
Predictive big data analytics for supply chain 
demand forecasting: methods, applications, 
and research opportunities

Mahya Seyedan and Fereshteh Mafakheri* 

Introduction

Nowadays, businesses adopt ever-increasing precision marketing efforts to remain com-

petitive and to maintain or grow their margin of profit. As such, forecasting models have 

been widely applied in precision marketing to understand and fulfill customer needs and 

expectations [1]. In doing so, there is a growing attention to analysis of consumption 

behavior and preferences using forecasts obtained from customer data and transaction 

records in order to manage products supply chains (SC) accordingly [2, 3].

Supply chain management (SCM) focuses on flow of goods, services, and information 

from points of origin to customers through a chain of entities and activities that are con-

nected to one another [4]. In typical SCM problems, it is assumed that capacity, demand, 

and cost are known parameters [5]. However, this is not the case in reality, as there are 

uncertainties arising from variations in customers’ demand, supplies transportation, 

organizational risks and lead times. Demand uncertainties, in particular, has the great-

est influence on SC performance with widespread effects on production scheduling, 

Abstract 

Big data analytics (BDA) in supply chain management (SCM) is receiving a growing 
attention. This is due to the fact that BDA has a wide range of applications in SCM, 
including customer behavior analysis, trend analysis, and demand prediction. In this 
survey, we investigate the predictive BDA applications in supply chain demand fore-
casting to propose a classification of these applications, identify the gaps, and provide 
insights for future research. We classify these algorithms and their applications in sup-
ply chain management into time-series forecasting, clustering, K-nearest-neighbors, 
neural networks, regression analysis, support vector machines, and support vector 
regression. This survey also points to the fact that the literature is particularly lacking 
on the applications of BDA for demand forecasting in the case of closed-loop supply 
chains (CLSCs) and accordingly highlights avenues for future research.

Keywords: Demand forecasting, Supply chain management, Closed-loop supply 
chains, Big data analytics, Machine-learning

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/.

SURVEY PAPER

Seyedan and Mafakheri  J Big Data            (2020) 7:53  

https://doi.org/10.1186/s40537-020-00329-2

*Correspondence:   
f.mafakheri@concordia.ca 
Concordia Institute 
for Information Systems 
Engineering (CIISE), 
Concordia University, 
Montreal H3G 1M8, Canada

http://orcid.org/0000-0002-7991-4635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00329-2&domain=pdf


Page 2 of 22Seyedan and Mafakheri  J Big Data            (2020) 7:53 

inventory planning, and transportation [6]. In this sense, demand forecasting is a key 

approach in addressing uncertainties in supply chains [7–9].

A variety of statistical analysis techniques have been used for demand forecasting in 

SCM including time-series analysis and regression analysis [10]. With the advancements 

in information technologies and improved computational efficiencies, big data analytics 

(BDA) has emerged as a means of arriving at more precise predictions that better reflect 

customer needs, facilitate assessment of SC performance, improve the efficiency of SC, 

reduce reaction time, and support SC risk assessment [11].

�e focus of this meta-research (literature review) paper is on “demand forecasting” 

in supply chains. �e characteristics of demand data in today’s ever expanding and spo-

radic global supply chains makes the adoption of big data analytics (and machine learn-

ing) approaches a necessity for demand forecasting. �e digitization of supply chains 

[12] and incoporporation Blockchain technologies [13] for better tracking of supply 

chains further highlights the role of big data analytics. Supply chain data is high dimen-

sional generated across many points in the chain for varied purposes (products, supplier 

capacities, orders, shipments, customers, retailers, etc.) in high volumes due to plurality 

of suppliers, products, and customers and in high velocity reflected by many transac-

tions continuously processed across supply chain networks. In the sense of such com-

plexities, there has been a departure from conventional (statistical) demand forecasting 

approaches that work based on identifying statistically meannignful trends (character-

ized by mean and variance attributes) across historical data [14], towards intelligent 

forecasts that can learn from the historical data and intelligently evolve to adjust to 

predict the ever changing demand in supply chains [15]. �is capability is established 

using big data analytics techniques that extract forecasting rules through discovering the 

underlying relationships among demand data across supply chain networks [16]. �ese 

techniques are computationally intensive to process and require complex machine-pro-

grammed algorithms [17].

With SCM efforts aiming at satisfying customer demand while minimizing the total 

cost of supply, applying machine-learning/data analytics algorithms could facilitate pre-

cise (data-driven) demand forecasts and align supply chain activities with these predic-

tions to improve efficiency and satisfaction. Reflecting on these opportunities, in this 

paper, first a taxonmy of data sources in SCM is proposed. �en, the importance of 

demand management in SCs is investigated. A meta-research (literature review) on BDA 

applications in SC demand forecasting is explored according to categories of the algo-

rithms utilized. �is review paves the path to a critical discussion of BDA applications 

in SCM highlighting a number of key findings and summarizing the existing challenges 

and gaps in BDA applications for demand forecasting in SCs. On that basis, the paper 

concludes by presenting a number of avenues for future research.

