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Abstract: The prediction and design of photonic features

have traditionally been guided by theory-driven compu-

tational methods, spanning a wide range of direct solvers

and optimization techniques. Motivated by enormous ad-

vances in the field of machine learning, there has recently

been a growing interest in developing complementary

data-driven methods for photonics. Here, we demonstrate

several predictive and generative data-driven approaches

for the characterization and inverse design of photonic

crystals. Concretely, we built a data set of 20,000 two-

dimensional photonic crystal unit cells and their associ-

ated band structures, enabling the training of supervised

learning models. Using these data set, we demonstrate a

high-accuracy convolutional neural network for band

structure prediction, with orders-of-magnitude speedup

compared to conventional theory-driven solvers. Sepa-

rately, we demonstrate an approach to high-throughput

inverse design of photonic crystals via generative adver-

sarial networks, with the design goal of substantial trans-

verse-magnetic band gaps. Our work highlights photonic

crystals as a natural application domain and test bed for

the development of data-driven tools in photonics and the

natural sciences.

Keywords: generative models; inverse design; machine

learning; neural networks; photonic crystals.

1 Introduction

The confluence of an exceptional abundance of data and

computational resources has enabled techniques of ma-

chine learning (ML), especially deep neural networks [1, 2],

to revolutionize fields across computer science, ranging

from image analysis [3–6] and natural language process-

ing [7–10] to decision making [11, 12]. Spurred by these

gains, there has been a surge of interest in applying ML

techniques to the natural sciences, e.g. in physics [13–18],

chemistry [19–21], and material science [22–24]. Tradi-

tionally, these disciplines have been dominated by theory-

driven computational tools: while extraordinarily varied,

each such technique is essentially the result of a series of

formal reductions and controllable approximations—e.g.

discretizations, expansions, or probabilistic averaging—

systematically applied to a known theoretical framework.

In data-driven approaches, by contrast, a large number of

numerical weights, jointly parameterizing a computa-

tional neural network, are tuned to minimize an error

measure across a specific or dynamically explored (su-

pervised or active/semi-supervised learning) labeled data

space.

The field of photonics—the study of electromagnetic

properties of (sub)wavelength-scalematerial structures—is

an appealing area for the application and development of

new data-driven approaches. Specifically, data on pho-

tonic systems can be generated in large quantities by nu-

merical means, owing to a large and mature suite of

computational tools, covering finite-element, boundary-

element, finite-difference or discontinuous time-domain,

and spectral methods [25]. Each enables high-accuracy

solutions of theMaxwell equations, e.g. subject to spatially

varying material response functions such as the

*Corresponding authors: Stjepan Picek, Faculty of Electrical

Engineering, Mathematics and Computer Science, Delft University of

Technology, Delft, The Netherlands, E-mail: s.picek@tudelft.nl; and

Marin Soljačić, Department of Physics, Massachusetts Institute of

Technology, Cambridge, MA, USA, E-mail: soljacic@mit.edu

ThomasChristensen, Li Jing, Sophie Fisher, Vladimir Ceperic and John

D. Joannopoulos: Department of Physics, Massachusetts Institute of

Technology, Cambridge, MA, USA, E-mail: tchr@mit.edu

(T. Christensen), jingli9111@gmail.com (L. Jing), sefisher@mit.edu

(S. Fisher), vceperic@gmail.com (V. Ceperic), joannop@mit.edu

(J.D. Joannopoulos). https://orcid.org/0000-0002-9131-2717

(T. Christensen)

Charlotte Loh: Department of Electrical Engineering and Computer

Science,Massachusetts Institute of Technology, Cambridge,MA,USA,

E-mail: cloh@mit.edu

Domagoj Jakobović: Faculty of Electrical Engineering and Computing,

University of Zagreb, Zagreb, Croatia,

E-mail: domagoj.jakobovic@fer.hr

Nanophotonics 2020; 9(13): 4183–4192

Open Access. © 2020 Thomas Christensen et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0

