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ABSTRACT
We investigate techniques for general black-box mitigation of tim-
ing channels. The source of events is wrapped by a timing miti-
gator that delays output events so that they contain only a bounded
amount of information. We introduce a general class of timing miti-
gators that can achieve any given bound on timing channel leakage,
with a tradeoff in system performance. We show these mitigators
compose well with other mechanisms for information flow control,
and demonstrate they are effective against some known timing at-
tacks.

Categories and Subject Descriptors: C.2.0 [Computer Commu-
nication Networks]: General—Security and protection

General Terms: Security

Keywords: Timing channels, mitigation, information flow

1. INTRODUCTION
Controlling timing channels is difficult but important. The dif-

ficulty has long been recognized [20, 9, 27], but their importance
has been reinforced by recent work that shows timing channels can
quickly leak sensitive information. Attacks exploit the timing of
cryptographic operations [17, 4], of cache operations [26], and of
web server responses [2]. These attacks work even without coop-
eration of any software on the system being timed. If the system
contains malicious code or hardware (e.g., [30]), timing can also be
exploited as a robust covert channel [21].

In complex computing systems, different computations affect
each others’ timing through shared resources such as caches, the
processor, the disk, and the network. The precise time of an event
may depend on many pieces of sensitive information and compu-
tation. Therefore, timing measurements act as a kind of antenna
receiving signals from throughout the system. The combined sig-
nal might be analyzed by a sufficiently clever adversary to learn
about any of the information influencing timing.

A useful distinction to draw is between internal and external tim-
ing channels. Internal timing channels occur when time is explic-
itly or implicitly measured from within the system that contains
timing channels. External timing channels are measured from out-
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side the system, and are therefore less easy to control. A variety of
methods have been proposed for mitigating or preventing internal
timing channels (e.g., [14, 1, 33]); this paper focuses on external
timing channels, where the adversary has more power: the ability
to accurately time externally visible behavior of the system. Prior
techniques for preventing timing channels fall into two camps. One
approach that has not proved effective in general is to add random
delays to timing-sensitive operations [11] or to timing measure-
ments [14]. Randomness adds noise to the timing signal, reducing
but not eliminating the bandwidth of the timing channel. Further,
stealthy timing channels robust to noise can be constructed [21].

A better, non-random method is to pad the run time of sensitive
operations to a fixed time, or to a multiple of a fixed time. Padding
mitigates timing leaks but does not eliminate them entirely if the
padded operation can take more than the allotted quantum of time.
For cryptographic operations, a correlation between sensitive input
and the run time can also be addressed by blinding techniques [5,
17] that unpredictably change the input, but blinding is not appli-
cable to general computations.

This paper introduces a more general scheme for mitigating tim-
ing channels. Unlike cryptographic blinding, this scheme applies to
a broad class of computing systems and computations. It does not
prevent timing leaks, which seems to be impossible in the general
case. Rather, it bounds the amount of information leaked through
the timing channel as a function of elapsed time. We show that sim-
ple mitigation schemes can ensure that no more than log2(t) bits of
information are leaked, where t is the running time (all logarithms
in this paper are base 2). Further, an arbitrary bound on information
leakage can be enforced, down to as low as O(log(t)). However,
tighter bounds have a price: they can reduce system throughput and
increase system latency, particularly if the system has unpredictable
behavior.

This paper makes the following contributions:

1. It introduces a novel, principled way to mitigate external tim-
ing channels.

2. This mitigation scheme is shown to enforce a specified bound
on the amount of information leaked.

3. The new mitigation scheme is demonstrated to defeat some
timing attacks discovered in prior work, and to provide good
performance in some cases.

4. Total leakage is shown to be bounded when timing mitiga-
tion is combined with other information flow control mecha-
nisms.

The rest of the paper is structured as follows. Section 2 in-
troduces a simple version of the mitigation scheme. This simple
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Figure 1: System overview

scheme is an instance of a more general framework for provable
mitigation, defined in Section 3. Section 4 empirically explores
how mitigation scheme affects the performance of the underlying
system. The scheme is shown in Section 5 to defend against some
known timing attacks. Related work is discussed in Section 6, and
Section 7 concludes.

2. SOME SIMPLE MITIGATION SCHEMES

2.1 System model
We begin with a simple model of a computing system that pro-

duces externally observable events whose timing may be a chan-
nel. Because the mitigation scheme works regardless of the inter-
nal details of computation, the computing system is treated simply
as a black-box source of events. As depicted in Figure 1, the event
source generates events that are delayed by the mitigation mecha-
nism so that their times of delivery convey less information. Delay-
ing events while preserving their order is the only behavior of the
mitigator that we consider.

We ignore for now the attributes of events other than time. These
attributes include the actual content of an event and also the choice
of communication medium (e.g., different networks, or even visual
displays or sound) over which it can be conveyed. Both content and
choice of medium can be viewed as storage channels [20], which
we assume are controlled by other means. Therefore we assume
that the only information requiring control is encoded in the times
at which events arrive from the source. This separate treatment of
timing and storage channels is justified in Section 3.5.

We assume the attacker observes delayed events and knows the
design of the mitigator though not its internal state. The goal of
the attacker is to communicate information from inside the event
source to the outside. Therefore the attacker consists of two parts:
an insider that controls the timing of source events, and an exter-
nal observer that attempts to learn sensitive information from this
timing channel. The content of the events may also be observable
to the attacker, which motivates our choice to not have the mitiga-
tor generate dummy events. The observer may combine informa-
tion from both the content and timing of messages. In real world
this corresponds to attacker-controlled software that communicates
seemingly benign messages on a storage channel, but transmits sen-
sitive information using timing.

As shown in the figure, it is useful to allow the mitigation sys-
tem to buffer events in a queue so the event source can run ahead,
generating more events without waiting. We consider adding input
events to the system model in Section 3.6.

