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Abstract

Background

A unique archive of Big Data on Parkinson’s Disease is collected, managed and dissemi-

nated by the Parkinson’s Progression Markers Initiative (PPMI). The integration of such

complex and heterogeneous Big Data from multiple sources offers unparalleled opportuni-

ties to study the early stages of prevalent neurodegenerative processes, track their progres-

sion and quickly identify the efficacies of alternative treatments. Many previous human and

animal studies have examined the relationship of Parkinson’s disease (PD) risk to trauma,

genetics, environment, co-morbidities, or life style. The defining characteristics of Big Data–

large size, incongruency, incompleteness, complexity, multiplicity of scales, and heteroge-

neity of information-generating sources–all pose challenges to the classical techniques for

data management, processing, visualization and interpretation. We propose, implement,

test and validate complementary model-based and model-free approaches for PD classifi-

cation and prediction. To explore PD risk using Big Data methodology, we jointly processed

complex PPMI imaging, genetics, clinical and demographic data.

Methods and Findings

Collective representation of the multi-source data facilitates the aggregation and harmoni-

zation of complex data elements. This enables joint modeling of the complete data, leading
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to the development of Big Data analytics, predictive synthesis, and statistical validation.

Using heterogeneous PPMI data, we developed a comprehensive protocol for end-to-end

data characterization, manipulation, processing, cleaning, analysis and validation. Specifi-

cally, we (i) introduce methods for rebalancing imbalanced cohorts, (ii) utilize a wide spec-

trum of classification methods to generate consistent and powerful phenotypic predictions,

and (iii) generate reproducible machine-learning based classification that enables the

reporting of model parameters and diagnostic forecasting based on new data. We evalu-

ated several complementary model-based predictive approaches, which failed to generate

accurate and reliable diagnostic predictions. However, the results of several machine-learn-

ing based classification methods indicated significant power to predict Parkinson’s disease

in the PPMI subjects (consistent accuracy, sensitivity, and specificity exceeding 96%, con-

firmed using statistical n-fold cross-validation). Clinical (e.g., Unified Parkinson's Disease

Rating Scale (UPDRS) scores), demographic (e.g., age), genetics (e.g., rs34637584,

chr12), and derived neuroimaging biomarker (e.g., cerebellum shape index) data all contrib-

uted to the predictive analytics and diagnostic forecasting.

Conclusions

Model-free Big Data machine learning-based classification methods (e.g., adaptive boost-

ing, support vector machines) can outperform model-based techniques in terms of predic-

tive precision and reliability (e.g., forecasting patient diagnosis). We observed that

statistical rebalancing of cohort sizes yields better discrimination of group differences, spe-

cifically for predictive analytics based on heterogeneous and incomplete PPMI data.

UPDRS scores play a critical role in predicting diagnosis, which is expected based on the

clinical definition of Parkinson’s disease. Even without longitudinal UPDRS data, however,

the accuracy of model-free machine learning based classification is over 80%. The meth-

ods, software and protocols developed here are openly shared and can be employed to

study other neurodegenerative disorders (e.g., Alzheimer’s, Huntington’s, amyotrophic lat-

eral sclerosis), as well as for other predictive Big Data analytics applications.

Introduction

Big Data challenges, and predictive analytics

There is no unifying theory, single method, or unique set of tools for Big Data science. This is

due to the volume, complexity, and heterogeneity of such datasets, as well as fundamental gaps

in our knowledge of high-dimensional processes where distance measures degenerate (curse of

dimensionality) [1, 2]. To solidify the theoretical foundation of Big Data Science, significant

progress is required to further develop core principles of distribution-free and model-agnostic

methods to achieve accurate scientific insights based on Big Data datasets. IBM’s 4V’s of “Big

Data” (volume, variety, velocity and veracity) provide a qualitative descriptive definition of

such datasets. We use an alternative approach to constructively define “Big Data” and explicitly

describe the challenges, algorithms, processes, and tools necessary to manage, aggregate, har-

monize, process, and interpret such data. The six defining characteristics of Big Data are large

size, incongruency, incompleteness, complexity (e.g., data format), multiplicity of scales (from

micro to meso to macro levels, across time, space and frequency spectra), and multiplicity of

sources. Predictive Big Data analytics refers to algorithms, systems, and tools that use Big Data
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to extract information, generate maps, prognosticate trends, and identify patterns in a variety

of past, present or future settings. The core barriers to effective, efficient and reliable predictive

Big Data analytics are directly related to these six distinct Big Data attributes and highlight two

critical challenges. The first is that Big Data increases faster (Kryder’s law) than our ability to

computationally handle it (Moore’s law) [3]. Storage capacity doubles every 1.2–1.4 years [4],

whereas the number of transistors per fixed volume doubles every 1.5–1.7 years [5].The second

is that the energy (value) of fixed Big Data decreases exponentially from the point of its acquisi-

tion. This leads to substantial loss of resources (e.g., reduced data life-span, “data exhaust”) and

enormous missed opportunities (e.g., lower chances of alternative efforts) [6, 7].

Neurodegenerative disorders

Age-related central nervous system (CNS) neurodegenerative disease is a rapidly growing soci-

etal and financial burden [8]. Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyo-

trophic lateral sclerosis (ALS), which together affect over six million Americans [9–11], are

some the three most serious illnesses in this category. The incidence of these debilitating dis-

eases increases sharply with advancing age which, together with the rapid aging of developed

societies, is creating a crisis of human suffering and enormous economic pressure. Abnormal

deposition of protein, which manifests as intra- or extracellular protein aggregates, is a unifying

feature of these disorders. Although distinct proteins aggregate in each illness, they assume a

common abnormal structure known as amyloid. Amyloid formation is a stepwise process

whereby small numbers of misfolded proteins form “seeds,” which greatly accelerate kinetics of

subsequent amyloid formation. It is increasingly recognized that these misfolded proteins also

have the capacity to spread from cell to cell in a “prion” like manner [12]. Thus, amyloid for-

mation within cells may lead to synaptic dysfunction due to deposition of insoluble peptides

and bioactive oligomers [13], and this protein-based insult may be linked to disease progres-

sion through intra-cellular spreading. As more biospecimen data, including pathological

reports [14] and amyloid-based positron emission tomography (PET) imaging [15], are col-

lected and preprocessed, they can easily be fused and harmonized with the complex data we

use in this study to provide additional biomelecular evidence for the detection, tracking and

prognosis of neurodegeneration using Big Data analytics.

Recent PD studies

A number of recent studies have examined the relation of Parkinson’s disease to trauma [16],

genetics [17], environment [18] and other co-morbidities [19]. A recent meta-analytic study

[20] pooled published data from 1985 to 2010 and analyzed the effects of age, geographic loca-

tion, and gender on PD prevalence. The authors identified substantial difference between

cohorts using 47 manuscripts and showed a rising prevalence of PD with age (per 100,000), Fig

1. Significant differences in prevalence by sex were found in 50 to 59 year-olds, with a preva-

lence of 41 in females and 134 in males. Previously, we have developed and validated auto-

mated pipeline workflows to extract imaging biomarkers and explore associations of imaging

and phenotypic data in Parkinson’s and Alzheimer’s disease [3, 21]. A study of normocholiner-

gic and hypocholinergic PD patients examined the basal forebrain-cortical and pedunculopon-

tine nucleus-thalamic cholinergic projection systems and reported that a combination of rapid

eye movement sleep behavior disorder (RBD) symptoms and fall history yielded diagnostic

accuracy of 81% for predicting combined thalamic and cortical cholinergic deficits [22]. Dis-

coveries of familial PD kinase leucine-rich repeat kinase 2 (LRRK2) protein, α-Synuclein locus

duplication [13], and mouse models of Parkinson’s provide clues for understanding the impact

of various signaling events on neurodegeneration [23–25].