International License.

https://doi.org/10.1515/nanoph-2020-0197
mailto:soljacic@mit.edu
mailto:tchr@mit.edu
mailto:jingli9111@gmail.com
mailto:sefisher@mit.edu
mailto:vceperic@gmail.com
mailto:joannop@mit.edu
https://orcid.org/0000-0002-9131-2717
https://orcid.org/0000-0002-9131-2717
mailto:cloh@mit.edu
mailto:domagoj.jakobovic@fer.hr


permittivity ε(r). Provided the assumed material response

and geometric features of the underlying structures are

accurate, such calculations generally agree extremely well

with optical measurements, resembling, effectively, “nu-

merical experiments” (in contrast to e.g. electronic struc-

ture calculations that typically exploit physical

approximations, i.e. not merely a truncated basis, to

overcome the computational challenges posed by many-

body electron–electron interactions). This makes photonic

systems ideal test beds for exploring the applications of

data-driven techniques in realistic physical systems; and

for developing new ML techniques for the natural sciences

in general.

Already, several studies have explored the application

of ML techniques to photonics: neural networks have been

used to accurately predict optical scattering by multilayer

nanoparticles [26], far- [27] and near-field [28] spectral

response of plasmonic nanostructures, topological prop-

erties [29–31], and transmission spectra of dielectric met-

amaterials andmetasurfaces [32–35]. There has also been a

growing interest in the study of generative models [36–38],

i.e. models that learn the underlying distribution of the

data rather than simply “discriminating” the target values

given a certain input, aiming to complement more con-

ventional techniques of optimization and inverse design,

such as via gradient-based [39, 40] or evolutionary

methods [41, 42]. While trained neural networks can also

accelerate traditional inverse design by affording a cheap

gradient calculation via backpropagation [26] or simply a

cheap evaluation [32], multiple iterations are often needed

to find a good candidate, and backpropagating costs

through a large network can be computationally chal-

lenging. Generative models [31] offer an alternative

approach that sidesteps these challenges and additionally

provides the flexibility of choosing among multiple suit-

able design candidates.

Here, we report several examples of data-driven ML

techniques applied to photonic crystals (PhCs) [43, 44],

that is, periodic wavelength-scale structures of dielectric

material. We exploit the maturity of conventional

computational approaches for PhCs to generate a data set

suitable for supervised learning of 20,000 distinct two-

dimensional (2D) PhCs. As a first application of these data

set, we train a convolution neural network to perform

band structure prediction. The trained network is highly

accurate (mean test error of ∼ 0.6%) and, once trained,

orders of magnitude faster than conventional theory-

based approaches. Following this, we explore two appli-

cations of generative models for data-driven inverse

design of PhCs with a large band gap. In both cases, we

find that a high-fidelity generative model can be trained

using just ∼1 000 data samples. Our results establish PhCs

as a natural test bed for ML techniques applied to scien-

tific problems and demonstrate that both forward and

inverse problems in PhC-design are amenable to data-

driven approaches.

2 Methods and results

2.1 Photonic crystal data set

PhCsare characterizedby aperiodically varyingpermittivity

ε(r), and the design domain is consequently restricted to a

single nontrivial unit cellΩwhose tilingmakes up the PhC’s

structure (Figure 1A). For simplicity and concreteness, we

restrict our attention to 2D square lattices with two material

components. Each material occupies a sub-region Ωi of Ω,

such that Ω1 ∪ Ω2 � Ω, with a resulting “two-tone” permit-

tivity profile ε(r) � { ε1,  r  ∈  Ω1

ε2,  r  ∈  Ω2
. For lossless and isotropic

materials, εi (as well as the PhC’s allowed eigenfrequencies)