2.2 Quantizing time
A very simple mitigation scheme that has been explored in prior

work [13, 11, 4] permits events to leave the mitigator only at sched-
uled times that are multiples of a particular time quantum q. We
refer to the times when events are permitted as slots, which in this
case occur at times q, 2q, etc. Without loss of generality, let us use
q = 1 to analyze this scheme.

Suppose we allow the system to run for time T , and during that
time there is an event ready to be delivered in every slot except that
at some point the event source may stop producing events (effec-
tively, it terminates). The total number of events delivered must be
an integer between 0 and T . Because all the slots filled with events
precede all the empty slots, the external observer can make at most
T +1 possible distinct observations. According to information the-
ory, the maximum amount of information that can be transmitted by
one of T + 1 possible observations is achieved when the possible
observations are uniformly distributed. This value, in bits, is the
log base 2 of the number of possible observations, or log(T + 1).
For q 6= 1, it is log(T+1

q
).

2.3 A basic mitigation scheme
An asymptotically logarithmic bound on leakage sounds appeal-

ing, but in general we cannot count on the event source to fill every
slot with an event. In the general case, maximum leakage from the
simple quantizing approach is one bit per quantum, leading to an
unpleasant tradeoff between security and performance.

However, a sublinear (in fact, polylogarithmic) bound is achiev-
able even if the event source misses some slots. Perhaps the sim-
plest way to achieve this is to double the quantum q every time a
slot is missed. Doubling the quantum ensures that in time T there
can be at most log(T + 1) misses. Effectively, the event source is
penalized for irregular behavior. For the penalty will be effective,
the multiplicative factor need not be 2; the number of misses will
grow logarithmically for any multiplicative factor greater than 1.

We can represent all behaviors of the resulting system as strings
constructed from the symbols e (for an event that fills a slot) and−
(for a missed slot). A given string generated by the regular expres-
sion (e|−)∗ precisely determines the times at which events emerge
from the mitigator, so the distinct strings correspond exactly to the
possible external timing observations. Therefore, the maximum of
the expected number of bits of information transmitted by time T is
the log base 2 of the number of strings that can be observed within
time T . These strings contain at most log(T+1) occurrences of−.
Between and around these occurrences are consecutive sequences
of between 0 and T filled slots (e’s), as suggested by this figure:

eeee!eee!ee!eeeee..eee!eeee

at most log(T+1) occurrences of  !

0..T occurrences of  e  per epoch
q=1 q=2 ...

Each sequence of e’s falls into a different epoch with its own
characteristic quantum. There are at most log(T + 1) + 1 epochs,
so the number of possible strings observable within time T is at
most (T +1)log(T+1)+1. The maximum information content of the
timing channel is the log of this number, or log(T + 1) · (log(T +
1) + 1) = log2(T + 1) + log(T + 1). This is bounded above by
(1+ε) log2 T where ε can be made arbitrarily small for sufficiently
large T . With the more careful combinatorial analysis given in the
appendix, we can show leakage is bounded by O(log T (log T −
log log T )). In either case, timing leakage is O(log2(T )), which is
a slowly growing function of time.

2.4 Slow-doubling mitigation
Doubling on every miss performs poorly if the event source is

quiescent for long periods. The quantum-doubling scheme can be
refined further to accommodate quiescent periods, by doubling the
quantum only when a missed slot follows a filled slot (that is, a −
after an e). With this mitigator, no performance penalty is suffered



by an event source that is initially quiescent, but then generates all
its output in a rapid series of events.

In this case we have epochs consisting of sequences like “−−−−”
and “eeee”. There can be at most 2 log(T + 1) epochs, and there
can be at most T strings per epoch, so the information content of
the channel is no more than 2 log(T ) log(T + 1) ≤ (2 + ε) log2 T .
Thus, slow doubling gives much more flexibility without changing
asymptotic information leakage.

In the next section we see that both the fast and slow doubling
schemes are instances of a more general framework for epoch-
based timing mitigation, enabling further important refinements such
as adaptively reducing the quantum.

3. GENERAL EPOCH-BASED MITIGATION
The common feature of the mitigation schemes introduced thus

far is that the mitigator divides time into epochs. During each epoch
the mitigator operates according to a fixed schedule that predicts the
future behavior of the event source. As long as the schedule pre-
dicts behavior accurately, the event source leaks no timing informa-
tion except for the length of the epoch. However, a misprediction
by the mitigator causes it to construct a new schedule; because this
choice is in general observable by the adversary, some information
leaks.

We can describe the mitigation schemes seen so far in these
terms. For example, the slow doubling scheme has “e” epochs in
which the mitigator predicts there will be an event ready for slots
spaced at the current quantum q. It also has “−” epochs in which
the mitigator predicts there will be no event ready for slots spaced
at the quantum q. On a mispredicted slot (a miss) during an “e”
epoch, the mitigator switches to a “−” epoch with a doubled quan-
tum.

Let us now explore this framework more formally, to enable gen-
erating and analyzing a variety of mitigation schemes that meet
specified bounds on timing channel transmission.

3.1 Mitigation
The mitigator is oblivious to the content of the events and does

not alter their content. From the mitigator’s point of view, source
events and delayed events are considered as timestamps at which
the events are received and delivered respectively.

Let source events be denoted by a monotonic sequence s1 . . . sn,
where 0 ≤ s1 and each si specifies when the i-th event is received
by the mitigator. We denote the mitigator by M. Given a sequence
of source events s1 . . . sn, let M(s1 . . . sn) be the sequence of pos-
sibly delayed timestamps d1 . . . dm produced by the mitigator. The
sequence is again monotonically increasing; also, we have m ≤ n
and si ≤ di. The last inequality means the mitigator cannot pro-
duce events before they are received from the source.

A mitigation scheme is online if the delayed sequence does not
depend on timing or contents of future source messages. In this
work we are only interested in online mitigation schemes.

Timing leakage.
Because timing of the events may depend on the sensitive data

at the source, any variation in observed event timing creates an in-
formation channel. The larger the number of different observable
variations, the more information can be transmitted over this chan-
nel. When events are mitigated, the number of possible sequences
of events that a mitigator M can deliver by time T is

M(T ) = |{d1 . . . dm = M(s1 . . . sn) | dm ≤ T}|

The amount of information that can be leaked by such mitigator,
when the running time is bounded by T , is a logarithm of M(T ).