Prediction of Parkinson's Disease Using Big Data
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Study goals and innovation

This study utilizes PPMI neuroimaging, genetics, clinical and demographic data to develop

classification and predictive models for Parkinson’s disease. Specifically, we aim to aggregate

and harmonize all the data, jointly model the entire data, test model-based and model-free pre-

dictive analytics, and statistically validate the results using n-fold cross validation. Some of the

challenges involved in such holistic predictive Big Data analytics include the sampling incon-

gruency (e.g., non-corresponding spatio-temporal observations) and heterogeneity (e.g., types,

formats) of the data elements, incompleteness of the data, complexities regarding the represen-

tation of complementary components in the data (e.g., image intensities are in 3D Cartesian

coordinates, whereas clinical, genetic and phenotypic data elements are represented in alterna-

tive bases). We tested generalized linear models (with fixed and random effects) as well as mul-

tiple classification methods to discriminate between Parkinson’s disease patients and

asymptomatic healthy controls (HC). Previous studies have reported results of integrating mul-

tiple types of data to diagnose, track and predict Parkinson’s disease using imaging and genetics

[26, 27], genome-wide association studies [28], animal phenotypic models [29], molecular

imaging [30], pharmacogenetics [31], phenomics and genomics [32]. However, few studies

have reported strategies to efficiently and effectively handle all available multi-source data to

produce high-fidelity predictive models of this neurodegenerative disorder, which is the focus

of this investigation. The main contributions of this study include (i) an approach for

Fig 1. Exponential growthmodel of PD prevalence with age.

doi:10.1371/journal.pone.0157077.g001
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rebalancing initially imbalanced cohorts, (ii) applying a wide spectrum of automated classifica-

tion methods that generate consistent and powerful phenotypic predictions (e.g., diagnosis),

(iii) developing a reproducible machine-learning based protocol for classification that enables

the reporting of model parameters and outcome forecasting, and (iv) using generalized esti-

mating equations models to assess population-wide differences based on incomplete longitudi-

nal Big Data. Reproducible protocols that enable such end-to-end data analytics are critical to

inform future scientific investigations, enable discovery-based Big Data science, facilitate active

trans-disciplinary collaborations, and entice independent community validation of algorithmic

modules, atomic tools, and complete end-to-end workflows.

Methods

Study Design and Approach

As we deal with large, complex, multi-source, incomplete and heterogeneous data, to obtain valid

and robust diagnostic forecasting predictions, our approach needs to start with efficient data han-

dling, manipulation, processing, aggregation, and harmonization. This includes methods for

identification of missing patterns, data wrangling, imputation, conversion, fusion and cross-link-

ing. Next, we need to introduce mechanisms for automated extraction of structured data ele-

ments representing biomedical signature vectors associated with unstructured data (e.g., images,

sequences). This includes processing the sequences to extract specific genotypes and deriving

neuroimaging signature vectors as proxies of global and regional brain organization. The subse-

quent data modeling and diagnostic prediction demands a high-throughput and flexible interface

to model-based and model-free techniques that can be applied to the harmonized and aggregated

multivariate data. We have employed the statistical computing environment R for our model fit-

ting, parameter estimation and machine learning classification. The final component of this pro-

tocol requires a computational platform that enables each of these steps to be implemented,

integrated and validated. To ensure the success of the entire process, enable internal validation,

and assure external reproducibility of the results, the Pipeline environment was chosen to sup-

port the critical element of integrating, productizing, demonstrating, and testing the entire pro-

cessing protocol as a pipeline workflow. Fig 2 illustrates a top-level schematic of our end-to-end

protocol. The following sub-sections describe the data characteristics, the specific manipulation,

processing, cleaning, analysis, and protocol validation steps involved in this study.

The PPMI initiative

Between 2002 and 2015, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) has

funded about $90 million in biomarker research. MJFF-PPMI (Parkinson’s Progression Mark-

ers Initiative) collaboration involves researchers, industry, government and study participants

that conducts an observational clinical study to verify progression markers in Parkinson’s dis-

ease. PPMI efforts aim to establish a comprehensive set of clinical, imaging and biosample

markers that may be used to diagnose, track and predict PD and its progression. To accelerate

biomarker research and validation, PPMI acquires, aggregates and shares a large and

Fig 2. Overview of the complete analytics protocol (from data handling, to pre-processing, modeling, classification and forecasting).

doi:10.1371/journal.pone.0157077.g002
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comprehensive set of clinical data and biospecimens that are made available to the entire scien-

tific community. PPMI data and specimens are collected using standardized protocols devel-

oped by the Initiative’s steering committee. The PPMI study dataset includes clinical,

biological and imaging data collected at multiple participating sites. The data are assembled

into the PPMI study database and distributed by the PPMI Bioinformatics Core at the Univer-

sity of Southern California. PPMI also collects biologic specimens including urine, plasma,

serum, cerebrospinal fluid, DNA and RNA. These are available for research purposes via study

biorepositories in the US, Italy and Israel (http://www.ppmi-info.org/access-data-specimens).

Data

The complete PPMI data archive includes demographics (e.g., age, medical history), clinical

tests (physical, verbal learning and language, neurological and olfactory (University of Pennsyl-

vania Smell Identification Test, UPSIT) tests), vital signs, MDS-UPDRS scores (Movement

Disorder Society–Unified Parkinson's Disease Rating Scale), ADL (activities of daily living),

Montreal Cognitive Assessment (MoCA), Epworth Sleepiness Scale, REM sleep behavior ques-

tionnaire, Geriatric Depression Scale (GDS-15), and State-Trait Anxiety Inventory for Adults.

In this study, we used imaging, demographic, genetic and clinical data from the PPMI reposi-

tory (http://www.ppmi-info.org/access-data-specimens).

The baseline structural magnetic resonance imaging (sMRI) data included 3D T1-weighted

sequences (MPRAGE or SPGR) with total scan time between 20–30 min and covered the ver-

tex, cerebellum and pons. The T1-weighted sagittal images had slice thickness of less than

1.5mm and no interslice gaps. Voxel dimensions were 1 × 1 × 1.2mm3 with a voxel matrix of

size 256 × 256 × Z, where 170� Z� 200. Derived imaging data (imaging biomarkers) were

obtained by pre-processing and analyzing the sMRI data using the global shape analysis (GSA)

pipeline workflow [33, 34]. The GSA protocol uses demographics and imaging data to imple-

ment a study design involving group-based extraction, modeling and analysis of regional brain

anatomy. This pipeline workflow (http://bit.ly/1DjhkG9) computes 6 global shape measures

(mean-curvature, surface area, volume, shape-index, curvedness and fractal dimension) for

each of 28 automatically extracted regions of interest (ROIs) within both brain hemispheres.

Between-cohort statistics using shape morphometry measures are calculated and the results

include 3D scenes showing ROI models of the cohort statistical differences. Fig 3 shows the

main components of the GSA pipeline workflow.

The PPMI genetics data includes over 600 samples that passed initial DNA quality control

(QC), over 300 samples run on the Illumina ImmunoChip (interrogating 196,524 variants) and

NeuroX (covering 240,000 exonic variants, of which 24,000 specific to neurodegeneration)

with 100% sample success rate, and 98.7% genotype success rate [35]. These samples were gen-

otyped for APOE e2/e3/e4 (derived from single nucleotide polymorphism (SNPs) rs7412 and

rs429358) using TaqMan genotyping [36].