are real quantities. As a result, each PhC is effectively

characterized by a single “gray-scale image” of ε(r). We

generated 20,000 such two-tone, square unit cells. The two

disjoint regions Ωi were defined by their boundary region

(Figure 1A), which in turn was procedurally generated by

casting 2–8 random ellipses sequentially near each other’s

periphery, then spanning, smoothing, and centering an

enclosing hull, and finally randomly scaling and orienting

the resulting boundary. This produces unit cells that are

relatively simple geometrically, host just a single inclusion,

have no strongly divergent feature scales, and so exemplify

realistically fabricable design candidates. We note that

stricter constraints could be imposed to align more closely

with experimental capabilities (minimum feature sizes

could e.g. be ensured by post-processing generated in-

clusions with standard threshold projection techniques

from topology optimization [45, 46]). Nevertheless, to retain

a sufficiently varied training set we do not pursue such

additional constraints here [47]. The permittivities εi were

each drawn uniformly from the range [1, 10], roughly

spanning the range attainable in transparent materials in

the visible spectrum (e.g. at a wavelength of 700 nm, the

permittivity of air, silicon nitride, and silicon carbide is

approximately 1,4.1, and 6.8, respectively).

For each unit cell, we computed the PhC band struc-

ture of the lowest six bands using the free MIT Photonics

Bands (MPB) software [48] using 64 × 64 plane waves

(equivalent, effectively, to a 64 × 64 spatial resolution).

Eachunit cell takes∼2min on a single core of a 1.6 GHz Core

i5-8250U CPU. The calculations are highly converged and
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accurate: the mean fractional deviation per band between

calculations at resolutions of 64 × 64 and 32 × 32 is ∼ 0.1‰,

averaged over all unit cells. Figure 1B shows a set of

example band structures, split into the transversemagnetic

and electric (TM and TE) polarizations: it consists of the set

of eigen frequencies ωnk indexed over band numbers

n = 1, 2,…, 6 and wave vectors k restricted to the Brillouin

zone (BZ). For a square lattice of (arbitrary) side length a,

the BZ is [−π/a,π/a) × [−π/a,π/a). Since the generated

unit cells generically have no exact spatial symmetries, the

band structures cannot exhibit any stable band-crossings,

allowing a simple sorting of bands by their frequency

alone, i.e. ωnk < ωn+1,k.

The resulting data set contains as input pixelized

permittivity profiles (in either 32 × 32 or 64 × 64 resolu-

tion) and as output the computed band structure (with

the BZ sampled on a 23 × 23 Γ-centered Monkhorst–Pack

grid, as in Figure 1A). In addition, we computed the band

gap Δω12 ≡min ω2k −max ω1k between bands 1 and 2.

Since the generated unit cells predominately feature

central inclusions with a relative area less than 50%

(Figure 1C), TM band gaps are significantly more abun-

dant than TE band gaps (Figure. 1D). In our experiments

with generative models, we restricted the data set to

those elements that host a substantial band gap, defined

heuristically as a relative band gap Δω12/ω12 greater than

5% (with mid-gap frequency ω12 ≡
1
2min ω2k +

1
2max ω1k).

Since the TE band structures host only very few such

examples (48 with a non-zero band gap and 10 with a

band gap ≥ 5%, out of 20,000 examples), we confined

our experiments with generative models to the TM

polarization only.

2.2 Band prediction

A natural question is whether neural networks can be used

in lieu of traditional theory-driven tools for themodeling of

PhCs, e.g. to predict a PhC’s band structure. To answer this,

we adopted a supervised learning approach and trained

two neural networks to reproduce the TM and TE band

structures, respectively, taking as input a 32 × 32-dis-

cretized unit cell and producing as output the band struc-

ture across the 23 × 23-discretized BZ for the first six bands

(Figure 2). Effectively, this is a regression problem where a

large input space (32 × 32 � 1024 parameters) is mapped to

a large output space (23 × 23 × 6 � 3174 parameters).

