 28th week of pregnancy 

[104], other associations (ACOG [105]; ADA [106]; and 

the International Federation of Gynaecology and Obstet-

rics, FIGO [107]) directly advise the screening of GDM 

at this stage (Table 2). In the one-step strategy, GDM is 

identified by quantification of glucose homeostasis at the 

fasting state and after 1–2 h glucose overload. In the two-

step routine, GDM is diagnosed when detected hypergly-

cemia by a glucose challenge test (GCT) is confirmed by 

another 1–3 h-glucose surplus.

Nevertheless, these criteria based on glucose homeosta-

sis might not anticipate or detect all GDM cases neither 

distinguish those women under cardiovascular risk [8]. In 

this sense, alternative biomarkers for assessing glycemic 

Table 1 Current criteria for GDM prediction

After universal or selective screening of pregnant women at the first pre‑natal visit, diabetic and obstetrician associations preferentially recommend specific strategies 

for GDM prediction. Basing on glucose homeostasis, different approaches can be followed. The estimation of GDM is made when any or two (in the 3 h OGTT) cut‑offs 

are met

OGTT  oral glucose tolerance test, GCT  glucose challenge test

a Age ≥ 45 years‑old, pre‑gestational BMI ≥ 30 kg/m2, familiar or previous GDM, DM or macrosomia, Asian and Latin American ethnicities, arterial hypertension, 

dyslipidemia, polycystic ovary syndrome, and history of coronary or cerebral vascular disease

b Similar to DGGG, but including age ≥ 25 years‑old, persistent glucosuria, history of spontaneous abortions and unexplained stillbirths

c Similar to DGGG, but including age ≥ 35 years‑old, and aboriginal and African ethnicities

d If fasting glycemia ≥ 126 mg/dL (7.0 mmol/L), DM should be considered

e Following Carpenter/Coustan conversion method

Association Screening type Screening approach (first pre-natal visit) Cut-offs for GDM prediction

IADPSG Universal Fasting plasma glucose test Fasting glycemia ≥ 92 mg/dL (5.1 mM) predict  GDMd

DGGG High risk  womena Random plasma glucose test Glucose ≥ 200 mg/dL (11.1 mM) proceed with fasting 
plasma glucose test

Glucose 140–199 mg/dL (7.8–11.0 mM) proceed with 
fasting plasma glucose test or OGTT 

NICE Women with previous GDM One‑step strategy (2 h OGTT for 75 g glucose 
overload)

Fasting glycemia ≥ 100.8 mg/dL (5.6 mM)
Glycemia 2 h after overload ≥ 140.4 mg/dL (7.8 mM)

NIH High risk  womenb Two‑steps strategy (1 h GCT for 50 g glucose over‑
load + 3 h 100 g glucose overload)

Step 1: If glycemia ≥ 130 mg/dL (7.2 mM), proceed 
with

Step  2e:
Fasting glycemia ≥ 95 mg/dL (5.3 mM)
Glycemia 1 h after overload ≥ 180 mg/dL (10.0 mM)
Glycemia 2 h after overload ≥ 155 mg/dL (8.6 mM)
Glycemia 3 h after overload ≥ 140 mg/dL (7.8 mM)

JOGC High risk  womenc Two‑steps strategy (1 h GCT for 50 g glucose over‑
load + 2 h OGTT for 75 g glucose overload)

Step 1: If glycemia ≥ 200 mg/dL (11.1 mM), GDM is 
diagnosed

If glycemia ≥ 140–200 mg/dL (7.8–11.1 mM), proceed 
with

Step 2:
Fasting glycemia ≥ 95 mg/dL (5.3 mM)
Glycemia 1 h after overload ≥ 190 mg/dL (10.6 mM)
Glycemia 2 h after overload ≥ 162 mg/dL (9.0 mM)
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control have been proposed in GDM diagnosis. The 

1-deoxy form of glucose, known as 1,5-anhydroglucitol, 

is a naturally occurring dietary polyol. Serum 1,5-anhy-

droglucitol competes with very high levels of glucose for 

reabsorption into the kidney, and thus, lower 1,5-anhy-

droglucitol levels can reflect hyperglycemia and glyco-

suria [108]. Interestingly, first trimester measurement of 

1,5-anhydroglucitol was a valid biomarker for later onset 

of GDM [109]. In addition, the diagnostic window-period 

at the third trimester might be late to avoid chronic abnor-

malities in metabolism and cardiovascular system, in both 

mother and fetus. Therefore, new specific predictive and 

diagnostic tools should be evaluated for these patients.