The PPMI clinical data includes cognitive assessments (e.g., cognitive state, decline, func-

tional impairment, diagnosis, level of education). The MDS-UPDRS data captures the severity

of PD symptoms in different dimensions using a 0–4 Likert scale representing a range of nor-

mal (unaffected, 0) to severely affected (4). There are four separate UPDRS sections, Table 1.

UPDRS measures reflect a caregiver questionnaire interview and clinical observation. In our

work, Part IV was not included in the analysis due to insufficient data. Fig 4 shows the missing-

ness distribution of the key UPDRS variables.

Three cohorts of subjects were used: Group 1 = {de novo PD Subjects with a diagnosis of PD

for two years or less who are not taking PD medications}, N1 = 263; Group 2 = {PD Subjects

with Scans without Evidence of a Dopaminergic Deficit (SWEDD)},N2 = 40; Group 3 = {Control

Prediction of Parkinson's Disease Using Big Data
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Fig 3. Overview of the global shape analysis (GSA) pipeline workflow for automated extraction of 280 neuroimaging biomarkers for 28 regions
within each brain hemisphere and five complementary shapemorphometry metrics. Insert images illustrate examples of the nested processing steps
and the textual, visual and statistical output generated by the pipeline protocol.

doi:10.1371/journal.pone.0157077.g003

Table 1. Summary of UPDRS ratings.

UPDRS ratings Missing

Part I Uses 13 questions to measures non-motor aspects of experiences of daily living. It has
two parts—Part 1A (neuropsychiatric symptoms) and Part IB (non-motor symptoms)

47.5%

Part II Captures motor aspects of experiences of daily living (dressing, hygiene, tremor,
freezing)

47.6%

Part III Neurological motor examination (speech, rigidity, movement of extremities, and posture) 48.2%

Part IV Motor complications (dyskinesia and motor fluctuations) 80.7%

doi:10.1371/journal.pone.0157077.t001
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Subjects without PD who are 30 years or older and who do not have a first degree blood relative

with PD},N3 = 127. The longitudinal PPMI dataset (e.g., clinical, biological and imaging data) was

collected at PPMI clinical sites at screening, baseline (time = 0), 12, 24, and 48 month follow-ups.

In the supplementary materials, we include a complete list of raw and derived data elements used

in our analytics (Data-elements,meta-data, complete aggregated datasets,Data A in S1 File).

Data management

University of Michigan Institutional Review Board (IRB) reviewed and approved this study.

Written informed consent was not required by individual study participants as the PPMI ini-

tiative manages the anonymization and de-identification and processing of patient records/

information prior to data distribution and analysis. All PPMI data components were down-

loaded separately from the PPMI repository into a secure computational server managed by

the Statistics Online Computational Resource (SOCR) [37–39]. Data formats included text,

tabular, binary and ASCII files containing raw imaging, genetics, clinical and meta-data.

According to meta-data and de-identified unique subject IDs, in-house scripts were imple-

mented for data fusion and linking data elements from different sources. Inconsistencies and

inhomogeneities were resolved ad hoc to ensure that the aggregated data were harmonized

enabling subsequent multivariate imputation (assuming data missing at random). Extreme

outliers were identified and corrected, as appropriate, by either imputing the erroneous values,

replacing them with a linear model prediction for the corresponding cohort, or removing the

case from the study. Intermediate results from pipeline workflow, R-scripts and Graphical

user-interface tools were temporarily stored to complete the testing, validation and verification

processes. As a major focus of the study was the supervised classification of PD patients and

Fig 4. Histogram of missing rates of the 64 top-level UPDRS variables (medianmissing rate* 0.5).

doi:10.1371/journal.pone.0157077.g004
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asymptomatic controls where patients outnumbered controls 3:1, we used group size rebalanc-

ing protocols to reduce potential bias and limit spurious effects due to cohort sample-size vari-

ations [40, 41]. The R package SMOTE (Synthetic Minority Over-sampling TEchnique) [42]

enables learning from imbalanced datasets by creating synthetic instances of the under sampled

class (e.g., controls). Most of our cohort comparisons were done on stratified data–by cohort-

definition (HC vs PDs, or HC vs. Patients (PDs + SWEDDs)) and by cohort-size (raw unbal-

anced comparisons, or comparisons of SMOTE-rebalanced group sizes).

Imputation

Depending on the cause of missingness in the data three alternative strategies for data imputa-

tion were utilized. In general, cases (subjects) or data elements (variables) with< 50% com-

pleteness were excluded from the study. Multivariate multiple imputation [43] was applied for

missing data that involved data-simulation to replace each missing data point with a set of

m> 1 plausible values drawn from (estimated) predictive distribution (univariate or joint mul-

tivariate). As the imputed values do not introduce biases, the result of multivariate multiple

imputation enables the analysis of a complete dataset that has the same joint distribution of the

original data (assuming missingness is at random). Scientific inference based on the imputed

data (e.g., estimates of standard errors, p-values, likelihoods) is valid because it incorporates

uncertainty due to the missing data and because it relies on efficient estimators. The efficiency

of an estimator represents the minimum possible variance for the estimator divided by its

actual variance and directly affects the subsequent statistical inference. The efficiency of impu-

tation-based estimators is 1þ
g

m

� ��1

, wherem and γ represent the fraction of missing informa-

tion and the number of imputations, respectively [44]. For example, for 50% missing

information (γ = 0.5), a high rate of incompleteness, andm = 5 imputations, we expect to

achieve 91% efficiency (suggesting that the variances of these estimators are close to minimum,

efficiency* 1). In our experiments, we used the R-packages MICE [45] and MI [46] to per-

formm = 5 imputations, as necessary.

The longitudinal analyses required imputing the missing neuroimaging data. This was

accomplished by computing two separate regression models (patients and controls, separately)

for predicting the baseline to follow-up relationships, VMonth 24

i � VBaseline
i , for each ROI-metric

pair (denoted here as a variable, Vi), using the available data. This was necessary as not all sub-

jects (controls or patients) had repeated/longitudinal imaging data, and some had incongruent

records, e.g., 6, 18, 24, or 36 month data. Thus, we imputed the missing imaging data for sub-

jects with incomplete data using the linear model corresponding to control or patient cohort.

Predictive Analytics

We used model-based and model-free approaches for predictive analytics. The model-based

approaches included generalized linear models (GLM) [47], mixed effect modeling with

repeated measurements (MMRM) [48, 49], change-based models [50], and generalized esti-

mating equations (GEE) [51]. The model-free predictive analytics involved forecasting [52,

53], classification [54], and data mining [55]. The specific model-free methods we tested

include AdaBoost [56], support vector machine (SVM) [57], Naïve Bayes [58], Decision Tree

[59], KNN [60], and K-Means [61] classifiers. Both types of approaches (model-based or

model-free) facilitate classification, prediction, and outcome forecasting (e.g., disease state)

using new or testing data containing the same clinical, demographic, imaging and phenotypic

data elements.

The model-based analyses required preprocessing to extract critical features from the large

and complex integrated dataset. This (unsupervised) feature-selection was accomplished using

Prediction of Parkinson's Disease Using Big Data
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the R-package CARET (classification and regression training) [62], which ranks all data ele-

ments included in the aggregated collection. This variable ranking is based on a cost function

that is determined by a training set of an SVM with a linear kernel. This score is used iteratively

(until certain classification accuracy is reached) to drop features with lower ranks and effec-

tively sift out the most relevant features that are ultimately included in the final feature set of a

user-specified dimension.