Data in supply chains

Data in the context of supply chains can be categorized into customer, shipping, deliv-

ery, order, sale, store, and product data [18]. Figure 1 provides the taxonomy of supply 

chain data. As such, SC data originates from different (and segmented) sources such as 

sales, inventory, manufacturing, warehousing, and transportation. In this sense, compe-

tition, price volatilities, technological development, and varying customer commitments 
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could lead to underestimation or overestimation of demand in established forecasts [19]. 

�erefore, to increase the precision of demand forecast, supply chain data shall be care-

fully analyzed to enhance knowledge about market trends, customer behavior, suppli-

ers and technologies. Extracting trends and patterns from such data and using them to 

improve accuracy of future predictions can help minimize supply chain costs [20, 21].

Analysis of supply chain data has become a complex task due to (1) increasing mul-

tiplicity of SC entities, (2) growing diversity of SC configurations depending on the 

homogeneity or heterogeneity of products, (3) interdependencies among these entities 

(4) uncertainties in dynamical behavior of these components, (5) lack of information as 

relate to SC entities; [11], (6) networked manufacturing/production entities due to their 

increasing coordination and cooperation to achieve a high level customization and adap-

taion to varying customers’ needs [22], and finally (7) the increasing adoption of supply 

chain digitization practices (and use of Blockchain technologies) to track the acitivities 

across supply chains [12, 13].

Big data analytics (BDA) has been increasingly applied in management of SCs [23], for 

procurement management (e.g., supplier selection [24], sourcing cost improvement [25], 

sourcing risk management [26], product research and development [27], production 

planning and control [28], quality management [29], maintenance, and diagnosis [30], 

warehousing [31], order picking [32], inventory control [33], logistics/transportation 

(e.g., intelligent transportation systems [34], logistics planning [35], in-transit inventory 

management [36], demand management (e.g., demand forecasting [37], demand sensing 

[38], and demand shaping [39]. A key application of BDA in SCM is to provide accurate 

forecasting, especially demand forecasting, with the aim of reducing the bullwhip effect 

[14, 40–42].

Big data is defined as high-volume, high-velocity, high-variety, high value, and 

high veracity data requiring innovative forms of information processing that enable 

enhanced insights, decision making, and process automation [43]. Volume refers to 

the extensive size of data collected from multiple sources (spatial dimension) and 

Fig. 1 Taxonomy of supply chain data
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over an extended period of time (temporal dimension) in SCs. For example, in case 

of freight data, we have ERP/WMS order and item-level data, tracking, and freight 

invoice data. �ese data are generated from sensors, bar codes, Enterprise resource 

planning (ERP), and database technologies. Velocity can be defined as the rate of gen-

eration and delivery of specific data; in other words, it refers to the speed of data 

collection, reliability of data transferring, efficiency of data storage, and excavation 

speed of discovering useful knowledge as relate to decision-making models and algo-

rithms. Variety refers to generating varied types of data from diverse sources such 

as the Internet of �ings (IoT), mobile devices, online social networks, and so on. 

For instance, the vast data from SCM are usually variable due to the diverse sources 

and heterogeneous formats, particularly resulted from using various sensors in manu-

facturing sites, highways, retailer shops, and facilitated warehouses. Value refers to 

the nature of the data that must be discovered to support decision-making. It is the 

most important yet the most elusive, of the 5 Vs. Veracity refers to the quality of data, 

which must be accurate and trustworthy, with the knowledge that uncertainty and 

unreliability may exist in many data sources. Veracity deals with conformity and accu-

racy of data. Data should be integrated from disparate sources and formats, filtered 

and validated [23, 44, 45]. In summary, big data analytics techniques can deal with a 

collection of large and complex datasets that are difficult to process and analyze using 

traditional techniques [46].

�e literature points to multiple sources of big data across the supply chains with 

varied trade-offs among volume, velocity, variety, value, and veracity attributes [47]. 

We have summarized these sources and trade-offs in Table 1. Although, the demand 

forecasts in supply chains belong to the lower bounds of volume, velocity, and variety, 

however, these forecasts can use data from all sources across the supply chains from 

low volume/variety/velocity on-the-shelf inventory reports to high volume/variety/

velocity supply chain tracking information provided through IoT. �is combination 

of data sources used in SC demand forecasts, with their diverse temporal and spatial 

attributes, places a greater emphasis on use of big data analytics in supply chains, in 

general, and demand forecasting efforts, in particular.