DEFINITION 1 (LEAKAGE OF THE MITIGATOR). Given a mit-
igator M, let leakage of M be logM(T ).

This definition implicitly assumes that the mitigator can control
the timing of events with perfect precision, but also credits the ad-
versarial observer with perfect measurement abilities. More real-
istically, we can assume that the mitigator can control timing to at
least the measurement precision of the observer, in which case the
above formula still bounds leakage.

Bounding leakage.
We specify the security requirements for timing leakage as a

bound, expressed as a function on running time T .

DEFINITION 2 (BOUNDING MITIGATOR LEAKAGE). Given a
mitigator M, and a leakage bound B(T ), we say that the leakage
of M is bounded byB(T ) if for all T , we have logM(T ) ≤ B(T ).

3.2 Epoch-based mitigation
In this work we focus on a specific class of mitigators that we

dub epoch-based mitigators. An epoch represents a period of time
during which the behavior of the mitigator meets the epoch sched-
ule.

An epoch schedule is a sequence of epoch predictions, one for
each slot. Epoch predictions can be either positive or negative. A
positive prediction, denoted by [t]+, means the mitigator expects to
be able to deliver an event at time t. A negative prediction, denoted
by [t]−, says that no source events are expected to be available for
delivery at time t. We may simply write t when the sign of the pre-
diction is not important for the context. A prediction is an element
of R×{+,−}, because times t are real-valued. An epoch schedule
S is therefore a function from slot indices (from the natural num-
bers N) to predictions.

DEFINITION 3 (EPOCH SCHEDULE). An epoch schedule is a
function S : N→ R× {+,−}, where S(n) is a prediction for the
n-th slot in the epoch.

We say that a positive prediction S(n) = [t]+ holds or is valid if
at time t the mitigator can deliver an event; in this case, this is also
the n-th event in the epoch. A negative prediction S(n) = [t]−

holds when no source events are available at time t.
Conversely, failing a positive prediction [t]+ means that there are

no events (available or buffered) to be delivered at time t. Failing a
negative prediction [t]− means that there are buffered source events
that have not yet been delivered by time t.

When a mitigator prediction S(n) fails at the n-th slot, we ob-
serve an epoch transition. In addition to prediction failure, an
epoch transition may be caused by mitigator adjustments. For ex-
ample, the mitigator might adjust for a faster rate of source events,
or might improve performance by flushing or partially flushing the
buffer queue. We can now formally define an epoch:

DEFINITION 4 (EPOCH). An epoch is a triple (τ, τ ′, S) where
timestamps τ and τ ′ correspond to the beginning and the end of the
epoch, and S is the epoch schedule.

When the number of the epoch is important we write SN for the
schedule in epoch N .

Example.
Revisiting the basic doubling scheme from Section 2.3, we see

that the prediction for everyN -th epoch that starts at time t is given
by the function SN (i) = [t+ i · 2N ]+.



For the slow doubling scheme of Section 2.4, every odd pre-
diction is positive—it expects the events to be delivered at regu-
lar intervals, and every even prediction is negative—no events are
expected from the source. These predictions can be expressed as
follows:

SN (i) =

{
[t+ i · 2k]+ if N = 2k − 1

[t+ i · 2k]− if N = 2k

On the form of schedules.
Most of the examples of schedules in this paper are constant-

quantum functions, where prediction times depend linearly on the
epoch sequence number of the events. However, when timing pat-
tern of the source events is well-understood, a finer prediction, de-
scribed by an arbitrary function, could yield better performance.
From the standpoint of security, the form of the schedule is irrele-
vant as long as the mitigator satisfies the leakage bound discussed
in Section 3.4.

3.3 Leakage of epoch-based mitigators
Epoch-based design allows us to reduce the analysis of epoch-

based mitigation to the analysis of individual epochs and of the
transitions between them.

Variations within an epoch.
Because prediction times during an epoch are deterministic, the

only source of timing variation within an epoch is the number of
valid predictions. The latter is the key element in bounding the
number of possible event sequences within an epoch. The number
of valid predictions is bounded by the duration of the epoch, which
itself is bounded by the current running time T + 1. Therefore the
current running time T + 1 is a bound on the number of variations
within each epoch.

Transition variations.
Epoch transitions may depend on source events too. Therefore,

one needs to take into account the number of possible schedules for
the next epoch. We denote by ΛN the number of possible schedules
when transitioning from epoch N to epoch N + 1.

The exact number of transition variations depends on the partic-
ular mitigation scheme. In the two schemes described thus far, the
transition into a new epoch occurs only when a miss occurs, and
only one new schedule is possible; hence, for all epochs N , we
have ΛN = 1.

An example mitigator for which ΛN is greater than 1 is an adap-
tive scheme that uses the average rate of the previously received
source events to choose the new schedule. In this case, ΛN can be
bounded by the current running time T + 1.

Section 4.1 describes the convergence experiment where the num-
ber of possible predictions for a given epoch is chosen from a fixed
table and is exactly 2.

Bound on the number of total variations.
Consider an epoch-based mitigator at time T that has reached

at most N epochs. Assume that within each epoch the number of
variations is at most T + 1, and the number of possible transition
variations into epoch i is Λi, where i ranges from 1 to N . We
include ΛN to accommodate the transition from epoch N to epoch
N + 1 at time T . We can bound the number of possible variations
of such a mitigator by a function M(T,N):

M(T,N) = (T + 1)N · Λ1 · Λ2 · . . . · ΛN

The leakage of this mitigator is bounded by the logarithm

logM(T,N) = N log(T + 1) +

N∑
j=1

log Λj (1)

We refer to the term log(T + 1) as epoch leakage and to the
terms log Λi as transition leakage.

Basic schemes revisited.
Revisiting the simple mitigators from Section 2, we see that be-

cause ΛN = 1, the leakage of such mitigators is bounded by
N log(T + 1).