Our change-based models use relative-change, instead of raw-score or average-score across

time, of all longitudinal variables involved in the prediction modeling. For instance, we used

the following formula to compute the relative-change (Δ): DUi
¼

UMonth 24

i
�Ubaseline

i

Ubaseline
i

, for each sub-

ject’s UPDRS score (Ui). Our confirmatory analyses used specific imaging variables previously

implicated in Parkinson’s disease. These included regions of interest (ROIs), like bilateral supe-

rior parietal gyrus, putamen, and caudate [63, 64], and average-area and volume as ROI mor-

phometry metrics [65, 66], which are less variable, but also less sensitive compared to the more

exotic shape morphometry measures like fractal dimension, curvedness, or shape index [33].

Validation

In addition to optimizing the accuracy of a learning-based classifier on a training dataset, one

needs to estimate its expected predictive performance using prospective (testing) data. Optimal

data classification depends on many things including the choice of a classifier, model selection,

the estimates of the bias, and the precision of the results. There is often a tradeoff between abso-

lute prediction accuracy (precision) using training data with a classification reliability, as the

desired high-precision (low bias) and low variance (high reliability) may not be simultaneously

attainable [67, 68]. Statistical n -fold cross-validation [69, 70] is an alternative strategy for validat-

ing an estimate, a classification or a product without the need for a completely new prospective

dataset where the predicted estimate can be tested against a gold-standard. Cross-validation relies

on an n -fold partition of the available (retrospective) dataset. For each of n experiments, the

algorithm uses n – 1 folds for training the learning technique and the last fold of the data for test-

ing its accuracy. Fig 5 shows a schematic of this n = 5 fold cross validation protocol. A random

subsampling splits the entire dataset into n samples of equal size. For each data split we retrain

the gold-standard classifier with the training examples and then estimate the error, Ei (predicted

vs. gold-standard), using the test cases. The final (true) error estimate of the classification is

obtained by averaging of the individual error estimates: E ¼ 1

n

Pn

i¼1
Ei. Note that all the cases in

the dataset are eventually used for both training and testing in the iterative n -fold cross-valida-

tion protocol. Larger n leads to large computational complexity and yields more accurate classifi-

cation estimates (low bias), however, its reliability may be poor (variance of the true error rate

may be larger). On the other hand, fewer number of folds leads to computationally attractive

solutions with high reliability (low estimator variance), however, the bias of the estimator will be

substantial (potentially high bias). In practice, we used the R package crossval (http://cran.r-

project.org/package=crossval) with n = 5 for the number of cross-validation folds.

Scientific Inference

Scientific inference (aka inferential reasoning) is a rational process linking core principles

(knowledge), observed phenomena (data), and analytic representations (models), and can be

conducted deductively or inductively [71]. Deductive scientific inference relies on formulating a

hypothesis of system behavior a priori, and then testing the hypothesis’ validity. Thus, deduc-

tive scientific inference is objective, but it restricts our knowledge within the limited scope of

the a priori hypotheses. Big Data inference frequently encompasses broad, diverse and novel
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discoveries that may or may not be anticipated, and so deductive approaches are overly restric-

tive in this context. The alternative, inductive scientific inference, depends upon the observed

data itself to derive or suggest the most plausible conclusion, relation or pattern present in the

phenomenon of interest. Evidence-based inductive reasoning subjectively transforms observa-

tions into a (forecasted) truth. Hence, inductive inference about prospective, complementary

or unobserved states of the process has broader scope than the observed data used to derive

these conclusions. Although inductive inference may be used to inform exploratory analytics

(formulating new hypotheses, acquiring new knowledge, and predicting the state of new or

partial data), it does not by itself support confirmatory analytics (e.g., making conclusive state-

ments about the process, or teasing out causal effects). Our inductive approach to Big Data ana-

lytics provides more flexibility in a broader scope of inquiries, but additional validation and

replication using other datasets are warranted. This approach is more suitable for large, com-

plex and heterogeneous data. It provides the means of differentiating, classifying and predicting

outcomes (e.g., diagnosis) by obtaining efficient data-driven estimates of likelihoods, probabili-

ties and parameters describing the joint variability of the entire dataset.

Results

Data assembly

Table 2 summarizes the methods, sample-sizes and characteristics of the main data ensembles

used to test the model-based and model-free analytic approaches.

Exploratory Data Analytics

Tables 3 and 4 show the distributions of genders and their differences across the three research

cohorts (HC, PD, SWEDD) indicating that there were not substantial gender deviations.

Fig 5. Schematic of iterative data splitting statistical n-fold cross-validation protocol.

doi:10.1371/journal.pone.0157077.g005
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There were no significant weight (F(2,427) = 0.06, p> 0.05) or age (F(2,427) = 0.21, p> 0.05)

differences among the cohorts. Table 5 summarizes the statistical differences between the main

3 cohorts in this study in several demographic, genetic and clinical variables. Only the cognitive

scores (COGSTATE, COGDECLN, COGDXCL) were significantly different between the HC,

PD, SWEDD groups.

Our attempts to reduce the dimensionality of the complete dataset using classical methods

were not very successful. A principal component analysis (PCA) [72] did not generate useful

results to reduce the enormous dimensionality of the data (the first 20 components only

explained 2/3 of the total variation). A Learning Vector Quantization (LVQ) [73] model was

employed to rank the variable features by their importance, however, the result showed equiva-

lent “importance” among most data elements (e.g., the top 10 features had similar “impor-

tance” as the next 10 features). The results of using Recursive Feature Elimination (RFE) [74]

to build models, with cohort (research group) as the outcome required over 200 variables to get

marginal discrimination power (accuracy = 0.6587). Hence, we did not pursue further

dimensionality reduction.

Model-based Analysis

We fit logistic regression models to predict the diagnostic outcome (either HC vs. PD or HC

vs. PD+SWEDD). The resulting models had low predictive value and high Akaike Information

Criterion (AIC) values [75], and remained largely unchanged when groups of covariates were

excluded by reducing the model complexity. Next we tried feature selection using the hill-

climbing search [76], followed by a generalized linear mixed model approach with genotype of

rs11868035 (chr17) as a random effect. There were four significant diagnostic predictors (using

a default false-positive rate of α = 0.05): L_superior_parietal_gyrus_ComputeArea, L_superior_-

parietal_gyrus_Volume, R_superior_parietal_gyrus_AvgMeanCurvature, and

Table 2. Outline of the core study designs and data characteristics.

Inference Type Methods Comments on Data Restrictions # of
Cases

Model-based or
model-free
inference

Change-model (HC vs. PD or
PD+SWEDD) GLM, MMRM or
classification

Imaging data limited to bilateral surface-area, curvature, shape-index, curvedness and
volume for the insular cortex and the cingulate gyrus

423

Average between
cohort differences

GEE UPDRS data limited to the following top-level variables: Part_I_Summary,
Part_II_Patient_Questionnaire_Summary, Part_III_Summary, X_Assessment_Non.
Motor_Epworth_Sleepiness_Scale_Summary, X_Assessment_Non.
Motor_Geriatric_Depression_Scale_GDS_Short_Summary

406

Model-free Various classifiers (Raw) unbalanced and rebalanced (SMOTE) groups, all data elements with and without
UPDRS (to contrast the power of no-UPDRS predictions)

423

Legend: HC = healthy controls; PD+SWEDD = (pooled cohort) Parkinson’s Disease and scans without evidence of dopaminergic deficit; GLM = generalized

linear model; MMRM = Mixed-effect Model Repeat Measurement; GEE = generalized estimating equation; UPDRS = unified Parkinson's disease rating

scale.

doi:10.1371/journal.pone.0157077.t002

Table 3. Gender Distributions.