�e big data analytics applications in supply chain demand forecasting have been 

reported in both categories of supervised and unsupervised learning. In supervised 

learning, data will be associated with labels, meaning that the inputs and outputs 

are known. �e supervised learning algorithms identify the underlying relationships 

between the inputs and outputs in an effort to map the inputs to corresponding out-

puts given a new unlabeled dataset [48]. For example, in case of a supervised learning 

model for demand forecasting, future demand can be predicted based on the histori-

cal data on product demand [41]. In unsupervised learning, data are unlabeled (i.e. 

unknown output), and the BDA algorithms try to find the underlying patterns among 

unlabeled data [48] by analyzing the inputs and their interrelationships. Customer 

segmentation is an example of unsupervised learning in supply chains that clusters 

different groups of customers based on their similarity [49]. Many machine-learn-

ing/data analytics algorithms can facilitate both supervised learning (extracting the 

input–output relationships) and unsupervised learning (extracting inputs, outputs 

and their relationships) [41].
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Demand management in supply chains

�e term “demand management” emerged in practice in the late 1980s and early 1990s. 

Traditionally, there are two approaches for demand management. A forward approach 

which looks at potential demand over the next several years and a backward approach 

that relies on past or ongoing capabilities in responding to demand [50].

In forward demand management, the focus will be on demand forecasting and plan-

ning, data management, and marketing strategies. Demand forecasting and planning 

refer to predicting the quantities and timings of customers’ requests. Such predictions 

aim at achieving customers’ satisfaction by meeting their needs in a timely manner [51]. 

Accurate demand forecasting could improve the efficiency and robustness of produc-

tion processes (and the associated supply chains) as the resources will be aligned with 

requirements leading to reduction of inventories and wastes [52, 53].

In the light of the above facts, there are many approaches proposed in the litera-

ture and practice for demand forecasting and planning. Spreadsheet models, statisti-

cal methods (like moving averages), and benchmark-based judgments are among these 

approaches. Today, the most widely used demand forecasting and planning tool is Excel. 

�e most widespread problem with spreadsheet models used for demand forecast-

ing is that they are not scalable for large-scale data. In addition, the complexities and 

uncertainties in SCM (with multiplicity and variability of demand and supply) cannot 

be extracted, analyzed, and addressed through simple statistical methods such as mov-

ing averages or exponential smoothing [50]. During the past decade, traditional solu-

tions for SC demand forecasting and planning have faced many difficulties in driving 

the costs down and reducing inventories [50]. Although, in some cases, the suggested 

solutions have improved the day’s payable, they have pushed up the SC costs as a burden 

to suppliers.

�e era of big data and high computing analytics has enabled data processing at a large 

scale that is efficient, fast, easy, and with reduced concerns about data storage and col-

lection due to cloud services. �e emergence of new technologies in data storage and 

analytics and the abundance of quality data have created new opportunities for data-

driven demand forecasting and planning. Demand forecast accuracy can be significantly 

improved with data-mining algorithms and tools that can sift through data, analyze the 

results, and learn about the relationships involved. �is could lead to highly accurate 

demand forecasting models that learn from data and are scalable for application in SCM. 

In the following section, a review of BDA applications in SCM is presented. �ese appli-

cations are categorized based on the employed techniques in establishing the data-drive 

demand forecasts.

BDA for demand forecasting in SCM

�is survey aims at reviewing the articles published in the area of demand and sales 

forecasting in SC in the presence of big data to provide a classification of the litera-

ture based on algorithms utilized as well as a survey of applications. To the best of 

our knowledge, no comprehensive review of the literature specifically on SC demand 

forecasting has been conducted with a focus on classification of techniques of data 

analytics and machine learning. In doing so, we performed a thorough search of the 
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existing literature, through Scopus, Google Scholar, and Elsevier, with publication 

dates ranging from 2005 to 2019. �e keywords used for the search were supply chain, 

demand forecasting, sales forecasting, big data analytics, and machine learning.

Figure  2 shows the trend analysis of publications in demand forecasting for SC 

appeared from 2005 to 2019. �ere is a steadily increasing trend in the number of 

publications from 2005 to 2019. It is expected that such growth continues in 2020. 

Reviewing the past 15 years of research on big data analysis/machine learning appli-

cations in SC demand forecasting, we identified 64 research papers (excluding books, 

book chapters, and review papers) and categorized them with respect to the method-

ologies adopted for demand forecasting. �e five most frequently used techniques are 

listed in Table 2 that includes “Neural Network,” “Regression”, “Time-series forecast-

ing (ARIMA)”, “Support Vector Machine”, and “Decision Tree” methods. �is table 

implies the growing use of big data analysis techniques in SC demand forecasting. It 

shall be mentioned that there were a few articles using multiple of these techniques.

It shall be mentioned that there are literature review papers exploring the use of big 

data analytics in SCM [10, 16, 23, 54–67]. However, this study focuses on the specific 

topic of “demand forecasting” in SCM to explore BDA applications in line with this 

particular subtopic in SCM.