3.4 Bounding leakage
Using Definition 2 and Equation 1 we may derive a leakage

bound for epoch-based mitigation.

N log(T + 1) +

N∑
j=1

log Λj ≤ B(T ) (2)

Furthermore, if we consider mitigators where the transition varia-
tions are fixed—that is, there is λmax ≥ log Λj for all j—then the
leakage bound criterion for such mitigators can be expressed as a
bound on the number of epochs.

N ≤ B(T )

log(T + 1) + λmax
(3)

Define the deferral point DN for epoch N to be the solution to
the equation N = B(T )/(log(T + 1) + λmax). The importance
ofDN is that untilDN there must be at mostN epochs; that is, the
start of theN+1-th epoch has to be deferred untilDN . Because the
N+1-th epoch starts with the misprediction at theN -th epoch, this
leads us to the only security constraint for the choice of schedule
SN . Namely, for all events i, we should have ∀ N ≥ 1 . SN (i) ≥
DN , and consequently,

∀N ≥ 1 . SN (1) ≥ DN (4)

Example.
Consider the basic scheme from Section 2.3, which has predic-

tion function SN (i) = [t + i · 2N−1]+. For this scheme, we have
λmax = 0. Consider bound log2(T + 1), which leads to deferral
points DN for N -th epoch DN = 2N − 1. The leakage bound
requires SN (1) ≥ DN . Since in the basic scheme, the N -th epoch
starts at 0 for N = 1, and at least at time

∑N−2
i=0 2i for all N ≥ 2,

therefore the leakage bound follows from SN (1) = 0 + 20 = 1 ≥
21 − 1 = DN for N = 1, and SN (1) ≥

∑N−2
i=0 2i + 2N−1 =

2N−1 − 1 + 2N−1 = 2N − 1 = DN for all N ≥ 2.
Figure 2 shows the deferral points for the basic scheme from Sec-

tion 2. Here the bound is B(T ) = log2 T , λmax = 0, and the de-
ferral points correspond to the intersections of the curves N log T
with the bound curve.

Adaptive mitigators.
When a misprediction does not occur for a sufficiently long time,

the difference B(T ) − N log(T + 1) −
∑N

j=1 log Λj may allow
an extra epoch transition. Say that an epoch transition is adaptive
when it is initiated by the mitigator rather than by a misprediction.
Equations 2 and 3 can also be used to design criteria for adaptive
transitions. In particular, an adaptive transition is secure when
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Figure 2: Target bound, capacity approximation for individual
epochs, and deferral points

B(T )−N log(T + 1)−
N∑

j=1

log Λj ≥ log(T + 1) + log ΛN+1

Here ΛN+1 is the number of possible new predictions for epoch
number N + 1.

One use for adaptive transitions is to help reduce the size of the
event buffer. Past deferral points, the mitigator can choose to re-
lease more than one event from the buffer. The number of choices
for how many events can be flushed from the buffer then contribute
to ΛN for the mitigation scheme at that deferral point. Prudent
mitigator design probably avoids completely emptying the buffer,
since an empty buffer may risk an unpredicted miss.

A second example of using adaptive transitions to improve per-
formance is given in Section 4.1.

On the choice of bound functions.
Because the epoch-based mitigation scheme is parametric on the

choice of the bound function B(T ), we briefly discuss possible
choices for practical bounds.

Recall that we assume the number of processed events in an
epoch may leak information. Under this assumption, the most dra-
conian bound possible is log T . Enforcing such a bound effectively
restricts output to a single epoch for the entire run of the program.
In case of a misprediction, all subsequent events would have to be
delayed until the end of the program.

Our simple and adaptive mitigators use the polylogarithmic bound
log2 T , which appears to make a reasonable trade-off between per-
formance and security. However, as this section illustrates, even
with this more relaxed bound, the distance between deferral bounds
increases exponentially.

A third choice corresponds to a larger, more permissive, class

of bounds such as kT + logn T , for n ≥ 2 and small (or zero)
k. We have not explored such bounds in this work, though it is
possible that a linear, albeit slowly growing, bound may be useful
in bringing deferral points closer in practice.

3.5 Mixing storage and timing
A variety of information flow control techniques have been de-

veloped for controlling leakage through storage channels. We can
now show that these techniques combine well with timing mitiga-
tion.

We use the information theoretic measure of mutual information,
to measure leakage. Given random variables A and B, their mu-
tual information I(A;B) is the information that A conveys about
B, and vice versa. It is defined as I(A;B) = H(A) + H(B) −
H(A,B), where the functionH gives the entropy of a distribution.
Note that the entropy of a variable with n possible values is maxi-
mized when all n outcomes are equally probable, in which case it
is logn bits.

Assume X is a random variable that corresponds to secret input,
Y is a random variable that corresponds to the storage channel, and
Z is a random variable that corresponds to the timing channel. The
amount of information that the attacker gains by observing both
storage and timing channel is the mutual information between the
secret and the joint distribution of Y and Z: that is, I(X;Y,Z).
Similarly, the amount of information that the attacker gains by ob-
serving just the storage channel is I(X;Y ).

The following easy theorem says that the information leaked by
the combination of timing and storage channels is bounded by the
information leaked by the storage channel, plus the maximum in-
formation content of the timing channel. The proof is in the ap-
pendix.

THEOREM 1 (SEPARATION OF STORAGE CHANNEL).

I(X;Y,Z) ≤ H(Z) + I(X;Y )

A symmetric theorem can be stated for the timing channel, but
seems less useful because of the difficulty of estimating I(X;Z).
A direct corollary to this theorem is that if the system enforces
noninterference [12, 24] on the storage channel, the total secret in-
formation leaked from the system is bounded by the entropy of the
timing channel.