Cohort Total

Gender HC PD SWEDD

F 84 170 23 277

M 39 93 14 146

Total 123 263 37 423

doi:10.1371/journal.pone.0157077.t003
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R_superior_parietal_gyrus_Curvedness (syntax encodes the labels of hemisphere, region and

morphometry measure), all representing derived neuroimaging biomarkers. However, only the

intercept remained significant by refitting the model including just these four predictors as

fixed effects, and the same genotypic random effect. This indicates the unstable nature of the

relation between response (diagnosis) and predictors (4 imaging covariates).

As another model-based prediction technique, generalized estimating equation (GEE)

modeling offers an alternative to logistic regression. GEE models do not generate likelihood

values for their estimates. Hence, the GEE results that can be directly compared to other mod-

els (e.g., using log-likelihood tests). Although GEE is useful as a confirmatory analysis of aver-

age population differences, it cannot be used to predict individual disease outcome using its

Table 4. Gender Differences by Cohort.

Statistics df Value Prob

χ
2 2 0.7 0.705

Likelihood Ratio χ2 2 1.1575 0.5606

Mantel-Haenszel 1 1.0453 0.3066

doi:10.1371/journal.pone.0157077.t004

Table 5. Between-cohort differences in some demographic, genetic and clinical variables.

Variable Categories/Classes HC PD SWEDD Exact Fisher's Test (p-value)

sex 1 84 170 23 0.711

2 39 93 14

chr12_rs34637584_GT 0 123 259 37 0.523

1 0 4 0

chr17_rs11868035_GT 0 67 127 15 0.189

1 40 107 20

2 16 29 2

chr17_rs11012_GT 0 84 176 28 0.733

1 37 78 8

2 2 9 1

chr17_rs393152_GT 0 77 160 26 0.904

1 40 89 10

2 6 14 1

chr17_rs12185268_GT 0 80 163 26 0.906

1 39 88 10

2 4 12 1

chr17_rs199533_GT 0 82 167 26 0.779

1 39 86 10

2 2 10 1

COGSTATE Dementia (PDD) 0 5 0 7.60E-08

Mild Cognitive Impairment (PD-MCI) 2 46 12

Normal Cognition (PD-NC) 121 212 25

COGDECLN No 121 230 31 0.00025322

Yes 2 33 6

FNCDTCOG No 121 251 33 0.04540301

Yes 2 12 4

COGDXCL 10% - 49% 0 5 0 0.000547062

50% - 89% 5 45 7

90% - 100% 118 213 30

doi:10.1371/journal.pone.0157077.t005
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parameter estimates, even though the latter are consistent with respect to alterations of the var-

iable correlation structure. At the same time, GEE is computationally simpler (compared to

GLM, GEE uses quasi-likelihood estimation, rather than maximum likelihood estimation, or

ordinary least squares to estimate the model parameters) and does not require a priori knowl-

edge of the joint multivariate distribution [77]. We used the R package geeglm (https://cran.r-

project.org/web/packages/geepack/geepack.pdf) for our GEE model and the results are illus-

trated on Table 6.

Using the longitudinal neuroimaging data (baseline, 12 and 24 follow ups), along with base-

line UPDRS, we also fit GEE (handles missing data) and GLMM (requires balanced data) mod-

els (423 cases) to get a binary classification of subject diagnosis. Table 7 shows the results of

both experiments.

Table 8 includes the results of a stepwise logistic regression model selection (using the ste-

pAIC function in the MASS R package). The AIC of the final model was reduced to

AIC = 170.57, compared to AIC = 212.45 of the initial complete GLM logistic regression

model. The small, but negative, effect of Age, and the larger, but positive, effects of UPDRS

(Part II and Part III summaries) indicate that an increase of age and decrease summary

UPDRS scores are associated with presence (or higher severity) of Parkinson’s.

Model-free Classification

Table A in S1 File includes the complete results from the machine learning based classification

results using 24 different stratifications, 6(methods) × 2(types) × 2(groups), of the integrated

PPMI dataset. Specifically, we tested 6 alternative classifiers including AdaBoost [56], SVM

[57], Naïve Bayes [58], Decision Tree [59], KNN [60] and K-Means [61]. A summary of the

best classification results is shown in Table 9. SVM and AdaBoost methods performed

extremely well in automatically classifying new cases into controls or patients with simulta-

neously very low false-positive and false-negative predictions (high accuracy, precision and

odds to detect Parkinson’s using the multi-source PPMI data). We computed a number of met-

rics to quantify the power of all classification results–false-positive (FP), true-positive (TP),

true-negative (TN), false-negative (FN), accuracy, sensitivity, specificity, positive and negative

predictive value (PPV/NPV), and log odds ratio (LOR).

Prediction

In the supplementary materials we provide the complete descriptions of the model-based and

model-free classification approaches (Classification Results, Table A and Fig A in S1 File). Fig

6 contains a summary illustrating the format of the predictive classification methods explicitly

identifying the critical data elements (with high weight coefficients) and their individual

explanatory power (binary class distributions), see alsoData B in S1 File (Classifier informa-

tion of AdaBoost). We have developed analysis and synthesis R-scripts to invoke, save and test

the SVM and AdaBoost classifiers. The analysis script estimates the classification parameters

Table 6. Most significant GEEmodel coefficients for covariates contributing to segregating mean cohort differences.

Estimate Std.err Wald Pr(>|W|)

(Intercept) -7.2397 1.7924 16.32 5.40E-05

chr12_rs34637584_GT -38.8454 1.6404 560.78 <2.00E-16

chr17_rs393152_GT 1.1731 0.5006 5.49 0.01911

UPDRS_part_II -1.0406 0.1688 38.01 7.00E-10

UPDRS_part_III -0.6709 0.0622 116.36 <2.00E-16

doi:10.1371/journal.pone.0157077.t006
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Table 7. GEE and GLMM predictivemodel summaries.

GEE GLMM

Estimate Std.err Wald Pr(>|W|) AIC BIC logLik Deviance Df.resid

(Intercept) 1.117257 0.723184 2.39 0.12237 193.8 380.9 -64.9 129.8 2530

L superior parietal gyrus ComputeArea 1.400402 1.497027 0.88 0.34955 Fixed Effects: Estimate Pr(>|z|)

L superior parietal gyrus Volume -2.525902 1.359074 3.45 0.06309 (Intercept) -7.82E
+01

0.99904

R superior parietal gyrus ComputeArea 1.164381 0.976521 1.42 0.23311 L_superior_parietal_gyrus_ComputeArea -1.94E
+00

0.77698

R superior parietal gyrus Volume -0.451386 1.007911 0.2 0.65427 L_superior_parietal_gyrus_Volume 2.34E+00 0.74594

L putamen ComputeArea 0.496793 0.713507 0.48 0.48626 R_superior_parietal_gyrus_ComputeArea -1.36E-01 0.98267

L putamen Volume -0.61937 0.83991 0.54 0.46086 R_superior_parietal_gyrus_Volume 1.31E+00 0.84431

R putamen Volume 0.836431 0.946288 0.78 0.37675 L_putamen_ComputeArea -3.63E
+00

0.52797

R putamen ShapeIndex 0.56228 0.354731 2.51 0.11295 L_putamen_Volume 2.84E+00 0.58167

L caudate ComputeArea -0.413876 1.746183 0.06 0.81264 R_putamen_Volume -2.95E-01 0.93113

L caudate Volume 1.580367 1.540474 1.05 0.30494 R_putamen_ShapeIndex -2.06E-01 0.87846

R caudate ComputeArea 0.155381 1.410379 0.01 0.91227 L_caudate_ComputeArea -6.77E
+00