Prospective diagnostic and predictive markers 
for GDM with associated cardiovascular risk
During GDM, the dysfunctional adipose tissue and pla-

centa may secrete specific, stable and easy-to-quantify 

factors, which may participate in inflammation, insulin 

resistance and cardiovascular injuries. These soluble bio-

markers could be found in maternal circulation or urine 

and might be used for GDM prediction and/or detec-

tion, and provide information about the risk of associated 

metabolic and cardiovascular diseases (Fig. 1).

i. Adipose tissue-derived factors

Adipose tissue is an endocrine organ capable of secret-

ing factors (adipokines) with paracrine functions. Some 

of these molecules could be implicated in promotion and 

progression of DM and cardiovascular injuries. In par-

ticular, leptin is a proinflammatory adipokine involved 

in immune responses that affects glucose metabolism by 

antagonizing appetite and insulin action. It also stimu-

lates oxidative stress, arterial stiffness, and atherogenesis 

[110]. Interestingly, leptin levels have been revealed sig-

nificantly higher from the 2nd half of pregnancy in nor-

mal and overweight women with later GDM diagnosis 

[111–113] (Table  3A). In contrast, adiponectin, an adi-

pokine with anti-inflammatory, anti-atherosclerotic and 

insulin-sensitizing proprieties showed constantly lower 

levels along the 1st–3rd trimester of GDM gestations 

[113–115]. In fact, hypoadiponectinemia increased by 

4.6 times the risk of developing GDM [116], and it was 

inversely correlated with BMI, insulin resistance and lep-

tin [117]. Thus, the ratio of plasma adiponectin/leptin 

(< 0.33) has been also suggested as predictor of GDM as 

early as the 6th–14th week of pregnancy [118]. Neverthe-

less, further investigation analysing the value of the high-

molecular weight oligomeric adiponectin could improve 

these estimations [119].

Table 2 Current criteria for GDM diagnosis

After screening of pregnant women at the third trimester, the associations’ guidelines preferentially suggest specific approaches for GDM detection. One‑step or two‑

steps schemes can be followed. The diagnosis of GDM is made when any or two (in the 3 h OGTT) cut‑offs are met

a Age ≥ 25 years‑old, BMI > 25 kg/m2, Asian and Latin American ethnicities, previous history of abnormal glucose tolerance or adverse obstetrics outcomes, and 

familiar history of DM

b If fasting glycemia ≥ 126 mg/dL (7.0 mM), T2DM should be considered

c If glycemia 2 h after overload ≥ 200 mg/dL (11.1 mM), T2DM should be contemplated

d Following Carpenter/Coustan conversion method

Association Screening type Screening approach (24th–28th week) Cut-offs for GDM diagnosis

ADA High risk  womena One‑step strategy (2 h OGTT for 75 g glucose overload) Fasting glycemia: 92–125 mg/dL (5.1–6.9 mM)b

Glycemia 1 h after overload ≥ 180 mg/dL (10.0 mM)
Glycemia 2 h after overload: 153–199 mg/dL (8.5–11.0 mM)cIADPSG Universal

FIGO Universal

DGGG Universal

NICE Universal One‑step strategy (2 h OGTT for 75 g glucose overload) Fasting glycemia ≥ 100.8 mg/dL (5.6 mM)
Glycemia 2h after overload ≥ 140.4 mg/dL (7.8 mM)

ACOG Universal Two‑steps strategy (1 h GCT for 50 g glucose overload 
+ 3 h OGTT for 100 g glucose overload)

Step 1: If glycemia ≥ 130 mg/dL (7.8 mM), proceed with
Step  2d:
Fasting glycemia ≥ 95 mg/dL (5.3 mM)
Glycemia 1h after overload ≥ 180 mg/dL (10.0 mM)
Glycemia 2 h after overload ≥ 155 mg/dL (8.6 mM)
Glycemia 3 h after overload ≥ 140 mg/dL (7.8 mM)

NIH Universal

JOGC Universal Two‑steps strategy (1 h GCT for 50 g glucose overload 
+ 2 h OGTT for 75 g glucose overload)