The network consists of two main components:

encoder and decoder (Figure 2A). Conceptually, the

encoder is tasked with building an abstract representation

of the PhC’s unit cell ε(r) that spans a lower-dimensional

so-called feature (or latent) space. The decoder,

conversely, is tasked with reconstructing from this feature

vector the band structure of the input PhC. In practice, we

Figure 1: Photonic crystal data set. We generated a data set of

20,000 square 2D PhC unit cells, each consisting of a smooth,

centered inclusion of permittivity ε1 in a background permittivity ε2
with εi ∈ [1, 10]. (A) Several representative unit cells and the BZ grid-

sampling used in the calculation of band structures. (B) The TM and

TE band structures of the PhC highlighted in orange in (A). (C) The

generated unit cells predominately feature inclusions occupying

less than half the unit cell, as illustrated by a histogramming of the

relative inclusion areas across the data set. (D) TM band gaps

between bands 1 and 2 consequently occur much more frequently

than TE gaps, as TE gaps mainly arise in “filamentory” networks,

corresponding to large relative inclusion areas.
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implement and train the network using the popular

PyTorch framework [49]. Training is accomplished by

minimizing the mean square error between the training

dataωnk andnetwork outputω
NN
nk across n,k, and the entire

training set (the cost function) using adaptive gradient

descent optimization (RMSprop [50]) with an adaptive

learning rate scheduler. We implement the encoder using

three convolutional layers, each of (zero-padded) 11 × 11

kernels, followed by two fully-connected layers, essen-

tially mapping the 32 × 32 input space into a linear 64-

dimensional feature space. The convolutional layers were

subjected tomax-pooling and increasing channel depths to

collapse the 2D input into a simple 1D vector that could be

directly fed to the fully-connected layers of the encoder.

The decoder was implemented with six feed-forward net-

works, each consisting of five fully-connected layers that

were separately optimized for each band. All layers were

followed by ReLU activations and batch normalization [51]

was used for the convolutional layers. Our implementation

(with optimized hyper-parameters) is available online, see

Ref. 52, and summarized in Figure 2A.

We followed the standard training–validation–test

approach and split the data set into training, validation,

and test sets (in 70, 15, and 15% proportions). The training

set was used to update the network’s weights, the valida-

tion set to evaluate training convergence and select hyper-

parameters, and the test set to determine the network’s

ability to generalize to new data (i.e. assess eventual

network performance). We performed a simple grid-search

to determine hyper-parameters, searching across kernel

sizes of convolution layers ∈ [5, 7, 9, 11], batch sizes

∈[32, 64, 128], initial learning rates ∈[10−5, 10
−4
, 10−3], and

total number of training epochs ∈ [20, 30,40] (optimal

hyper-parameters indicated in boldface). In addition, we

searched across several network architectures consisting of

varying convolution layer channel depths to arrive at the

optimal configuration shown in Figure 2A. Application of

the optimally tuned network on two examples from the test

set is shown in Figure 2B–E, in absolute (Figure 2B–C) and

relative scales (Figure 2D–E). Both examples are charac-

terized by a large permittivity contrast between inclusion

and background and consequently reflect extremal ele-

ments in the data set, whose band structures deviate sub-

stantially from the trivial empty-lattice approximation.

Averaged across the entire validation and test sets, both the

band-specific and the band-averaged relative mean errors

meank(
∣∣∣∣ωNN

nk − ωnk

∣∣∣∣/ωnk) are generally very low, on the

order of 0.5%, as shown in Table 1. We conclude that a

simple convolution neural network can predict the band

Figure 2: Band prediction with convolutional neural networks. (A)

Network architecture showing the convolutional encoder and fully-

connected decoder (described in detail in themain text). Numbers in

red indicate the data size after every network layer. (B–C) Example

applications of the trained band-prediction network on test set unit

cells in both TM and TE polarizations (green markers, network

predictions; surfaces, reference MPB calculations). The chosen unit

cells represent worst-case examples due to their large permittivity

contrast. (D–E) The relative deviation between network predictions

and reference calculations. The relative error is typically very small,

on the order of ≲ 2%.
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structures of PhCs with very high accuracy and generalizes

excellently to examples not seen during training. While we

have confined our attention to 2D square lattices, this

conclusion appears likely to apply generally across

different lattice types and dimensionalities.