As Hofmann and Rutschmann [58] indicated in their literature review, the key 

questions to answer are why, what and how big data analytics/machine-learning 
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Fig. 2 Distribution of literature in supply chain demand forecasting from 2005 to 2019

Table 2 Literature on  BDA/machine learning techniques for  supply chain demand 

forecasting (2005–2019)

Rank Technique Frequency

1 Neural networks 30

2 Regression 27

3 Time-series forecasting (ARIMA) 13

4 Support vector machine 8

5 Decision tree 8
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algorithms could enhance forecasts’ accuracy in comparison to conventional statisti-

cal forecasting approaches.

Conventional methods have faced a number of limitations for demand forecasting 

in the context of SCs. �ere are a lot of parameters influencing the demand in supply 

chains, however, many of them were not captured in studies using conventional methods 

for the sake of simplicity. In this regard, the forecasts could only provide a partial under-

standing of demand variations in supply chains. In addition, the unexplained demand 

variations could be simply considered as statistical noise. Conventional approaches 

could provide shorter processing times in exchange for a compromise on robustness and 

accuracy of predictions. Conventional SC demand forecasting approaches are mostly 

done manually with high reliance on the planner’s skills and domain knowledge. It would 

be worthwhile to fully automate the forecasting process to reduce such a dependency 

[58]. Finally, data-driven techniques could learn to incorporate non-linear behaviors and 

could thus provide better approximations in demand forecasting compared to conven-

tional methods that are mostly derived based on linear models. �ere is a significant 

level of non-linearity in demand behavior in SC particularly due to competition among 

suppliers, the bullwhip effect, and mismatch between supply and demand [40].

To extract valuable knowledge from a vast amount of data, BDA is used as an advanced 

analytics technique to obtain the data needed for decision-making. Reduced operational 

costs, improved SC agility, and increased customer satisfaction are mentioned among 

the benefits of applying BDA in SCM [68]. Researchers used various BDA techniques 

and algorithms in SCM context, such as classification, scenario analysis, and optimiza-

tion [23]. Machine-learning techniques have been used to forecast demand in SCs, sub-

ject to uncertainties in prices, markets, competitors, and customer behaviors, in order to 

manage SCs in a more efficient and profitable manner [40].

BDA has been applied in all stages of supply chains, including procurement, ware-

housing, logistics/transportation, manufacturing, and sales management. BDA consists 

of descriptive analytics, predictive analytics, and prescriptive analytics. Descriptive 

analysis is defined as describing and categorizing what happened in the past. Predic-

tive analytics are used to predict future events and discover predictive patterns within 

data by using mathematical algorithms such as data mining, web mining, and text min-

ing. Prescriptive analytics apply data and mathematical algorithms for decision-making. 

Multi-criteria decision-making, optimization, and simulation are among the prescriptive 

analytics tools that help to improve the accuracy of forecasting [10].

Predictive analytics are the ones mostly utilized in SC demand and procurement fore-

casting [23]. In this sense, in the following subsections, we will review various predic-

tive big data analytics approaches, presented in the literature for demand forecasting in 

SCM, categorized based on the employed data analytics/machine learning technique/

algorithm, with elaborations of their purpose and applications (summarized in Table 3).

Time-series forecasting

Time series are methodologies for mining complex and sequential data types. In time-

series data, sequence data, consisting of long sequences of numeric data, recorded 

at equal time intervals (e.g., per minute, per hour, or per day). Many natural and 
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Table 3 Literature on  applications of  predictive BDA in  SC demand forecasting (2005 

to 2019)

Literature (2005–2019) Predictive BDA techniques Demand forecasting
SC application

ANN Clustering KNN Regression SVM SVR TSF

Chang et al. [91] ✔ Printed circuit boards

Levis and Papageorgiou 
[116]

✔ Electrical appliances

Chi et al. [117] ✔ Calendars

Sun et al. [118] ✔ Fashion retails

Efendigil et al. [119] ✔ Durable consumer goods

Lee and Ou-Yang [120] ✔ Supplier bidding

Chen et al. [121] ✔ Wafer tests

Thomassey [105] ✔ Clothings

Wu [95] ✔ Cars

Wu [122] ✔ Cars

Guanghui [96] ✔ ✔ Paper and Cards

Babai et al. [123] ✔ Superstore retails

Kourentzes [124] ✔ Automotive spare parts

Lau et al. [125] ✔ Gasoline

Da Veiga et al. [73] ✔ Dairy products

Jun et al. [37] ✔ Hybrid cars

Ma et al. [71] ✔ Smartphones

Arunraj and Ahrens [126] ✔ ✔ Food retails

Blackburn et al. [7] ✔ Chemicals

Gaur et al. [81] ✔ Walmart SC

Islek and Oguducu [100] ✔ Dried nuts and fruits

Murray et al. [74] ✔ Bulk materials

Ramos et al. [75] ✔ Retails sector (footwear)