Step 1: If glycemia ≥ 200 mg/dL (11.1 mM), GDM is diag‑
nosed

If glycemia ≥ 140–200 mg/dL (7.8–11.1 mM), proceed with
Step 2:
Fasting glycemia ≥ 95 mg/dL (5.3 mM)
Glycemia 1 h after overload ≥ 190 mg/dL (10.6 mM)
Glycemia 2 h after overload ≥ 162 mg/dL (9.0 mM)
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Moreover, proinflammatory adipokines that recruit 

and activate immune cell subsets in the white adipose tis-

sue, could be quantified. Classical cytokines as hs-CRP 

and TNFα were higher in the serum from GDM women 

compared to healthy subjects during the 1st, 2nd and 

3rd trimester of pregnancy [120–122] (Tables  3A and 

4). PAI-1, a member of the superfamily of serpins that 

inhibit pro-coagulant plasminogen, was also significantly 

augmented at the 24–28th  week [122], and was consid-

ered an early feature of the cardiometabolic biomarker 

profile of women with recent gestational dysglycemia 

[123]. Other potential adipokines for GDM diagnosis 

are visfatin, resistin and omentin. The former is an pro-

inflammatory adipose mediator that promote endothe-

lial dysfunction, atherosclerosis and acute myocardial 

infarction. It is also increased in patients with T2DM, 

metabolic syndrome or obesity [124]. Despite of its insu-

lin-like properties by binding to the insulin receptor-1 

and promotion of hypoglycaemic effects, visfatin can 

activate NFκB signalling and chemotaxis, contributing 

to the development of insulin resistance. Interestingly, 

visfatin was found increased at the late 1st trimester 

(Table  3A) [125], but differentially expressed at the 3rd 

trimester of GDM [126, 127]. Similarly, resistin, another 

small adipokine hormone related with high levels of 

LDL-c and pro-inflammatory molecules, was reduced or 

unchanged during GDM [128, 129]. However, omentin-1, 

an adipokine expressed in non-fat cells from adipose tis-

sue (i.e., stromal vascular cells) and involved in vascular 

tone relaxation by production of endothelial nitric oxide 

and reduction of both hs-CRP and TNFα signalling [130], 

was decreased at the 2nd trimester of GDM in parallel to 

adiponectin, and in contrast to IL-6 [119] (Table 3A).

Other adipose-released factors could be useful for 

GDM prediction and detection. The fatty acid-binding 

protein 4 (FABP4) has been correlated with obesity mark-

ers, such as high BMI and fat mass, and regulate lipid and 

glucose metabolism through fatty acid transport and 

uptake [131]. The retinol-binding protein 4 (RBP4) is a 

circulating retinol transporter that has been linked with 

cardiometabolic markers in inflammatory chronic dis-

eases, including obesity, T2DM, metabolic syndrome, 

and atherosclerosis [132]. Interestingly, high levels of 

FABP4 were proposed as a predictive biomarker of GDM 

from at the 1st and 3rd trimester of gestation [133–135]. 

Also, an upregulation of plasma RBP4 at the 1st and 2nd 

trimester was modestly correlated with GDM risk, par-

ticularly among women with advanced age and obesity 

[115, 136] (Table 3A). Finally, fibroblast growth factor-23 

(FGF-23) is as a multi-functional cytokine with relevant 

1st 36th12th 24th

GDM 

development

Insulin resistance

Inflammation

Placental dysregulation

β-cell injury

Neonatal 

Perinatal

Child (long-term)

Women (long-term)

Insulin resistance

β-cell dysfunction

Alte.cardiac structure

Arterial stiffness

T2DM

Metabolic Syndrome

Subclinical inflammation

Cardiac hypertrophy

Systolic/Diastolic dysf.

Vasculopathies

Obesity

Hyperglycemia

Hypertension

Cardiac hypertrophy

Diastolic dysfunction

Vasculopathies

Insulin resistance

Macrosomia

Stillbirth

RBP4

SHBG

Afamin

FABP4 

hs-CRP

Adiponectin

Visfatin

Fetuin-A

Omentin, IL-6

Leptin

Ficolin-3

miR-16-5p, -17-5p, -20a-5p

miR-21-3p

miR-29a, -132, -222, -19a/b-3p

AHBA, BHBA, Val, Ala, Ser,L-tryp
L-tryp, L-urob, Cer(d18:0/23:0), 21-deoxy., Asp.