It is worth noting that while generation of a suitable

data set—and, to a lesser extent, network training (taking

∼3 min for fixed hyper-parameters on an Nvidia 1080 Ti

GPU)—requires substantial computing resources, once

trained, a neural network can predict band structures or-

ders of magnitude faster than conventional theory-driven

simulations (network evaluation of a single input takes

≈ 0.02 s on an Nvidia 1080 Ti GPU). While these gains are

not sufficiently attractive tomerit the training of regression

networks for one- or few-off calculations, they can be

relevant in inverse-design problems [26, 27] or high-

throughput searches [53], where a very large number of

distinct system configurations must be considered.

2.3 Generative adversarial networks

While ML techniques for classification and regression

problems (such as band structure prediction) are naturally

complementary to traditional theory-based approaches to

forward problems, the field of generative modeling stands

to complement conventional techniques of optimization

and inverse design. Rather than learning a mapping from

input to output data (e.g. from the unit cell to band struc-

ture), generative models generally seek to learn the statis-

tical distribution of data samples. Once learned, many new

elements can thenbedrawn from this distribution—ahighly

attractive option for optimization problems characterized

by a non-unique solution space (in sharp contrast to con-

ventional gradient-based approaches where the retrieval of

diverse design candidates can be nontrivial).

Generative adversarial networks (GANs) have become

a singularly prominent direction in generative models [54],

due to their ability to seemingly generalize “creatively”

beyond training data, with applications spanning e.g.

autonomous driving systems [55], natural image synthesis

[56], and anomaly detection [57]. The training of GANs

mimics an adversarial game between two networks

(Figure 3): while one network, the discriminator, is tasked

with decidingwhether a given input belongs to the training

data (“real”) or not (“fake”); the other, the generator, is

tasked with producing (from an input vector sampled from

a predefined probabilistic feature space) candidates that

fool the discriminator. During training, their joint cost

function—whose contributions are adversarial in nature,

i.e. generally opposing—is optimized.

We explored the use of GANs for synthesizing new

candidate unit cells that host a substantial TM band gap. To

doso,weextracted the 585unit cellswithΔω12/ω12 ≥ 5% from

the data set for use as training data. We tested three different

GAN-variants [58]: a conventional GAN [53], a least squares

GAN (LSGAN) [59], andDeep Regret Analytic GAN (DRAGAN)

[60], each distinguished essentially by their respective

generator and discriminator cost functions [61]. In each case,

we adapted standard off-the-shelf implementations [62] to

take a single-channel, 64 × 64 pixelized ε(r) profile as

trainingdata. Training across 400 epochs took on the order of

5–10 min for each GAN on an Nvidia 1080 Ti GPU.

Figure 4A illustrates the improvement during the

training of each GAN-variant’s ability to generate

convincing unit cells that exhibit the desired character-

istics (i.e. well-defined, high-contrast, two-tone in-

clusions). We also evaluated the models’ performance

relative to the design goal of exhibiting a substantial

band gap by computing the band gap sizes of the

generated unit cells with MPB (Figure 4B). Concretely, we

trained 10 distinct networks for each GAN-variant

(distinguished only by network initialization), outputting

at each epoch 16 generated unit cells. From these sam-

ples, we evaluated a notion of “generation fidelity”,

defined as the relative fraction of generated unit cells that

Figure 3: Generative adversarial network. Through an adversarial

game between a generative (G) and a discriminative (D) network,

new synthetic examples (fake) of 2D unit cells with a TM band gap

can be generated from a genuine data set (real).

Table : Neural network performance. Mean relative error,

meank
∣∣∣∣ωNN

nk − ωnk

∣∣∣∣/ωnk, of the trained TE and TM networks on vali-

dation and test samples, shown for each band separately as well as

band-averaged ( – ).

Sample Polarization Band index n (‰ error)

       – 

Validation TM . . . . . . .

TE . . . . . . .