Saha et al. [90] ✔ Server manufacturing

Di Pillo et al. [127] ✔ ✔ Retails sector

Liu et al. [86] ✔ Furniture

Nikolopoulos et al. [80] ✔ Automotive spare parts

da Veiga et al. [128] ✔ ✔ Foodstuff retails

Vhatkar and Dias [84] ✔ ✔ Oral care products

Amirkolaii et al. [88] ✔ Aircraft spare parts

Bohanec et al. [17] ✔ ✔ Toys

Chen and Lu [98] ✔ Computer retails

Huber et al. [19] ✔ ✔ Bakery products

Chawla et al. [129] ✔ Walmart

Huang et al. [89] ✔ ✔ E-logistics

Loureiro et al. [102] ✔ ✔ ✔ Fashion retails

Pereira et al. [130] ✔ Scrap tires

Yang and Sutrisno [93] ✔ ✔ Perishable goods

Villegas et al. [94] ✔ ✔ Personal care products

Yuan et al. [87] ✔ E-logistics

Fanoodi et al. [131] ✔ ✔ Blood cells (platelet)

Kilimci et al. [101] ✔ ✔ ✔ Discount stores

Merkuryeva et al. [92] ✔ ✔ Pharmaceuticals

Puspita et al. [104] ✔ ✔ Forklifts

Punam et al. [103] ✔ ✔ ✔ Online grocery

Sharma and Singhal 
[132]

✔ ✔ Automotive/industrial 
lubricants
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human-made processes, such as stock markets, medical diagnosis, or natural phenom-

enon, can generate time-series data. [48].

In case of demand forecasting using time-series, demand is recorded over time at 

equal size intervals [69, 70]. Combinations of time-series methods with product or mar-

ket features have attracted much attention in demand forecasting with BDA. Ma et al. 

[71] proposed and developed a demand trend-mining algorithm for predictive life cycle 

design. In their method, they combined three models (a) a decision tree model for large-

scale historical data classification, (b) a discrete choice analysis for present and past 

demand modeling, and (c) an automated time-series forecasting model for future trend 

analysis. �ey tested and applied their 3-level approach in smartphone design, manufac-

turing and remanufacturing.

Time-series approach was used for forecasting of search traffic (service demand) 

subject to changes in consumer attitudes [37]. Demand forecasting has been achieved 

through time-series models using exponential smoothing with covariates (ESCov) to 

provide predictions for short-term, mid-term, and long-term demand trends in the 

chemical industry SCs [7]. In addition, Hamiche et al. [72] used a customer-responsive 

time-series approach for SC demand forecasting.

In case of perishable products, with short life cycles, having appropriate (short-term) 

forecasting is extremely critical. Da Veiga et al. [73] forecasted the demand for a group 

of perishable dairy products using Autoregressive Integrated Moving Average (ARIMA) 

and Holt-Winters (HW) models. �e results were compared based on mean absolute 

percentage error (MAPE) and �eil inequality index (U-�eil). �e HW model showed a 

better goodness-of-fit based on both performance metrics.

In case of ARIMA, the accuracy of predictions could diminish where there exists a 

high level of uncertainty in future patterns of parameters [42, 74–76]. HW model fore-

casting can yield better accuracy in comparison to ARIMA [73]. HW is simple and easy 

to use. However, data horizon could not be larger than a seasonal cycle; otherwise, the 

accuracy of forecasts will decrease sharply. �is is due to the fact that inputs of an HW 

model are themselves predicted values subject to longer-term potential inaccuracies and 

uncertainties [45, 73].

Clustering analysis

Clustering analysis is a data analysis approach that partitions a group of data objects into 

subgroups based on their similarities. Several applications of clustering analysis has been 

reported in business analytics, pattern recognition, and web development [48]. Han et al. 

[48] have emphasized the fact that using clustering customers can be organized into 

groups (clusters), such that customers within a group present similar characteristic.

Table 3 (continued)

Literature (2005–2019) Predictive BDA techniques Demand forecasting
SC application

ANN Clustering KNN Regression SVM SVR TSF

Tanizaki et al. [133] ✔ Restaurant supplies

Wang and Chen [134] ✔ ✔ ✔ Chip manufacturing

Zhu et al. [15] ✔ ✔ ✔ Seeds
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A key target of demand forecasting is to identify demand behavior of customers. 

Extraction of similar behavior from historical data leads to recognition of customer clus-

ters or segments. Clustering algorithms such as K-means, self-organizing maps (SOMs), 

and fuzzy clustering have been used to segment similar customers with respect to their 

behavior. �e clustering enhances the accuracy of SC demand forecasting as the predic-

tions are established for each segment comprised of similar customers. As a limitation, 

the clustering methods have the tendency to identify the customers, that do not follow a 

pattern, as outliers [74, 77].

Hierarchical forecasts of sales data are performed by clustering and categorization of 

sales patterns. Multivariate ARIMA models have been used in demand forecasting based 

on point-of-sales data in industrial bakery chains [19]. �ese bakery goods are ordered 

and clustered daily with a continuous need to demand forecasts in order to avoid both 

shortage or waste [19]. Fuel demand forecasting in thermal power plants is another 

domain with applications of clustering methods. Electricity consumption patterns are 

derived using a clustering of consumers, and on that basis, demand for the required fuel 

is established [77].