FGF-21, TNF-α, PAI-1, FGF-23, Fetuin-B

Follistatin

Associated disordersWeek

Fig. 1 Predictive and diagnostic biomarkers for GDM pregnancies. GDM usually develops from the 2nd trimester of pregnancy in correlation 
with increased inflammation, insulin resistance, placental dysregulation and/or β‑cell disruption, and can be detected at the 24th–28th week by 
evaluation of glucose homeostasis. However, some specific protein (blue lines), miRs (black lines) and metabolites (red lines) are released into the 
blood and/or urine from early stages of (complicated) pregnancies and could serve as biomarkers for GDM. In particular, RBP4, SHBG, afamin, FABP4, 
hs‑PCR, adiponectin and several miRs (miR‑16‑5p, ‑17‑5p, ‑20a‑5p) could be tested at the beginning of pregnancies, mainly in women with risk 
factors (obesity, advanced aged, previous GDM). In addition, visfatin, fetuin‑A, omentin, leptin, ficolin‑3 and specific metabolites (i.e., AHBA, L‑Tryp) 
may be useful for the mid‑stage of gestation, and FGF‑21, PAI‑1, fetuin‑B and follistatin, and other metabolites [Ceramide (d18:0/23:0), aspartame] 
could help GDM screening at the 3rd trimester. Then, early interventions on metabolic and cardiovascular abnormalities could attenuate associated 
post‑parturition (perinatal, neonatal and chronic) disorders in women and offspring
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Table 3 Candidates biomarkers for GDM prediction

Some protein (A) and miRs (B) from diverse origins can be early detected in maternal plasma during gestation. Their modified levels have been correlated with later 

GDM development. Some of them can also provide information about potential metabolic and cardiovascular disorders (https ://www.genec ards.org/)

Panel A

Protein biomarker Main proposed origin Week of pregnancy Change in GDM Metabolic- and cardiovascular-related properties

RBP4 Liver, adipose, breast 1st–12th/16–20th Higher Pro‑inflammatory Glut4 down‑regulation and insulin 
resistance

Endothelial dysfunction

SHBG Liver, placenta 1st–13th Lower Polycystic ovary syndrome
Insulin resistance

Afamin Liver, placenta 1st–12th Higher Insulin resistance
Metabolic syndrome

FABP4 Adipose, placenta 4–6th/23rd–30th Higher Fatty acid uptake, transport, and metabolism

hs‑CRP Liver, pancreas, adipose 4–6th/11–14th
16–18th/24–28th

Higher Pro‑inflammatory of acute response

Adiponectin Adipose, breast 6th–32nd Lower Anti‑inflammatory and anti‑atherogenesis
Insulin‑sensitizer

Visfatin Adipose, placenta 11–13th Higher Pro‑inflammatory and chemotactic
Endothelial dysfunction
Acute myocardial infraction

Fetuin‑A Liver, placenta, fetal tissues 11–14th Lower Pro‑inflammatory
Regulation of the insulin receptor
Vessel calcification

Omentin‑1 Adipose, placenta 12–15th Lower Anti‑inflammatory
Vasodilatation and endothelial function

IL‑6 Adipose, lung 12–15th Higher Pro‑inflammatory
Atherogenesis and DM

Leptin Adipose, breast 14–20th/24–28th Higher Reduction on insulin action and appetite Pro‑oxidant and 
pro‑inflammatory

Arterial stiffness

Ficolin‑3 Liver, placenta 16th–18th Lower Insulin resistance
T2DM development

Panel B

Genetic biomarker Main proposed origin Week of pregnancy Change in GDM Metabolic- and cardiovascular-related properties

miR‑16‑5p Placenta 4–6th/16th Higher Pro‑inflammatory
Regulation of vascular endothelial growth

miR‑17‑5p Placenta 4–6th/16th Higher Insulin resistance
Regulation of angiogenesis
Hypertension

miR‑20a‑5p Placenta 4–6th/16th Higher Regulation of LDL receptor
Modulation of aerobic cardiac capacity
Coronary artery disease

miR‑21‑3p Placenta 7th–23rd/30–36th Higher Pro‑inflammatory
Insulin resistance

miR‑29a Placenta 16th Lower Repression of insulin‑signaling
Regulation of Glut4
Control of fatty acid/glucose metabolism

miR‑132 Placenta 16th Lower Insulin secretion
Enhancement of glucose homeostasis

miR‑222 Placenta 16th Lower Insulin resistance
Downregulation of Glut4
Hypercholesterolemia

miR‑19a/b‑3p Placenta 16th Higher Pro‑inflammatory
Insulin resistance
Vascular injury

https://www.genecards.org/
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implications in phosphate and vitamin-D metabolism. It 

also participates in cardiovascular disturbances, includ-

ing atherosclerosis and left ventricular hypertrophy [137, 

138]. Notably, FGF-23 estimated adverse cardiovascular 

outcomes in women with T2DM [139], and also, high 

levels of FGF-23 (and low of adiponectin) diagnosed 

GDM at the 3rd trimester [140] (Table 4).