0.39352

R caudate Volume -1.804119 1.502705 1.44 0.22991 L_caudate_Volume 3.38E+00 0.65557

chr12 rs34637584 GT 35.800527 2.982947 144.04 <2.00E-
16

R_caudate_ComputeArea 5.30E+00 0.53451

chr17 rs11868035 GT -0.716443 0.407688 3.09 0.07886 R_caudate_Volume -2.08E
+00

0.78918

chr17 rs11012 GT -0.431071 0.891313 0.23 0.62864 chr12_rs34637584_GT -4.51E
+00

0.99272

chr17 rs393152 GT -1.230197 0.594327 4.28 0.03846 chr17_rs11868035_GT -4.92E-01 0.76636

chr17 rs12185268 GT 2.556489 1.024266 6.23 0.01256 chr17_rs11012_GT 7.34E-01 0.82913

chr17 rs199533 GT -0.883482 0.889914 0.99 0.32082 chr17_rs393152_GT 2.92E+00 0.39461

Sex 1.808176 0.577873 9.79 0.00175 chr17_rs12185268_GT 3.02E+00 0.60026

Weight 0.473417 0.307536 2.37 0.12371 chr17_rs199533_GT -2.90E
+00

0.55589

Age -1.332754 0.330977 16.21 5.70E-05 Sex 1.09E+00 0.68982

UPDRS Part I Summary Score
Baseline

-3.380284 0.72056 22.01 2.70E-06 Weight 1.88E+00 0.16203

UPDRS Part II Patient Questionnaire
Summary Score Baseline

7.210265 1.560543 21.35 3.80E-06 Age 1.83E+00 0.16687

UPDRS Part III Summary Score
Baseline

6.603029 2.144869 9.48 0.00208 UPDRS_part_I 3.29E-01 0.84611

FID IID 0.000757 0.001309 0.33 0.56317 UPDRS_part_II -1.28E
+01

0.0014

COGSTATE -7.918928 1.672468 22.42 2.20E-06 UPDRS_part_III -2.09E
+01

0.00026

COGDECLN -4.720291 1.398451 11.39 0.00074 FID_IID -1.60E-03 0.62892

FNCDTCOG 32.085919 6.647111 23.3 1.40E-06 COGSTATE 9.42E+00 0.23984

COGDXCL -0.489857 1.434844 0.12 0.7328 COGDECLN -4.48E
+00

0.27759

EDUCYRS 0.07841 0.099566 0.62 0.43098 FNCDTCOG 8.71E+00 0.99989

COGDXCL -4.27E
+00

0.39832

EDUCYRS 3.68E-02 0.97715

(Continued)
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and saves their analytic representations as objects or files. The synthesis script loads the classi-

fier representation generated by the analysis script, imports prospective data (new subjects),

and generates class membership predictions (e.g., forecast subject diagnosis), which can be

evaluated on an individual or a cohort level.

The supplementary materials (S1 File, AdaBoost Model) include the varplots, representing

the impact of most influential predictors, for all eight studies– 2(variable collections), 2(patient

cohorts), and 2(cohort balance strategies). Fig 7 includes several illustrative examples (addi-

tional varplots are included in Fig B to Fig I in S1 File).

Statistical Validation

Using the R package crossval we performed n-fold cross validations with n = 5 and number of

repetitions 1� B� 5. As the outcome variable (diagnosis) was a factor, balanced sampling was

used where in each iteration all categories are represented proportionally. To enable the predic-

tive analytics, this statistical validation reports the stochastic estimates for each cross validation

run, averages over all cross validation runs, and their corresponding standard errors. All results

reported in Table 9 and Table A andData B in S1 File, include the average measures of 5-fold

cross-validation. Thus, the results are expected to be reproducible on prospective data as statis-

tical validation iteratively generates many random subsamples of the data where each subject

serves independently as a testing (for the analytic learning process) or a training (for the syn-

thesis prediction process) case in our classification protocol.

Discussion

This study utilized translational techniques to harmonize, aggregate, process and analyze com-

plex multisource imaging, genetics, clinical, and demographic data. Our ultimate aim was to

Table 7. (Continued)

GEE GLMM

Estimate Std.err Wald Pr(>|W|) AIC BIC logLik Deviance Df.resid

Estimated Correlation Parameters

Estimate Std.err

alpha 0.000159 0.000108

Number of clusters: 423 MaximumCluster

size: 3

doi:10.1371/journal.pone.0157077.t007

Table 8. Ultimate generalized linear logistic regressionmodel (using step-wise AIC selection) illustrates that some UPDRS summaries (Parts II
and III) along with Age play roles in explaining the diagnosis of participants.

Estimate Std.Dev. Z P(>|Z|)

(Intercept) 21.013 1796.808 0.01 0.9907

L_caudate_Volume 1.574 0.633 2.49 0.0129

R_caudate_ComputeArea -1.692 0.629 -2.69 0.0072

Sex 0.993 0.627 1.58 0.1134

Age -1.079 0.355 -3.04 0.0024

UPDRS_Part_I_Summary_Score_Baseline -0.835 0.485 -1.72 0.0848

UPDRS_Part_II_Patient_Questionnaire_Summary_Score_Baseline 7.92 1.791 4.42 9.80E-06

UPDRS_Part_III_Summary_Score_Baseline 5.25 0.901 5.83 5.70E-09

COGSTATEMild Cognitive Impairment (PD-MCI) -8.62 1796.809 0 0.9962

COGSTATENormal Cognition (PD-NC) -13.982 1796.807 -0.01 0.9938

FNCDTCOGYes -6.49 2.278 -2.85 0.0044

doi:10.1371/journal.pone.0157077.t008
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develop classification and predictive models for Parkinson’s disease using PPMI data. At this

point in time, the fundamental data science theory is not developed to allow us to jointly model

the initial dataset holistically and obtain predictive analytics based on the entire raw data.

Thus, our approach is based on analyzing the different types of data (e.g., genomics, imaging,

clinical) independently and extracting derived biomarkers for each class of data elements.

Then, we fused these derived biomarkers to generate homologous multidimensional signature

vectors for each case (participating subject), fitted model-based and trained model-free classifi-

ers, and finally internally validated the automated diagnostic labels using statistical n-fold cross

validation. This approached allowed us to circumvent sampling incongruency, incomplete data

elements, and complexities involved in the representation of multisource data.

Our results suggest that, at least in this situation of discriminating between Parkinson’s

patients and asymptomatic controls, the machine learning based model-free techniques gener-

ate more consistent and accurate diagnostic classifications and disease predictions compared to

model-based methods. SVM and AdaBoost generated high-fidelity predictive results automati-

cally identifying participants with neurodegenerative disorders based on multifaceted data.

This study demonstrates that extreme misbalances, in training data, between cohorts sample

sizes may impact substantially the classification results. Our approach involved developing an

end-to-end reproducible protocol based on open-source software and computational services

(e.g., R, Pipeline, SOCR). This pipeline workflow protocol is shared with the community to

facilitate external validation, promote open-science, and allow for collaborative contributions

to modify, expand or merge this protocol with other atomic tools, web-services, or more elabo-

rate study designs.

Our key findings suggest that a blend of clinical (e.g., Unified Parkinson's Disease Rating

Scale (UPDRS) scores), demographic (e.g., age), genetics (e.g., rs34637584, chr12), and derived

neuroimaging biomarker (e.g., cerebellum shape index) data contributed to the predictive ana-

lytics and diagnostic forecasting of Parkinson’s disease. A very interesting finding was that the

classification results were significantly improved when we used the SMOTE rebalanced data,

compared to the raw imbalanced cohort sizes. For example, when predicting HC vs. PD, the

SVM classifier for the rebalanced cohorts yielded accuracy = 0.96283391, sensitivity = 0.9403794

and specificity = 0.9796748. Whereas for the imbalanced (native group sizes), the SVM reliabil-

ity was much lower, accuracy = 0.75906736, sensitivity = 0.28455285, specificity = 0.98098859.