K-nearest-neighbor (KNN)

KNN is a method of classification that has been widely used for pattern recognition. 

KNN algorithm identifies the similarity of a given object to the surrounding objects 

(called tuples) by generating a similarity index. �ese tuples are described by n attrib-

utes. �us, each tuple corresponds to a point in an n-dimensional space. �e KNN algo-

rithm searches for k tuples that are closest to a given tuple [48]. �ese similarity-based 

classifications will lead to formation of clusters containing similar objects. KNN can also 

be integrated into regression analysis problems [78] for dimensionality reduction of the 

data [79]. In the realm of demand forecasting in SC, Nikolopoulos et  al. [80] applied 

KNN for forecasting sporadic demand in an automotive spare parts supply chain. In 

another study, KNN is used to forecast future trends of demand for Walmart’s supply 

chain planning [81].

Arti�cial neural networks

In artificial neural networks, a set of neurons (input/output units) are connected to one 

another in different layers in order to establish mapping of the inputs to outputs by find-

ing the underlying correlations between them. �e configuration of such networks could 

become a complex problem, due to a high number of layers and neurons, as well as vari-

ability of their types (linear or nonlinear), which needs to follow a data-driven learning 

process to be established. In doing so, each unit (neuron) will correspond to a weight, 

that is tuned through a training step [48]. At the end, a weighted network with minimum 

number of neurons, that could map the inputs to outputs with a minimum fitting error 

(deviation), is identified.

As the literature reveals, artificial neural networks (ANN) are widely applied for 

demand forecasting [82–85]. To improve the accuracy of ANN-based demand pre-

dictions, Liu et  al. [86] proposed a combination of a grey model and a stacked auto 

encoder applied to a case study of predicting demand in a Brazilian logistics company 

subject to transportation disruption [87]. Amirkolaii et al. [88] applied neural networks 
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in forecasting spare parts demand to minimize supply chain shortages. In this case of 

spare parts supply chain, although there were multiple suppliers to satisfy demand for 

a variety of spare parts, the demand was subject to high variability due to a varying 

number of customers and their varying needs. �eir proposed ANN-based forecasting 

approach included (1) 1 input demand feature with 1 Stock-Keeping Unit (SKU), (2) 1 

input demand feature with all SKUs, (3) 16 input demand features with 1 SKU, and (4) 16 

input demand features with all SKUs. �ey applied neural networks with back propaga-

tion and compared the results with a number of benchmarks reporting a Mean Square 

Error (MSE) for each configuration scenario.

Huang et al. [89] compared a backpropagation (BP) neural network and a linear regres-

sion analysis for forecasting of e-logistics demand in urban and rural areas in China 

using data from 1997 to 2015. By comparing mean absolute error (MAE) and the average 

relative errors of backpropagation neural network and linear regression, they showed 

that backpropagation neural networks could reach higher accuracy (reflecting lower dif-

ferences between predicted and actual data). �is is due to the fact that a Sigmoid func-

tion was used as the transfer function in the hidden layer of BP, which is differentiable 

for nonlinear problems such as the one presented in their case study, whereas the linear 

regression works well with linear problems.

ANNs have also been applied in demand forecasting for server models with one-week 

demand prediction ahead of order arrivals. In this regard, Saha et al. [90] proposed an 

ANN-based forecasting model using a 52-week time-series data fitted through both 

BP and Radial Basis Function (RBF) networks. A RBF network is similar to a BP net-

work except for the activation/transfer function in RBF that follows a feed-forward 

process using a radial basis function. RBF results in faster training and convergence to 

ANN weights in comparison with BP networks without compromising the forecasting 

precision.

Researchers have combined ANN-based machine-learning algorithms with optimiza-

tion models to draw optimal courses of actions, strategies, or decisions for future. Chang 

et al. [91] employed a genetic algorithm in the training phase of a neural network using 

sales/supply chain data in the printed circuit board industry in Taiwan and presented an 

evolving neural network-forecasting model. �ey proposed use of a Genetic Algorithms 

(GA)-based cost function optimization to arrive at the best configuration of the corre-

sponding neural network for sales forecast with respect to prediction precision. �e pro-

posed model was then compared to back-propagation and linear regression approaches 

using three performance indices of MAPE, Mean Absolute Deviation (MAD), and Total 

Cost Deviation (TCD), presenting its superior prediction precision.

Regression analysis

Regression models are used to generate continuous-valued functions utilized for predic-

tion. �ese methods are used to predict the value of a response (dependent) variable 

with respect to one or more predictor (independent) variables. �ere are various forms 

of regression analysis, such as linear, multiple, weighted, symbolic (random), polyno-

mial, nonparametric, and robust. �e latter approach is useful when errors fail to satisfy 

normalcy conditions or when we deal with big data that could contain significant num-

ber of outliers [48].
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Merkuryeva et al. [92] analyzed three prediction approaches for demand forecasting 

in the pharmaceutical industry: a simple moving average model, multiple linear regres-

sions, and a symbolic regression with searches conducted through an evolutionary 

genetic programming. In this experiment, symbolic regression exhibited the best fit with 

the lowest error.