ii. Placenta-secreted factors

During GDM, some of the previous adipose-derived 

factors such as TNFα, visfatin, omentin and FABP4 can 

be also expressed and discharged from placenta, con-

tributing to their elevated plasma levels [141]. Moreo-

ver, placenta can co-secrete other factors with potential 

roles in GDM pathogenesis [142]. Liver-derived sex 

hormone binding globulin (SHBG) is expressed in pla-

centa as a regulator of sex steroid hormones. SHBG has 

been inversely linked with obesity, insulin resistance, 

metabolic syndrome, and T2DM [143]. Remarkably, low 

plasma SHBG levels in the 1st trimester of gestation was 

a truly biomarker for GDM [120, 144, 145] (Table  3A). 

Nanda et al. also observed a reduction of SHBG in paral-

lel to adiponectin in GDM women at the 11–13th week 

of pregnancy, in association with BMI > 30 kg/m2, previ-

ous macrosomia and family history of DM [145, 146]. In 

this line, an hepatokine promoter of insulin resistance, 

fetuin-B, was increased at the 3rd trimester of GDM 

pregnancies, and returned after delivery [147] (Table 4). 

More interestingly, at the late 1st trimester, a reduction 

of plasma fetuin-A levels (and elevated hs-CRP) was also 

observed [121] (Table 3A). Another member of the FGF 

family, FGF-21, which induces the browning of white adi-

pose tissue and acts as an upstream effector of adiponec-

tin, was also expressed in placenta and increased in GDM 

women at the 24th week of gestation [148]. Also, afamin, 

a glycoprotein member of the albumin family expressed 

in liver and other peripheral tissues (i.e., placenta), may 

serve as an early (1st trimester) biomarker for pathologi-

cal glucose and lipid metabolism during pregnancy [149]. 

In this regard, the decreased levels of ficolin-3 (an acti-

vator of the lectin pathway of the complement system 

expressed in liver and placenta) and the increased ratio 

of ficolin-3/adiponectin were predictive of GDM at the 

16–18th week of gestation [115] (Table 3A). Finally, fol-

listatin, a gonadal regulator of follicular-stimulant hor-

mone and activin-A, with angiogenic, anti-inflammatory 

and cardioprotective properties, were lowered in the 3rd 

trimester of GDM pregnancy [150] (Table 4).

In addition, non-coding RNAs such as micro-RNAs 

(miR) can be released from placenta to maternal circu-

lation as early as the 6th week of gestation. They could 

be involved in placenta development, insulin signalling 

and cardiovascular homeostasis [151, 152]. More than 

600 placental miR are mainly encoded into three genetic 

cluster [chromosome 19 microRNA cluster (C19MC), 

C14MC, and miR-371-3 cluster]. These miR can be 

secreted by passive (associated to argonaute proteins or 

apoptotic bodies) or active (packaged into shedding vesi-

cles, exosomes or lipoproteins) mechanisms, and regu-

late trophoblasts proliferation (i.e., mir-376c, miR-141, 

miR-155, miR-675), apoptosis (i.e., miR-29b, miR-182), 

migration and invasion (i.e., mir-376c, miR-195, miR-

21, miR-29b), and angiogenesis (miR-16, miR-29b, miR-

17/92) [153]. However, placental miR can be unbalanced 

in complicated pregnancies like GDM. A significant 

downregulation of miR-29a, miR-132 and miR-222 were 

observed in plasma at the 16th week of pregnant women 

Table 4 Prospective biomarkers for GDM diagnosis

Several proteins released at the 24th–28th week of pregnancy in maternal plasma could be useful to diagnose GDM. Some of them have been related with metabolic 

and cardiovascular pathologies (https ://www.genec ards.org/)