Similarly, and as expected, inclusion of UPDRS variables into the prediction analytics signifi-

cantly enhanced the classification reliability during the prediction synthesis phase. When

UPRDS data were included in the classification analysis they dominated the variable rankings,

as their weight coefficients were larger indicating their highly predictive PD-diagnostic charac-

teristics, see the supplementary materials for details (Data B in S1 File, AdaBoost Model). One

example of a single run of the AdaBoost classifier shows the significant contribution of UPDRS

data on accuracy of the model-free classification results, Table 10. These results indicate that

other (non-UPDRS) data elements may be associated with PD and more research would be

Table 9. Best machine learning based classification results (according to average measures of 5-fold cross-validation).

Classifier Cohorts Balance FP TP TN FN Accuracy Sensitivity Specificity PPV NPV LOR

adaboost PD vs. HC balanced 0.2 72.2 98.2 1.6 0.98954704 0.97831978 0.99796748 0.99723757 0.98396794 10.0058805

adaboost PD+SWEDD vs. HC balanced 1.2 72 97.2 1.8 0.9825784 0.97560976 0.98780488 0.98360656 0.98181818 8.08332861

adaboost PD vs. HC unbalanced 0.4 22.4 52.2 2.2 0.96632124 0.91056911 0.99239544 0.98245614 0.95955882 7.19197683

svm PD vs. HC balanced 2 69.4 96.4 4.4 0.96283391 0.9403794 0.9796748 0.9719888 0.95634921 6.63364135

adaboost PD+SWEDD vs. HC unbalanced 0.8 22.4 59.2 2.2 0.96453901 0.91056911 0.98666667 0.96551724 0.96416938 6.62466869

svm PD+SWEDD vs. HC balanced 2.8 67.2 95.6 6.6 0.94541231 0.91056911 0.97154472 0.96 0.93542074 5.851157

doi:10.1371/journal.pone.0157077.t009
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necessary to further improve the machine learning classifiers (in terms of their precision and

reliability). Another possible future direction is to examine the differences between PD and

SWEDD patients, early vs. late onset PD, and other cohort stratifications based on disease

stage, motor function, or health-related quality of life [78]. The timing of the observed imaging

changes, relative to the onset of disease symptoms, is a key point for further investigation. In

addition to its usefulness as a predictive diagnostic tool, this method may be included as a

potential biomarker, itself, when changes of non-UPDRS variables are observed following the

symptom manifestations.

Our results illustrates that mixtures of raw data elements and derived biomedical markers

provide a significant power to classify subject phenotypes (e.g., clinical diagnosis), even in situ-

ations where the data elements forming the basis of the clinical phenotypes are excluded (see

Tables 9 and 10). In addition to the importance of classical clinical variables, e.g., UPDRS

scores, several derived morphometric imaging measures associated with regional brain parcel-

lations, that have not been previously broadly studied or reported, show in our analyses as

important predictors of PD, e.g., cerebellum curvature, putamen, inferior frontal gyrus, and

Fig 6. Fragments of the analytical representations and class distributions of the AdaBoost classifier
(complete details are in Data B in S1 File, AdaBoost Classifier model (based on RWeka)) generated by the
first step (predictive analysis).

doi:10.1371/journal.pone.0157077.g006

Fig 7. (Partial) Varplots illustrating some of the critical predictive data elements for AdaBoost classifier predicting HC vs. (PD+SWEDD).

doi:10.1371/journal.pone.0157077.g007
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brain stem volume. At the same time, other cognitive (e.g., COGSCORE), demographic (e.g.,

EDUCYRS), and genotypic (e.g., chr12_rs34637584_GT), variables played a lesser role in the

machine learning based PD diagnostic classification.

Some brain regions, like the left hippocampus, appear as major predictive factors in segre-

gating both the pure PDs and PD+SWEDD cohorts from HC, in both raw imbalanced group

sizes, as well as in rebalanced cohorts. However, the accuracy of the patient-control classifica-

tion was much higher in the statistically rebalanced samples indicating a potential for signifi-

cant sample-size effects. As expected, inclusion of the most relevant clinical biomarkers

(UPDRS scores) into the training of all classification methods substantially increased the accu-

racy of the corresponding diagnostic prediction assessed using the testing data, Table A and

Fig A in S1 File.

Previous studies of predicting Parkinson’s diagnosis using machine learning, classification

and data-mining methods have reported 70–90% sensitivity in predicting the diagnosis [79]

using (1) stepwise logistic model classification based on olfactory function, genetic risk, family

history, and demographic variables [80]; (2) enhanced probabilistic neural networks based on

motor, non-motor, and neuroimaging data [81]; (3) machine learning methods based on voice

acoustics measures of vowel articulation (e.g., ratios of the first and second formants of the cor-

ner vowels i, u, and a, reflecting the movements of the tongue, lips, and jaw) [82], fuzzy k-near-

est neighbor and SVMmethods based on clinical, vocal and facial data [79], SVM diagnostic

classification based on proteomic profiling, mass spectrometry analysis of cerebrospinal fluid

peptides/proteins [83], Fisher-discriminant ratio feature extraction and least squares SVM

using brain imaging and demographic data [84], random forest classification based on gait and

clinical characteristics (e.g., age, height, body mass, and gender, walking speed, pathological

features) [85], booststrap resampling with relevance vector machine (RVM) for multiclass clas-

sification using neuroimaging and clinical data [86].

The novelty of our approach is rooted in the integration of heterogeneous multisource

imaging, clinical, genetics and phenotypic data, the realization of the importance of rebalancing

imbalanced cohorts, the evaluation of a wide class of diagnostic prediction techniques, and the

construction of an end-to-end protocol for data preprocessing, harmonization, analysis, high-

throughput analytics and classification. Testing, validation, modification and expansion of this

pipeline protocol by the entire community will ultimately serve to validate the reported find-

ings using new data. Most studies of complex human conditions demand a multispectral exam-

ination of environmental condition, (epi)genetic traits, clinical phenotypes, and other relevant

information (e.g., pathological reports, imaging, tests). In the case of automatic classification of

Parkinson’s disease, we demonstrated the importance of using such heterogeneous data to

accurately predict the observed clinical phenotypes using machine learning strategies. The

internal validation of our machine learning based classification of Parkinson’s patients suggests

that this approach generates more reliable diagnostic labels than previously reported methods,

as the accuracy, sensitivity and specificity of several classifiers exceed 95% for the rebalanced

cohorts. As we report, and save, the resulting models, these classifiers can be applied directly to

other datasets (with similar data elements), retrained and adapted to process data with

Table 10. Example of the impact of including/excluding UPDRS data on the accuracy of the AdaBoost classification.

Dataset sensitivity specificity accuracy

no UPDRS data 0.871794872 0.25 0.8203125

including UPDRS 1.0 0.96875 0.990024938

doi:10.1371/journal.pone.0157077.t010
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substantially different structural elements, or used for variable selection in other prospective

Parkinson’s disease studies.

Conclusions

In this study, we constructed an end-to-end protocol for data synthesis and analysis, manipula-

tion, fusion and aggregation, as well as processing and diagnostic forecasting. We used three

stratification strategies to examine the effects of patient groupings, imbalances of cohort sizes,

and the impact of UPDRS data on the reliability of the diagnostic classifications. Two designs

comparing the asymptomatic HC to patients were employed–HC vs. PD (alone) or HC vs. (PD

+SWEDD). The effects of cohort sizes were explored by separately modeling the default

(unbalanced) cohorts and the balanced cohort sizes (using statistical sample-size rebalancing).