Test TM . . . . . . .

TE . . . . . . .
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indeed exhibit a band gap ≥5%. Both metrics—visual

“quality” and fidelity—exhibit much the same evolution:

initially, performance is poor, reflecting essentially

randomly initialized networks; then, within a few

epochs, performance improves dramatically; and finally,

performance slowly deteriorates, typical of the saturation

problem [63]. While GAN and LSGAN achieve convincing

performance within ∼50 epochs, DRAGAN takes signifi-

cantly longer, apparently passing through a phase of

“fractured” inclusions. Further, across our 10 training

experiments, we identified only a single successful

DRAGAN trial (others not shown).

Figure 4C shows 16 examples of generated unit cells for

each GAN-variant, evaluated at epochs and training runs of

100% fidelity. The generative models have clearly “learned”

the key elements necessary to host a TMband gap, namely an

inclusion of high permittivity embedded in a low-permittivity

background [43]. Interestingly, although the fidelity of GAN

and LSGAN generally decreases after peaks around range

5070 epochs, the visual quality—especially the well-defin-

edness of inclusion boundaries—improves at higher epochs

as shown in Figure 4D. The apparent cost ofmoving to higher

epochs appear to be an increase in low-contrast examples

without (or with smaller) band gaps. More generally, both

visual quality and fidelity alike could likely be improved by

simply enlarging the training set’s size. Finally, we note that

regularization and filtering techniques from topology opti-

mization [45, 46] couldbe leveraged to further reducenoise or

ensure minimum feature sizes in the generated designs,

either as a post-processing step or during training.

Figure 4: GAN, LSGAN, and DRAGAN for

generation of unit cells with substantial TM

band gaps. (A) Themapping of fixed feature

vectors to generated unit cells during

training. Note the differing epoch steps and

ranges for DRAGAN versus GAN and LSGAN.

(B) Fidelity of generated unit cells (the

fraction hosting a band gap ≥5%). For GAN

and LSGAN, fidelity is averaged over 16

distinct feature vectors and 10 training runs

(uncertainty across training runs is

indicated by shaded regions). Only a single

DRAGAN training run was successful

(averaged over 16 outputs). (C–D)

Examples of generated unit cells at

selected epochs (indicated by matching

markers in B). GAN and LSGAN produce

more well-defined but lower-fidelity unit

cells at later epochs (text-insets give

Δω12/ω̄12 evaluated with MPB; dashed

borders highlight cases where

Δω12/ω̄12 < 5%).
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2.4 Image-to-image translation

Image-to-image translation can be viewed as a subset of

generative modeling concerned with translating (i.e.

mapping) between distinct representations of images.

Effectively, this translation can often be viewed simply as

implanting the “style” or characteristics of a given repre-

sentation A onto another B; say, mapping from an outline,

or even a sketch, to a photorealistic representation (e.g. of

cats [64]). Following the introduction of the pix2pix soft-

ware [65], conditional GANs [66] have emerged as a

powerful tool to achieve this translation. The underlying

principle is illustrated in Figure 5A: the generator of a

conditional GAN takes, in addition to the standard random

feature vector x, a “conditional input” y (of representation

A) from which a fake output G(x, y) is generated—the

discriminator, conversely, seeks to distinguish between

genuine pairings of y and real output z (of representationB)

from faked pairings.

A natural application of image-to-image translation,

and pix2pix specifically, for photonics is “guided inverse

design”, i.e. inverse design subject to conditional input.