3.6 Input
Event sources often communicate with the external world by ac-

cepting input, and block waiting for input when no input is avail-
able. Let us assume that the timing of input does not contain sensi-
tive information, or at least that it is the responsibility of the input
provider to control the input timing channel. The time spent by a
computing system waiting for input clearly does not communicate
anything about its internal state provider. Therefore, the system
comprising the event source and mitigator should not be penalized
for time spent blocked waiting for input. For the purposes of miti-
gation, the clock controlling the scheduling of slots can be stopped
while the event course is blocked waiting for input. This refinement
is particularly helpful when the event source is a service whose ser-
vice time does not fluctuate much.

3.7 Leakage with beliefs about execution time
Finally, we consider a particular case of server applications that

handle client requests. In this special case, a tighter, albeit proba-
bilistic, bound on leakage can be established than is possible with
the general framework presented thus far.

For many real applications that handle sequential client requests,
such as RSA encryption and simple web services (see Section 4.4),



execution times fall within a narrow range, regardless of the val-
ues of secrets. We show that under the assumption that the distri-
bution of execution times is approximately as expected, expected
mitigated leakage can be given a tighter bound than O(log2 T ).

Suppose that with probability at least p, the execution time for a
single request is at most Tbig. That is, the adversarial insider con-
trols execution time but cannot make the probability of exceeding
Tbig greater than 1 − p. For some computations, such as blinded
cryptographic operations on sufficiently isolated computers, p can
be gained by sampling with randomly generated inputs. Given Tbig,
a corresponding number of epochs Nbig can be calculated, giv-
ing the number of transitions that must occur before executions
of length Tbig are possible. For instance, in the basic doubling
scheme, Nbig = dlog(Tbig)e. Under these assumptions, expected
leakage L(Nbig, T ) is derived using conditional entropy:

L(Nbig, T ) = p · logM(T,Nbig) + (1− p) ·M(T,N)

where, as before, M(T,Nbig) is the bound on the number of pos-
sible variations of a mitigator when N is at most Nbig.

Example.
For the basic doubling scheme, given Tbig, we know thatNbig ≤
dlog(Tbig + 1)e. Using the formula for M(T,N), we can derive

L(Nbig, T ) ≤ p · (Nbig · log(T + 1)−Nbig(Nbig − 1)/2)

+
1− p

2
(log2(T + 1) + log(T + 1))

4. ADAPTIVE MITIGATION RESULTS
Some simple experiments with predictive mitigation help us un-

derstand how the mitigator can converge on the right separation
between slots.

4.1 Convergence
Buffering source events helps prevent slowing down the event

source and absorbs temporary variations in event rate. However, it
is undesirable for the buffer to grow too large, because it increases
latency. If the buffer fills, the event source must be paused to al-
low the buffer to drain. We would like to avoid significantly paus-
ing well-behaved applications, because pauses could disrupt their
functionality.

In this part, we focus on a simplified event source, and propose
one way to add adaptive transitions to the basic mitigation mech-
anism of Section 2.3. This particular design typically allows the
quantum converge to the event rate, while still keeping the infor-
mation leakage lower than the desired bound. Empirical results
demonstrate the convergence of the mitigator in face of many dif-
ferent event rates. Although currently our solution is restricted to
certain input event patterns, the experiment suggests that adaptive,
epoch-based mitigation may be practical for different applications.

Suppose we use the simple mitigation mechanism with constant-
quantum positive predictions for every epoch. Consider an event
source that generates events at a constant rate, say 1 event per
every 8 seconds; call the interval between events the event inter-
val. When the quantum of the mitigation system is higher than the
event interval—say, 10 seconds—the mitigator begins accumulat-
ing events in its buffer queue. Eventually, an increase in the buffer
size may reduce both the latency and throughput of the mitigator.
On the other hand, if the quantum is smaller than the event rate—
say, 6 seconds—then the buffer quickly drains, causing unwanted
epoch transitions.

Therefore, designing an adaptive mitigation scheme that can con-

verge roughly to the event interval of the source system is important
for practical applications.

4.2 Assumptions
We now show that adaptive mitigation can work for relatively

well-behaved event source. To capture the behavior of an event
source that generates events at some average rate but with local
variation around that rate, we work with an event source that gen-
erates one event at a random point during each fixed interval. It is
easy to see the optimal prediction for an event source of this type
is the one whose constant quantum matches the average interval
between events.

The basic intuition behind the construction of the adaptive mit-
igation mechanism is that the size of the buffer indicates how the
quantum should be adjusted. A quantum that is too large causes the
buffer to grow large; a quantum that is too small causes the buffer
to empty. Both of these conditions can be taken into account by the
mitigator.

4.3 An adaptive mitigation heuristic
Following the idea of adaptive mitigation from Section 3.4, we

heuristically extend the basic mitigator of Section 2 to adjust future
schedules based the buffer size. There is no reason to believe that
the particular mechanism is optimal; we describe this mechanism
as a way of illustrating what is possible with adaptive mitigation.

In this mitigator, an adaptive epoch transition happens when both
of the following conditions hold:

1. the size of the buffer queue is increasing, and

2. the mitigator would meet the leakage bound even if it transi-
tioned into a new epoch.

Note that condition (1) here is specific to the design of the cur-
rent mitigator, while condition (2) is a necessary condition for all
adaptive transitions, as described in Section 3.4.

The adaptive mitigation heuristic works as follows. It doubles
the quantum on each miss transition, which lets the quantum quickly
approach the event interval. Next, the mitigator adjusts the quan-
tum closer to the event interval by raising or lowering the quantum
deterministically at every adaptive transition. The current quantum
ideally fluctuates around the desired quantum and finally converges
to it. We constrain the mitigator to have a deterministic reduction
rate, enabling a deterministic (and small) bound on possible sched-
ule functions.

This scheme uses reduction rates that regulate how quantum size
is adapted. We denote reduction rates by rj , where j ranges from
1 to 9, such that r1 = 0.95, r2 = 0.9, . . . , r9 = 0.55. Note
that the number of reduction rates and the corresponding values
for this experiment have been derived empirically, based on the
experimental results, reported in Section 4.4.