Protein biomarker Main proposed origin Week of pregnancy Change in GDM Metabolic- and cardiovascular-related 
properties

FGF‑23 Adipose, liver 24–28th Higher Arterial stiffness
Left ventricular hypertrophy

FGF‑21 Liver, placenta 24–28th Higher Reduction of diabetes‑associated vascular injury
Stimulation of glucose uptake
Arterial fibrosis

TNFα Macrophages (adipose, placenta) 24–28th Higher Pro‑inflammatory
Insulin resistance
Glut4 downregulation

PAI‑1 Artery, placenta, adipose 24–28th Higher Inhibition of plasminogen
Migration of vascular cells

Fetuin‑B Liver, placenta, fetal tissues 24–28th Higher Modulation of the insulin receptor
Systemic inflammation

Follistatin Gonadal, intestine, placenta 26th Lower Antagonism of activin‑A
Reduction of cardiac ischaemia–reperfusion injury

https://www.genecards.org/
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who developed GDM (Table 3B) [154]. miR-29a has been 

linked to fatty acid and glucose metabolism, whereas 

miR-132 was related with incretin-dependent insulin 

secretion and enhancement of glucose homeostasis, 

and miR-222 was involved in insulin resistance and pro-

atherogenesis [155–157]. By contrast, other miR involved 

in insulin secretion and signaling such as miR-16-5p, 

miR-17-5p, miR-19a/b-3p and miR-20a-5p were upregu-

lated and correlated with GDM from the early 1st–2nd 

trimester [158, 159]. These miRs have been linked to 

inflammation, insulin resistance, vascular function and 

anti-apoptosis [160–163]. Likewise, during the 7th–23rd 

week of gestation, elevated plasma levels of miR-21-3p 

were associated with GDM [164, 165] (Table 3B). Inter-

estingly, this miR was linked with preeclampsia and insu-

lin resistance [166, 167].

iii. Urine biomarkers

Maternal urine may be also suitable as a source of pre-

dictive and diagnostic markers for GDM. The urine 

metabolome profile of GDM women in the 3rd trimester 

of pregnancy identified 14 metabolites related with the 

steroid hormone biosynthesis and tryptophan metabo-

lism that were significantly elevated [i.e., l-tryptophan, 

l-urobilinogen, ceramide (d18:0/23:0), 21-deoxycortisol, 

cucurbitacin-C, aspartame] [168] (Table 5). The upregu-

lation of these pathways could trigger insulin resistance 

and may respond to oxidative stress and inflamma-

tion during GDM. Furthermore, earlier detection (at 

12th–26th  week of pregnancy) of augmented AHBA, 

3-hydroxybutanoic acid (BHBA), valine and alanine lev-

els were observed in urine (and plasma) from GDM 

mothers [50] (Table 5). Again, these patients also exhib-

ited higher excretion of serotonin and related metabolites 

like l-tryptophan.

Limitations and future perspectives
An important issue before selecting these biomarkers to 