As perishable products must be sold due to a very short preservation time, demand 

forecasting for this type of products has drawn increasing attention. Yang and Sutrisno 

[93] applied and compared regression analysis and neural network techniques to derive 

demand forecasts for perishable goods. �ey concluded that accurate daily forecasts are 

achievable with knowledge of sales numbers in the first few hours of the day using either 

of the above methods.

Support vector machine (SVM)

SVM is an algorithm that uses a nonlinear mapping to transform a set of training data 

into a higher dimension (data classes). SVM searches for an optimal separating hyper-

plane that can separate the resulting class from another) [48]. Villegas et al. [94] tested 

the applicability of SVMs for demand forecasting in household and personal care SCs 

with a dataset comprised of 229 weekly demand series in the UK. Wu [95] applied an 

SVM, using a particle swarm optimization (PSO) to search for the best separating hyper-

plane, classifying the data related to car sales and forecasting the demand in each cluster.

Support vector regression (SVR)

Continuous variable classification problems can be solved by support vector regression 

(SVR), which is a regression implementation of SVM. �e main idea behind SVR regres-

sion is the computation of a linear regression function within a high-dimensional feature 

space. SVR has been applied in financial/cost prediction problems, handwritten digit 

recognition, and speaker identification, object recognition, etc. [48].

Guanghui [96] used the SVR method for SC needs prediction. �e use of SVR in 

demand forecasting can yield a lower mean square error than RBF neural networks due 

to the fact that the optimization (cost) function in SVR does not consider the points 

beyond a margin of distance from the training set. �erefore, this method leads to 

higher forecast accuracy, although, similar to SVM, it is only applicable to a two-class 

problem (such as normal versus anomaly detection/estimation problems). Sarhani and 

El Afia [97] sought to forecast SC demand using SVR and applied Particle swarm optimi-

zation (PSO) and GA to optimize SVR parameters. SVR-PSO and SVR-GA approaches 

were compared with respect to accuracy of predictions using MAPE. �e results showed 

a superior performance by PSO in terms time intensity and MAPE when configuring the 

SVR parameters.

Mixed approaches

Some works in the literature have used a combination of the aforementioned techniques. 

In these studies, the data flow into a sequence of algorithms and the outputs of one stage 

become inputs of the next step. �e outputs are explanatory in the form of qualitative 

and quantitative information with a sequence of useful information extracted out of 

each algorithm. Examples of such studies include [15, 98–105].
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In more complex supply chains with several points of supply, different warehouses, 

varied customers, and several products, the demand forecasting becomes a high dimen-

sional problem. To address this issue, Islek and Oguducu [100] applied a clustering 

technique, called bipartite graph clustering, to analyze the patterns of sales for different 

products. �en, they combined a moving average model and a Bayesian belief network 

approaches to improve the accuracy of demand forecasting for each cluster. Kilimci et al. 

[101] developed an intelligent demand forecasting system by applying time-series and 

regression methods, a support vector regression algorithm, and a deep learning model 

in a sequence. �ey dealt with a case involving big amount of data accounting for 155 

features over 875 million records. First, they used a principal component analysis for 

dimension reduction. �en, data clustering was performed. �is is followed by demand 

forecasting for each cluster using a novel decision integration strategy called boosting 

ensemble. �ey concluded that the combination of a deep neural network with a boost-

ing strategy yielded the best accuracy, minimizing the prediction error for demand 

forecasting.

Chen and Lu [98] combined clustering algorithms of SOM, a growing hierarchical self-

organizing mapping (GHSOM), and K-means, with two machine-learning techniques 

of SVR and extreme learning machine (ELM) in sales forecasting of computers. �e 

authors found that the combination of GHSOM and ELM yielded better accuracy and 

performance in demand forecasts for their computer retailing case study. Difficulties in 

forecasting also occur in cases with high product variety. For these types of products in 

an SC, patterns of sales can be extracted for clustered products. �en, for each cluster, a 

machine-learning technique, such as SVR, can be employed to further improve the pre-

diction accuracy [104].

Brentan et al. [106] used and analyzed various BDA techniques for demand prediction; 

including support vector machines (SVM), and adaptive neural fuzzy inference systems 

(ANFIS). �ey combined the predicted values derived from each machine learning tech-

niques, using a linear regression process to arrive at an average prediction value adopted 

as the benchmark forecast. �e performance (accuracy) of each technique is then ana-

lyzed with respect to their mean square root error (RMSE) and MAE values obtained 

through comparing the target values and the predicted ones.

In summary, Table 3 provides an overview of the recent literature on the application of 

Predictive BDA in demand forecasting.