The mitigator has an internal state, which is a pair (q, j). Here
q is current quantum and j is the current reduction rate. Call the
condition that guards when an adaptive transition may be done an
adaptive condition; the next state (q′, j′) is computed at a transition
point and is derived as follows:

(q′, j′) =

{
(q/2rj , next j) if adaptive condition holds
(2q · rj , next j) if miss occurs

where function next specifies the choice of the next reduction rate

next j =

{
j + 1 when j < 9

5 when j = 9
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Figure 3: Adaptive mitigation with average interval of 18 sec.

Using the new state, the schedule for the next epoch is computed
as SN (i) = [τ + i · q′]+.

According to our discussion in Section 3.4, since the multiplier
rates are deterministic, and there are only two possible transitions
(speed up or slow down), we have λmax = 1. If we set the total
information leakage B(T ) to be log2(T + 1), the number of tran-
sitions must be no more than (log2(T + 1))/(log (T + 1) + 1) as
derived from the leakage bound criterion in Section 3.4. Adaptive
transitions are not allowed if this constraint is not met.

4.4 Empirical results
Figure 3 illustrates how the quantum converges to the event in-

terval through the adaptive mitigation mechanism when the event
interval is 18 seconds. In this figure, the quantum is indicated by
the dashed line and the buffer size is represented by the solid line.
Initially the mitigator doubles the quantum quickly to 32, and then
lowers the quantum because the queue size has grown, around the
350-second point. Then, the queue slowly drains because the quan-
tum is smaller than the event interval. When the queue empties
around 2000 seconds, the quantum is raised again. After several
adjustments, the quantum finally converges to 18 at around 5000
seconds and stays constant thereafter. Once converged, the queue
size remains small (around 2–3), ensuring low latency.

While perfect convergence is not required for this scheme to be
useful, we tested the convergence with event intervals ranging from
1 second to 100 seconds, with the results shown in Figure 4. Each
dot represents the final quantum arrived at by the mitigation system
after different total run times. Three curves are shown, one for the
final quantum after 10000 seconds, one for after 100000 seconds,
and one for after 1000000 seconds. The plot shows that the adap-
tive mitigation heuristic converges closely to the event interval in
most cases. However, there are certain cases where convergence
never occurs, such as at an event interval of 42; here, the mitiga-
tion system loops among five values close to 42. The current set of
reduction rates were chosen in a largely ad hoc fashion; we leave
finding an optimal set for a broad class of event sources to future
work.

4.5 Composing mitigators
Figure 5 illustrates convergence of composition of two adaptive

mitigators. Here the first mitigator processes events received from
a source system with an 18 sec. event interval. The second mitiga-
tor processes events that it receives from the first one. The lines on
the graph illustrate the change of quantum values in each mitigator.
Based on the similar experiments for other event intervals, we ob-
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Figure 5: Convergence of composition of mitigators with aver-
age interval of 18 sec.

serve that composed mitigators converge in most cases. We leave
identifying necessary and sufficient conditions for convergence to
future work.

5. APPLICATION-LEVEL EXPERIMENTS
We evaluated the effectiveness of the basic timing mitigation

mechanism on two published timing channel attacks: RSA timing
channels [4] and remote web server timing channels [2].

Both experiments show that the basic mitigation mechanism of
Section 2.3 can successfully defend against these timing channel
attacks, although with a latency penalty.

5.1 RSA
To demonstrate the effectiveness of timing mitigation, we ap-

plied it to OpenSSL 0.9.7, a widely used open-source SSL library
that was shown to be vulnerable to RSA timing channel attacks [4].
The results show that timing mitigation eliminates the time differ-
ence targeted by RSA timing channel attack, making this attack
infeasible.

5.1.1 Experiment setup
The experiment was performed on OpenSSL 0.9.7. This version

was used because it is the same version shown to be vulnerable by
Brumley et al, and by default it does not use blinding to prevent
timing channels. Measurements were made on a 3.16GHz Intel
Core2 Due CPU, with 4G of RAM, using GCC 4.4.1. The attacker
continuously asks the target to decrypt a message and records all
decryption times, starting a new decryption request whenever the



last one is done. The Intel CPU cycle count obtained using the
rdtsc instruction provided a precise, accurate clock.

5.1.2 Attack strategy
We used the timing channel attack strategy proposed in [4] for

this experiment, attacking RSA keys with 1024 bits. Instead of
trying to get the secret key directly, this attack targets the smaller
factor of N used in RSA key generation. More specifically, the
attacker attacks q, where N = pq with q < p. Once q (512 bits for
a 1024-bit key pair) is released, the attacker can easily derive the
secret key by computing d = e−1 mod (p− 1) (q − 1).

The attack works by learning a bit of q at a time, from most sig-
nificant to least. In each request, the attack generates two guesses
(512-bit numbers) and records the decryption time for each guess.
To set up, the attacker guesses the first 2–3 bits of q by trying all
possible combinations (feeding rest of the bits as 0), and plots all
decryption times with x-axis of guesses. The first peak in the graph
corresponds to q. Once the attacker has recovered the top i− 1 bits
of q, two new guesses g1 and g2 are generated, where

1. g1 has the same top i−1 bits as q and the remaining are zero.

2. g2 differs from g1 only at the ith bit, by setting it to 1

The attacker then computes ug1 = g1R
−1 mod N and ug2 =

g2R
−1 mod N (where R is some power of 2 used in Mont-

gomery Reduction), and measures the time to decrypt both ug1 and
ug2 . Denote by ∆ the difference between these two decryption
times.

The goal of this RSA timing channel attack is to find a 0–1 gap
when a certain bit of q is 0 or 1. More specifically, when the ith bit
of q is 0, the decryption time difference ∆ will be large, otherwise
small. So the attacker wins by analyzing the significance of 0–1 gap
to get all bits of q. Actually, after recovering the most significant
half of the bits of q, attacker can use Coppersmith’s algorithm [8]
to recover the rest of the bits. So we only show the 0–1 gap for the
first 256 bits of q in this experiment.