clinical practice will be the analysis of their nature and 

capacity of sensitivity, specificity, accuracy and reproduc-

ibility for GDM. Unfortunately, the accuracy and repro-

ducibility cannot be properly described in most cases 

due to the scarce clinical and validation studies, and to 

the different origin of patients, timing of sampling and 

quantitative methodologies. Nevertheless, some pro-

tein and miR biomarkers were tested for sensitivity and 

specificity (Table  6). In particular, SHBG, hs-CRP and 

FGF-21 reached 85–100% of sensitivity, and miR-16-5p, 

miR-17-5p and miR-20a-5p attained more than 95% of 

specificity. Other biomarkers such as leptin, RBP4 and 

ficolin-3, which displayed 51–81% of sensitivity and over 

64% of specificity, improved these parameters when they 

were related to adiponectin (not shown). Especially, the 

ficolin-3/adiponectin ratio reached 90.9% and 96.5% of 

sensitivity and specificity, respectively, for GDM predic-

tion [115]. The sensitivity could have been limited by the 

variability and quality of samples and detection method, 

and specificity could have decreased since most biomark-

ers point out common diabesogenic processes (i.e., insu-

lin resistance, inflammation). In this regard, FGF-21 [148, 

169], visfatin [127, 170], IL-6 [119, 171] and resistin [128, 

129] displayed variable levels depending on pregnancy 

phase, and afamin, among others, could serve also as a 

valid biomarker for other complicated pregnancies, like 

those with preeclampsia [149]. In this line, GDM patients 

with cardiovascular risk could be classified by testing 

biomarkers with key roles on cardiovascular patho-

physiology. Altered levels of RBP4, adiponectin, visfatin, 

fetuin-A, omentin-1, IL-6, FGF-21/23, PAI-1 or several 

miRs (miR-16-5p, miR-17-5p, miR-20a-5p, miR-222 and 

miR19a/b-3p) could be suspected for future cardiovascu-

lar disorders after GDM (Tables 3A, B and 4). However, 

no data have evidenced this hypothesis yet. In addition, 

some biomarkers could show a prognostic role for GDM. 

The increased concentration of RBP4 in early stages of 

Table 5 Potential metabolites as biomarkers for GDM

Metabolite biomarker Source
Week of 

pregnancy

Change in 

GDM

AHBA Urine/plasma 12–26th Higher

BHBA Urine/plasma 12–26th Higher

Valine Urine/plasma 12–26th Higher

Alanine Urine/plasma 12–26th Higher

Serotonin Urine/plasma 12–26th Higher

L-Tryptophan Urine/plasma 12–28th Higher

L-Urobilinogen Urine 24–28th Higher

Ceramide (d18:0/23:0) Urine 24–28th Higher

21-Deoxycortisol Urine 24–28th Higher

Cucurbitacin-C Urine 24–28th Higher

Aspartame Urine 24–28th Higher

The release of some metabolites at the 12th–28th week of pregnancy to 

maternal urine or plasma, could be suitable for GDM prediction (in orange) and/

or diagnosis (in grey)
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GDM, was attenuated after sitagliptin treatment and in 

correlation with insulin resistance [96].

Finally, protein and metabolite biomarkers would 

deliver a direct measurement of biological effectors 

involved in GDM, whereas evaluation of miRs could 

inform about its regulatory mechanisms. Also, modifica-

tion of protein and miR levels may provide information 

about specific responses but not about the complete dis-

ease. Metabolites, however, usually represent the end-

point or convergence of molecular cascades and is the 

closest domain to the phenotype, but they exhibit very 

low reproducibility in validation tests. Thus, integra-

tion of data from different molecules could reinforce the 

understanding and classification of GDM patients by 

highlighting common pathways that are dysregulated in 

subsets of patients.

Conclusion
Nowadays, there is a lack of consensus tools for GDM 

prediction and diagnosis, which influences on metabolic 

and cardiovascular evolution for both mother and off-

spring. After considering risk factors such as increased 

age, obesity and familiar GDM, specific biomarkers 

from different stages of GDM pregnancies could be use-

ful for risk stratification and screening of the disease. A 

1st trimester decrease of plasma SHBG and adiponectin, 

in combination with elevated levels of RBP4, afamin, 

ficolin-3 and certain miR (miR-16-5p, miR-17-5p and 

miR-20a-5p) could predict GDM with certain warran-

ties (Fig.  1). Quantification of circulant 1,5-anhydroglu-

citol may also anticipate the GDM development, and 

later, at the 3rd trimester, a raise of plasma FGF-21 and 

FABP4 could help an OGTT for GDM diagnosis. In addi-

tion, cardiovascular injuries associated to GDM may be 

predicted or diagnosed by addition of visfatin, omen-

tin-1, fetuin-A, IL-6, PAI-1 and FGF-21/23 to the GDM 

panel of biomarkers. More research on urine and plasma 

metabolites (i.e., AHBA, L-tryp) could also propose valid 

candidates. Prediction and classification of GDM with/

without cardiovascular risk would provide an avenue for 

personalised medicines, addressed specifically targets the 

main players leading to disease recurrence, and resulting 

in better clinical outcomes and improvements in quality 

of life.
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Table 6 Sensitivity and specificity of candidate biomarkers for GDM

Some of the predictive or diagnostic biomarkers (protein and miR) for GDM were analysed for sensitivity and specificity unveiling different data. These parameters, 

together with reproducibility and accuracy in quantification will be crucial to validate biomarkers for clinical practise
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SHGB 1st–12th 85.0 55.3 [121, 145]

hs‑CRP 4–6th 89.0 55.3 [121]

11–14th 86.2 50.8 [122]

FGF‑21 24–28th 100.0 75.0 [148]
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miR‑21‑3p 30–36th 52.6 89.3 [165]
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