Finally, we investigated the reliability of the classifiers to predict subject diagnosis with or with-

out using the UPDRS variables. This was important, as clinical PD diagnosis is heavily

impacted by the results of the UPDRS tests.

Aside from the critical importance of UPDRS scores as the basis for non-invasive clinical

diagnosis of Parkinson’s disease, there were three derived imaging biomarkers (paired hemi-

spheric, region of interest, and morphometry-measure indices) that consistently stood out as

important factors in the prediction of the final diagnostic outcome (across study-designs).

These were R_middle_orbitofrontal_gyrus_AvgMeanCurvature, L_supramarginal_gyrus_Sha-

peIndex, and L_superior_occipital_gyrus_AvgMeanCurvature. From the demographic factors,

Age showed a great consistency of impact in most experiments. Although we tried several alter-

native classifiers, AdaBoost consistently outperformed the others in most experiments. To

illustrate the impact of different variables on the automated diagnostic predictions based on

the AdaBoost machine learning classifier we tabulated the frequencies of data elements occur-

rence in the top-30 (most impactful) predictors for each of eight experiments. Fig 8 and Tables

A and B in S1 File show the frequency counts of how often each variable played a critical role

(top-30 variables only) in the predictive analytics. Higher frequency counts indicate more sig-

nificant overall impact. The eight experiments included comparing HC vs. patients (PD only,

or PD+SWEDD), statistically rebalanced or imbalanced (default) cohort sizes, and the use of

clinical data (UPDRS, Cognitive values). For a given experimental condition (e.g., comparing

HC vs. PD), there are four sub-experiments (one for each balancing strategy and with/without

use of clinical data). Thus, each data element takes on values between 0 (low impact) and 4

(high overall impact). Clearly there are derived neuroimaging biomarkers, UPDRS scores and

age that appear to be more consistent across different study designs, which may indicate their

overall importance in the predictive diagnostic analytics.

Prospective Validation

To complement our statistical validation and confirm the reproducibility of these findings,

new test data may be processed through the same methods/tools for predictive PD Big Data

analytics. For instance, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [87] and the

Global Alzheimer's Association Interactive Network (GAAIN) Consortium [88] have longitu-

dinal neuroimaging data including patients that developed PD during their monitoring. Other

multi-source, complex and heterogeneous data of neurodegenerative disorders containing at-

risk populations (e.g., patients with REM sleep behavior disorder some of which eventually

develop Parkinson’s [89]) may also be useful for a subsequent data-driven validation of these

models. Additional PD biospecimen, pathological, and amyloid-based imaging data can add to

the pool of complex data we used in this study to provide complementary biomolecular infor-

mation enhancing the detection, tracking, and forecasting of the disease. In this study, the
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Fig 8. Frequency plot of data elements that appear as more reliable predictors of subject diagnosis, ranked by counts using rebalanced URPRS
data (see Table B in S1 File for the complete numerical results).

doi:10.1371/journal.pone.0157077.g008
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model-free methods underwent cross-validation as an internal validation strategy. This may

potentially increase the risk for over-fitting and false discovery due to independent applications

of 6 techniques. Ultimately, an external validation, based on an independent sample or pro-

spective data, will be valuable to confirm our findings.

Handling incomplete data is always challenging, especially in Big Data studies, because the

cause of missingness and the approach to imputing the data may potentially introduce bias in

the results. In this study, we only used data that was mostly complete (50%� observed

rate� 100%) and imputed the missing data elements, see Table 1 and Fig 4. In our pre-

processing, we did examine the missingness patterns in the data, which did not indicate the

presence of strong non-random missing drivers. To validate the imputation process, we com-

pared the distributions of the native data elements to their corresponding imputed counter-

parts and examined the convergence of the multiple imputation protocol by comparing the

variance between chains (B) to the variance within chains (W). To control the number of

iterations within imputation chains, we used the standard diagnostic criterion in terms of

the potential scale reduction factor, R̂ ¼
ffiffiffi

P
W

p

� 1:1, where the marginal posterior variance,

P ¼ n�1

n
W þ 1

n
B, represents a weighted average of the between and within chain variability

[90]. In our model-free analyses, we did not rank the variables in terms of their importance

prior to preprocessing. The variable impact on classifying patients and controls was only

assessed at the end of the predictive analytics, when we reported their importance into the clas-

sification labeling (e.g., Fig 6, Table 10). Indeed, a deeper examination may be conducted into

the relation between variable missingness and impact.

Potential Limitations

The impact of extreme data heterogeneity, type and format complexity, non-random patterns

of missingness, or substantial confounding between multiple covariates may present challenges

and/or require substantial preliminary work to ensure sufficient starting congruency arrange-

ment allowing the application of our protocol to new testing data archives. An appropriate

computational platform, including functioning version of R 3.2.2, the Pipeline environment,

SOCR libraries, and the suite of neuroimaging processing tools included in the Global Shape

Analysis Pipeline workflow, is required to replicate these results or execute the same protocol

in prospective studies. We do provide free access to this environment via the Big Data Discov-

ery Science computational services at the Institute for Neuroimaging and Informatics (for

account application see http://pipeline.loni.usc.edu and http://pipeline.loni.usc.edu/get-

started/become-a-collaborator). Some of the imputation, rebalancing, or classification methods

may fail when encountering points of singularity (e.g., negative Hessian matrices, unstable con-

vergence, low-rank variance-covariance matrices). Resolving such cases is sometimes possible,

but may require certain technical expertise, appropriate training, experimentation, deep dive

into software documentation, or testing of alternative modules, software packages, or computa-

tional libraries mediating the failing processing step.

Resource Availability

All raw PPMI data is available from the PPMI consortium (www.ppmi-info.org/data). The computa-

tional protocol, source-code, scripts, and derived data we generated as part of this study, along with

the complete GSA pipeline workflow and corresponding R scripts, are available on GitHub BDDS

(https://github.com/BD2K/BDDS) and PBDA (https://github.com/SOCR/PBDA) repositories.

Longitudinal UPDRS data may provide powerful mechanisms to diagnose PD, track its pro-

gression, and perhaps determine the efficacies of various medical treatments. However, miss-

ing, incomplete and incongruent Big Data, including UPDRS scores, present substantial

Prediction of Parkinson's Disease Using Big Data

PLOS ONE | DOI:10.1371/journal.pone.0157077 August 5, 2016 23 / 28

http://pipeline.loni.usc.edu/
http://pipeline.loni.usc.edu/get-started/become-a-collaborator
http://pipeline.loni.usc.edu/get-started/become-a-collaborator
http://www.ppmi-info.org/data
https://github.com/BD2K/BDDS
https://github.com/SOCR/PBDA


analytic challenges. We have tested several strategies to deal with various Big Data barriers spe-

cifically involving PPMI demographics, clinical, genetics and neuroimaging data. There is a

clear need to carry out deeper studies exploring the progression of PD across time, investigate

techniques for subject-specific modeling using known cohort trends, replicate and expand pre-

viously reported findings, explore multinomial classification of PD phases of finely stratified

cohorts (e.g., HC, PD, SWEDD), and confirm the statistical validation by testing the classifiers

using prospective data (following an appropriate data-model harmonization). Our results dem-

onstrate that model-free machine learning classification methods outperform model-based

techniques in terms of the precision and reliability of predicting patient diagnosis in terms of

complex and heterogeneous data.
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