5.1.3 Parameter choices
To overcome the effects of a multi-user environment, multiple

decryptions for same guesses are necessary to cancel out the tim-
ing differences. Experimentally, we found the median time of 7
samples gives a reliable decryption time with very small variation,
so this is the sample size used hereafter.

Measuring the decryption time for n+1 guesses ranging from g,
g + 1, . . . , g + n can make the 0–1 gap more significant, and thus
brings more confidence in the guess, though at a computational cost
to the attacker [4]. We chose 600 as the value for n, because it was
enough to gain a significant 0–1 gap in most cases.

5.1.4 Timing mitigation of RSA Attack
Since the 0–1 gap does not depend on any specific key [4], we

used a randomly generated 1024-bit key for our experiment. Fig-
ure 6(a) shows the result without any timing mitigation mechanism.
The dotted line is the zero–one gap when the corresponding bit of
q is 1, and the solid one is when the bit is 0. It is easy to see that
an attacker can infer certain bits of q by observing this zero–one
gap, especially when guessing a bit whose position is larger than
30. For bit indices less than 30, it is possible to increase the 0–1
gap by calculating a larger neighborhood set, with more cost to the
attacker.

On the other hand, Figure 6(b) shows a RSA decryption pro-
cess with the simple timing mitigation mechanism we proposed in
Section 2. The timing channel attack on RSA is defeated because
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Figure 6: Simple mitigation of the RSA timing attack

the two curves are indistinguishable regardless of which bit is be-
ing guessed: our timing mitigation scheme eliminates the 0–1 gap.
The mitigation mechanism makes the time difference drop by four
orders of magnitude, because the only source of time difference is
the request time, which does not depend on the currently guessed
bit.

5.1.5 Expected leakage
If we are willing to make assumptions about the distribution

of encryption time, we can apply the method for estimating ex-
pected leakage that is discussed in Section 3.7. Using 1000 ran-
domly generated inputs to estimate Tbig, we find that 99% of them
are handled within 1 ∗ 108 clock cycles, which is approximately
1×108×103

3.16×109
= 31.65 ms (this is a 3.6GHz CPU). With an initial

quantum of 1 ms, it is easy to see that Nbig = dlog(31.65)e = 5.
The leakage bound in this case is shown in Figure 7, topping out
for practical purposes around 100 bits.

5.2 Timing attack on web servers
Web applications have been shown vulnerable to timing chan-

nel attacks, either by direct timing or cross-site timing. For in-
stance, many web applications try to keep secret whether a given
username is valid, by returning the same error message regardless
of validity. They do this because learned usernames can be abused
for spam, invasive advertising, and phishing. However, timing can
expose username validity, because sites usually execute different
code paths for valid and invalid user names [2].
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Figure 7: Expected leakage for RSA timing channel attack

We implemented a simple web server to expose this timing chan-
nel and applied our mitigation scheme to eliminate it. The result
shows that our mitigation mechanism is also useful in the face of
web applications, although with a latency cost.

5.2.1 Experimental setup
We built a small HTTP web service on Tomcat 5.5.28. It takes

a username/password pair as a request and checks its validity. We
randomly generate 10,000 username/password pairs, and store the
username with a SHA-1 password hash of passwords into Berkeley
DB (Java Edition, 4.0.92) [25]. This experiment is done between
two computers connected by a campus network.

The login service proceeds as follows: first, it checks the database
for validity of the given username. If the username is invalid,
this server just returns an error message. Otherwise, the server
computes the SHA-1 hash of the given password and checks if
it matches the one stored in database. If the password does not
match, the server returns the same error message as for an invalid
username, to conceal username validity. This captures the essence
of a login service. However, despite its simplicity, this service also
exhibits a possible timing channel, because the computation of the
SHA-1 hash depends on username validity.

To reduce network timing noise, we measure the query time 20
times for each username, and choose the smallest one as our sam-
ple. For each experiment, we randomly choose 400 valid user-
names from a valid username list, as well as 400 randomly gener-
ated invalid usernames to determine the timing difference between
them. As in the RSA experiment, we use a sequential attacker
model, where the attacker issues a query immediately after the re-
sponse. To make the difference more precise, we alternately issue
valid and invalid queries.

For the basic mitigation mechanism, instead of modifying the
Tomcat source code, we wrap the doGet function in our login ser-
vice servlet with code implementing the basic mitigation scheme,
to control leakage of the time needed to look up and check the
password. Because it is not implemented as part of Tomcat, this
implementation cannot mitigate timing information communicated
by web service setup time. However, the experiment still shows that
timing mitigation can defend against this timing channel attack.

5.2.2 Results
Figure 8(a) shows how query time differs for valid and invalid

usernames. Queries for valid usernames take significantly longer,
so a timing channel attack is easy to mount. Web server setup adds
about 1.5ms latency to queries in the beginning of the run, but the
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Figure 8: Simple mitigation of the web server timing attack

query time stabilizes after around 50 queries. An attacker could de-
termine the validity of an arbitrary username with high confidence.

Figure 8(b) shows the response time with the basic mitigation
mechanism. Since server replies only at the end of the current quan-
tum, the time difference is independent of the validity of username.
Close inspection of the results reveals that there is an initial 1.5ms
timing difference that is not mitigated by our implementation. This
timing difference is caused by the setup of the web service, rather
than by the login service we mitigated, and underscores the im-
portance of mitigating timing end-to-end rather than on individual
system components.

Another observation not shown in the time difference graph of
RSA experiment is that our simple timing mitigation mechanism
also adds a latency penalty to the web service, since the service
time is unified to the closest power of 2 of the largest service time.
This latency can be seen in Figure 8(b), where mitigation is seen to
add about 9 ms latency.

5.2.3 Expected leakage
We applied the expected-leakage approach of Section 3.7 to the

web service. Using 1000 random requests, we determined that 99%
of them are below 8 ms. Replacing Tbig = dlog 8e and p = 0.99
with these two numbers, the expected leakage for this application as
shown in Figure 9, with q0 = 1 ms. Clearly, the mitigated version
leaks information slowly in practice.
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Figure 9: Expected leakage for web server timing attack

6. RELATED WORK
Timing channels have been widely studied in the literature. We

briefly explore related work below.