Discussions

�e data produced in SCs contain a great deal of useful knowledge. Analysis of such 

massive data can help us to forecast trends of customer behavior, markets, prices, and 

so on. �is can help organizations better adapt to competitive environments. To forecast 

demand in an SC, with the presences of big data, different predictive BDA algorithms 

have been used. �ese algorithms could provide predictive analytics using time-series 

approaches, auto-regressive methods, and associative forecasting methods [10]. �e 

demand forecasts from these BDA methods could be integrated with product design 

attributes as well as with online search traffic mapping to incorporate customer and 

price information [37, 71].
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Predictive BDA algorithms

Most of the studies examined, developed and used a certain data-mining algorithm 

for their case studies. However, there are very few comparative studies available in the 

literature to provide a benchmark for understanding of the advantages and disadvan-

tages of these methodologies. Additionally, as depicted by Table 3, there is no clear 

trend between the choice of the BDA algorithm/method and the application domain 

or category.

Predictive BDA applicability

Most data-driven models used in the literature consider historical data. Such a back-

ward-looking forecasting ignores the new trends and highs and lows in different eco-

nomic environments. Also, organizational factors, such as reputation and marketing 

strategies, as well as internal risks (related to availability of SCM resources), could 

greatly influence the demand [107] and thus contribute to inaccuracy of BDA-based 

demand predictions using historical data. Incorporating existing driving factors out-

side the historical data, such as economic instability, inflation, and purchasing power, 

could help adjust the predictions with respect to unseen future scenarios of demand. 

Combining predictive algorithms with optimization or simulation can equip the mod-

els with prescriptive capabilities in response to future scenarios and expectations.

Predictive BDA in closed-loop supply chains (CLSC)

�e combination of forward and reverse flow of material in a SC is referred to as a 

closed-loop supply chain (CLSC). A CLSC is a more complex system than a tradi-

tional SC because it consists of the forward and reverse SC simultaneously [108]. Eco-

nomic impact, environmental impact, and social responsibility are three significant 

factors in designing a CLSC network with inclusion of product recycling, remanu-

facturing, and refurbishment functions. �e complexity of a CLSC, compared to a 

common SC, results from the coordination between backward and forward flows. For 

example, transportation cost, holding cost, and forecasting demand are challenging 

issues because of uncertainties in the information flows from the forward chain to the 

reverse one. In addition, the uncertainties about the rate of returned products and 

efficiencies of recycling, remanufacturing, and refurbishment functions are some of 

the main barriers in establishing predictions for the reverse flow [5, 6, 109]. As such, 

one key finding from this literature survey is that CLSCs particularly deal with the 

lack of quality data for remanufacturing. Remanufacturing refers to the disassembly 

of products, cleaning, inspection, storage, reconditioning, replacement, and reassem-

bling. As a result of deficiencies in data, optimal scheduling of remanufacturing func-

tions is cumbersome due to uncertainties in the quality and quantity of used products 

as well as timing of returns and delivery delays.

IoT-based approaches can overcome the difficulties of collecting data in a CLSC. In 

an IoT environment, objects are monitored and controlled remotely across existing 

network infrastructures. �is enables more direct integration between the physical 
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world and computer-based systems. �e results include improved efficiency, accu-

racy, and economic benefit across SCs [50, 54, 110].

Radio frequency identification (RFID) is another technology that has become very 

popular in SCs. RFID can be used for automation of processes in an SC, and it is useful 

for coordination of forecasts in CLSCs with dispersed points of return and varied quan-

tities and qualities of returned used products [10, 111–114].

Conclusions

�e growing need to customer behavior analysis and demand forecasting is deriven by 

globalization and increasing market competitions as well as the surge in supply chain 

digitization practices. In this study, we performed a thorough review for applications of 

predictive big data analytics (BDA) in SC demand forecasting. �e survey overviewed 

the BDA methods applied to supply chain demand forecasting and provided a compar-

ative categorization of them. We collected and analyzed these studies with respect to 

methods and techniques used in demand prediction. Seven mainstream techniques were 

identified and studied with their pros and cons. �e neural networks and regression 

analysis are observed as the two mostly employed techniques, among others. �e review 

also pointed to the fact that optimization models or simulation can be used to improve 

the accuracy of forecasting through formulating and optimizing a cost function for the 

fitting of the predictions to data.

One key finding from reviewing the existing literature was that there is a very limited 

research conducted on the applications of BDA in CLSC and reverse logistics. �ere are 

key benefits in adopting a data-driven approach for design and management of CLSCs. 

Due to increasing environmental awareness and incentives from the government, nowa-

days a vast quantity of returned (used) products are collected, which are of various types 

and conditions, received and sorted in many collection points. �ese uncertainties have 

a direct impact on the cost-efficiency of remanufacturing processes, the final price of 

the refurbished products and the demand for these products [115]. As such, design and 

operation of CLSCs present a case for big data analytics from both supply and demand 

forecasting perspectives.
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