Figure 5B illustrates one such application (using a PyTorch

implementation of pix2pix [65, 67, 68]): by taking again

the set of unit cells with a TM band gap ≥5% and choosing

as conditional input the corresponding inclusion outlines,

we can learn a mapping from outlines to permittivity pro-

files supporting a TMband gap.We trained themodel using

just 256 samples (each of 64 × 64 pixels) over 200 epochs

(requiring less than 1 h on an Nvidia 1080 Ti GPU). We

tested the trained model on conditional input of several

distinct shapes (heart and five- and four-pointed stars) and

scales. The trained model successfully translates each

large inclusion to a permittivity profile with a TM band

gap ≥5%. Notably, this translation is successful—and

maintains the outline’s shape—even though the training

data does not contain examples that resemble the chosen

outlines. Further, when the scale of a shape is reduced, we

observe that the contrast in the generated profile is

increased; in exact agreement with the basic design-prin-

ciple suggested by perturbation theory [43]. While the

small five- and four-pointed stars translations do not ach-

ieve a TM band gap ≥5%, it is clear that the design

approach (i.e. increasing contrast) is valid. Indeed, for

sufficiently small or irregular inclusions, designs with

ε(r) ∈ [1, 10] and a ≥5% band gap may not exist. We can

explore this latter point by feeding the trainedmodel a stick

too narrow to host a TM band gap (Figure 5B, bottom). We

sampled three generated designs (distinct feature vectors):

in each case, the design “breaks out” of the outline and

maximizes contrast. The resulting rupture varies slightly in

extent and so hosts differently sized band gaps, though in

each case ≤5%.

3 Conclusions

In conclusion, we have explored predictive and generative

models for data-driven approaches to PhC analysis and

design. Within predictive modeling, we demonstrated that

convolutional neural networks can be trained to predict the

band structure of a square 2D PhCs with high accuracy and

with orders of magnitude speedup across both TE and TM

polarizations. Within generative modeling, we demon-

strated that standard techniques, namely GANs and con-

ditional GANs, can be readily adapted for high-throughput

unguided and guided inverse design; here, for the inverse

design of PhCswith sizable TMband gaps. A key advantage

Figure 5: Image-to-image translation of photonic features. (A)

Conditional GANs, as implemented e.g. by pix2pix [65], facilitate

image-to-image translation by augmenting a conventional GAN

(Figure 3) with a conditional input. (B) Using pix2pix, we trained a

model to translate a discretized inclusion outline (black borders) to

a permittivity profile (red borders) hosting a TM band gap. The

permittivity contrast Δε ≡max ϵ(r) −min ϵ(r) and the relative band

gap Δω12/ω12, evaluated with MPB, are indicated below each design

(dashed borders highlight cases where Δω12/ω12 < 5%).
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of data-driven approaches to inverse design is that other-

wise hard-to-quantify constraints, such as notions of fab-

ricability, can be encoded implicitly by a representative

selection of training data (here, smooth two-tone in-

clusions). Such data-driven approaches to inverse design

could also make appealing alternatives to traditional in-

verse design tools in scenarios where a large number of

design candidates are desired for a fixed design goal.

Encouragingly, high-fidelity generative models could be

trained even with relatively modest data quantities; here,

just ∼ 250 − 600 unit cells.

We note that the relative ease with which standard ML

techniques can be adapted and applied to PhCs, as shown

here, suggests a promising application space for data-

driven approaches in photonics more generally. Espe-

cially within generative modeling, a large suite of ML

techniques exists that point to several opportunities for

data-driven inverse photonic design, some of which have

already been explored: among them, variational auto-

encoders [69] exemplify a natural alternative [70] to GANs

for photonic inverse design [71, 72], as does the related

approach of bidirectional neural networks [73, 74].

Further, the ML application-space for PhCs extends

beyond the periodic settings considered here: for instance,

both isolated and aperiodic systems, such as PhC defect

cavities and quasiperiodic PhCs, may be explored with

similar ML techniques, e.g. by an appropriate augmenta-

tion of the input space. Even with this outlook, the appeal

of data-driven computational photonics—and science

more broadly—will remain closely correlated with the

required quantities of data needed to train networks, and

the ease with which it may be generated. Given the per-

formance and maturity of state-of-the-art theory-driven

methods for PhCs, we believe PhCs will make an ideal test

bed to explore and develop new ML techniques, e.g. ideas

from transfer- and meta-learning, for photonics and the

natural sciences.
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