Cryptographic side-channels.
One major motivation for controlling timing channels is the pro-

tection of cryptographic keys against side-channels arising from
timing cryptographic operations. A variety of attacks that exploit
timing side-channels have been demonstrated [4, 17]. Cryptographic
blinding [5, 17] is a standard technique for mitigating such chan-
nels. In recent works, Köpf et al. [18, 19] utilize blinding with
quantization (referred to there as bucketing) to derive tight bounds
on leakage of cryptographic operations.

Quantitative information flow.
We advocate a quantitative approach to controlling information

flow through timing channels. Like much other work on quantita-
tive information flow [6, 23, 18, 19] we draw on information the-
ory to obtain bounds on leakage. Millen [24] first observed that
noninterference implies zero channel capacity between high and
low. DiPierro et. al [28] quantify timing leaks in a language-based
setting. Epoch-based mitigation is similar in spirit to Mode Secu-
rity [3] which reduces covert channels to changes in modes. Unlike
Mode Security, we also account for leakage within epochs, via a
combinatorial analysis.

Detection of timing attacks.
Some prior work on timing channels has focused on detecting

the perturbation in the distribution of times introduced by timing
attacks [10]; however, stealthy timing attacks have been demon-
strated [21, 22].

Mitigation of timing attacks.
Giles and Hajek present a comprehensive study of timing chan-

nels [11] in which packet arrival is represented by continuous or
discrete waveforms. Similarly to us, they employ periodic quan-
tization. However, because of the constant periods, the reduction
of the timing channel bandwidth is only linear. Another difference
lies in the semantics of buffer bounds: while they assume that a
jammer has to release a packet from the queue when a buffer is
full, our mitigators block the input source.

One prior approach to timing channel mitigation is adding noise
to timing measurements. There are two ways to do this. First,
we can add random delays to the time taken by various opera-

tions, which reduces the bandwidth of the timing channel, as in [14,
11]. Adding random delays sacrifices performance, and it does not
asymptotically eliminate timing channels, since the noise can be
eliminated to whatever degree is desired by averaging over a se-
quence of identical requests. Methods for creating covert timing
robust against added noise have been demonstrated [21].

A second approach to mitigation, also used in [14], is that pro-
grams that read clocks are given results with random noise. This
method only applies to internal timing channels that are based on
reading clocks directly.

Wray [32] views every covert channel that originates from com-
paring two clocks as a timing channel. In this light, we focus on the
channels that arise from comparing timing of the events to external
reference clock that is not modulated by the attacker. Our results of
Section 3.5 can be interpreted as mixing external timing channels
and all other covert channels.

The line of work on NRL Pump [15, 16] addresses timing chan-
nels that arise when high confidentiality processes acknowledge re-
ceipt of messages from low confidentiality processes.

In a language-based setting, it is possible to reason about ways
the program can measure time, and language-based methods have
been proposed for controlling internal timing channels by analy-
sis [33] and by transformation [1, 29]. Coppens et al. [7] explore
automating compiling techniques to defend against timing-based
side-channel attacks on x86 processors. Language-based methods
for mitigating general external timing channels have also been pro-
posed, but rely on unrealistic assumptions. For example, Agat’s
work [1] ignores the effect of the code cache on timing, and is lim-
ited to programs that lack loops and recursion. Shroff and Smith
lift some of Agat’s limitations [31], but at the cost of possibly dis-
rupting computations.

7. CONCLUSION
This paper has introduced a new class of schemes for mitigating

timing channels for general computer systems. The key intuition
is that the timing mitigator can often predict the future availability
of events to deliver. Mitigator predictions divide time into epochs.
When a prediction fails, a new epoch begins and some information
is leaked. The mitigator is able to track the amount of information
leaked at each epoch transition and to enforce whatever leakage
bound has been specified. When the information bound permits,
the mitigator can also adaptively start a new epoch for improved
performance.

This paper has identified the key conditions that an epoch-based
mitigator must satisfy, and described some useful adaptive mecha-
nisms. However, there is no doubt more work to be done on under-
standing the space of epoch-based timing mitigators. The problem
of generating schedules of predictions for these mitigators, partic-
ularly for various classes of applications, appears interesting.

This paper has considered combining timing mitigation with other
mechanisms for controlling information flow through storage chan-
nels, and shown that it is possible to conservatively bound the ca-
pacity of the combined channel by building on the analysis of tim-
ing channel capacity given here. However, we have not yet imple-
mented such a combined mechanism for information flow control;
this is clearly a useful future direction. Exploring epoch-based tim-
ing mitigation in real-world systems is an obvious next step.
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APPENDIX

A more precise bound on leakage of the basic scheme.
This derivation is based on the fact that each possible string can

be determined by the placement of the misses, that is, the locations
of “–” in the string. For m misses in time T , there are at most

(
T
m

)
different strings. So

All possible strings ≤
log T∑
m=0

(
T

m

)
≤ (log T + 1)

(
T

log T

)

≤ (log T + 1)
T log T

(log T )!

Thus, the leakage can be no more than log(log T + 1) + log2 T −
log((log T )!), and by Stirling’s approximation,

log((log T )!) = log T log log T − log T + o(log T )

So the whole leakage term is O(log T (log T − log log T ))).

Proof of Theorem 1.
We prove the theorem by using the definition of I(X;Y ) to show

that the expressionH(Z) + I(X;Y )− I(X;Y,Z) is nonnegative.



H(Z) + I(X;Y )− I(X;Y,Z)

= H(Z) +H(X) +H(Y )−H(X,Y )

−H(X)−H(Y,Z) +H(X,Y, Z)

= H(Z) +H(Y )−H(X,Y )−H(Y,Z) +H(X,Y, Z)

≥ H(Z) +H(Y )−H(X,Y )−H(Y )−H(Z) +H(X,Y, Z)

= H(X,Y, Z)−H(X,Y ) ≥ 0

2


