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Abstract Is it possible to understand the intentions of

other people by simply observing their actions? Many be-

lieve that this ability is made possible by the brain’s mirror

neuron system through its direct link between action and

observation. However, precisely how intentions can be

inferred through action observation has provoked much

debate. Here we suggest that the function of the mirror

system can be understood within a predictive coding

framework that appeals to the statistical approach known as

empirical Bayes. Within this scheme the most likely cause

of an observed action can be inferred by minimizing the

prediction error at all levels of the cortical hierarchy that

are engaged during action observation. This account

identifies a precise role for the mirror system in our ability

to infer intentions from actions and provides the outline of

the underlying computational mechanisms.

Keywords Mirror neurons � Action observation �
Bayesian inference � Predictive coding

Introduction

The notion that actions are intrinsically linked to percep-

tion was proposed by William James, who claimed, ‘‘every

mental representation of a movement awakens to some

degree the actual movement which is its object’’ (James

1890). The implication is that observing, imagining, or in

anyway representing an action excites the motor program

used to execute that same action (Jeannerod 1994; Prinz

1997). Interest in this idea has grown recently, in part due

to the neurophysiological discovery of ‘‘mirror’’ neurons.

Mirror neurons discharge not only during action execution

but also during action observation, which has led many to

suggest that these neurons are the substrate for action

understanding.

Mirror-neurons were first discovered in the premotor

area, F5, of the macaque monkey (Di Pellegrino et al.

1992; Gallese et al. 1996; Rizzolatti et al. 2001; Umilta

et al. 2001) and have been identified subsequently in an

area of inferior parietal lobule, area PF (Gallese et al. 2002;

Fogassi et al. 2005). Neurons in the superior temporal

sulcus (STS), also respond selectively to biological

movements, both in monkeys (Oram and Perrett 1994) and

in humans (Frith and Frith 1999; Allison et al. 2000;

Grossman et al. 2000) but they are not mirror-neurons, as

they do not discharge during action execution. Neverthe-

less, they are often considered part of the mirror neuron

system (MNS; Keysers and Perrett 2004) and we will

consider them as such here. These three cortical areas,

which constitute the MNS, the STS, area PF and area F5,

are reciprocally connected. In the macaque monkey, area

F5 in the premotor cortex is reciprocally connected to area

PF (Luppino et al. 1999) creating a premotor–parietal MNS

and STS is reciprocally connected to area PF of the inferior

parietal cortex (Harries and Perrett 1991; Seltzer and

Pandya 1994) providing a sensory input to the MNS (see

Keysers and Perrett 2004 for a review). Furthermore, these

reciprocal connections show regional specificity. Although

STS has extensive connections with the inferior parietal

lobule, area PF is connected to an area of the STS that is

specifically activated by observation of complex body

movements. An analogous pattern of connectivity between

premotor areas and inferior parietal lobule has also been
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demonstrated in humans, both directly (Rushworth et al.

2006) and indirectly (Iacoboni et al. 2001, 2005). In

addition, a sequential pattern of activation in the human

MNS has been demonstrated during action–observation

that is consistent with the proposed pattern of anatomical

connectivity (Nishtani and Hari 2000, 2002).

Mirror-neurons and the MNS have been the focus of

much interest since their discovery because they have been

proposed as a neural substrate that could enable us to

understand the intentions of others through the observation

of their actions (Gallese and Goldman 1998). Actions can

be understood at many different levels. After Hamilton and

Grafton (2007) here we will consider actions that can be

described at four levels. (1) The intention level that defines

the long-term goal of an action. (2) The goal level that

describes short-term goals that are necessary to achieve the

long-term intention. (3) The kinematic level that describes

the shape of the hand and the movement of the arm in space

and time. (4) The muscle level that describes the pattern of

muscle activity required to execute the action. Therefore to

understand the intentions or goals of an observed action, the

observer must be able to describe the observed movement at

either the goal level or the intention level having only ac-

cess to a visual representation of the kinematic level. Al-

though mirror neurons have been proposed as the neural

substrate that could enable us to understand the intentions or

goals of an observed action (Gallese and Goldman 1998)

little is known about the neural mechanisms underlying this

ability to ‘mind read’. Gallese (2006) recently noted that

‘‘ ... we do not have a clear neuroscientific model of how

humans can understand the intentions promoting the actions

of others they observe’’. Therefore, the question remains, if

mirror-neurons do mediate understanding of actions done

by others how do they do it?

Rizzolatti and Craighero (2004) suggested, ‘‘The pro-

posed mechanism is rather simple. Each time an individual

sees an action done by another individual, neurons that

represent that action are activated in the observer’s pre-

motor cortex. This automatically induced, motor repre-

sentation of the observed action corresponds to that which

is spontaneously generated during active action and whose

outcome is known to the acting individual. Thus, the mir-

ror-neuron system transforms visual information into

knowledge’’.

Generative and recognition models

Although this proposed mechanism is ‘simple’ in concep-

tion it is non-trivial in terms of implementation. It is un-

clear how the visual information from an observed action

maps onto the observer’s own motor system and how the

goal of that action is inferred (Gallese et al. 2004; Iacoboni

2005; Jacob and Jeannerod 2005; Saxe 2005). Implicit in

this and many descriptions of the MNS is the idea that

visual information is transformed as it is passed by forward

connections along the MNS network from low-level rep-

resentations of the movement kinematics to high-level

representations of intentions subtending the action. In this

scheme, the observation of an action drives the firing of

neurons in the STS, which drives activity in area PF, which

in turn drives activity in area F5 (Fig. 1a). Formally, this is

a recognition model that operates by the inversion of a

generative model, where the generative model produces a

sensory representation of the kinematic level of an action

given the information at the goals or intentions level.

Generative models can be framed in terms of a determin-

istic non-linear generative function

u ¼ Gðv; hÞ:

Here v is a vector (i.e., a list) of underlying causes and u

represents some sensory inputs. G(v, h) is a function that
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Fig. 1 Schemas of the mirror-neuron system
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generates inputs from the causes given some parameters of

the model, h. In the case of action execution/observation

the causes, v are the long-term intentions or goals of the

action. The parameters, h, correspond to the connection

strengths in the brain’s model of how the inputs are caused.

These are fixed quantities that have to be learned, pre-

sumably through development. The inputs, u is the visual

signal corresponding to the sight of the executed action.

This generative model will produce an estimate of the

visual consequence of an executed action given the cause

or goals of that action. By inverting this generative model it

is possible to infer the cause or goals of an action given the

visual input. However, is there any evidence that such

generative models exist?

All executed actions have a sensory consequence. For

example when we reach and grasp a bottle of wine there

will be a change in our proprioceptive signal as we move,

there will be a change in our tactile signal as we touch the

bottle of wine, there will be change in the visual signal as

we observe the action we are executing and there may be a

change in the auditory signal as we pick up the bottle of

wine. It is now generally accepted that when we execute a

movement we predict the sensory consequences of that

movement through generative or forward models (Wolpert

et al. 1995, 2003; Wolpert and Miall 1996). These pre-

dictions can then be used to finesse motor control problems

induced by delayed feedback and sensory noise. In short,

forward models that generate predicted kinematics from

motor commands are considered an integral part of motor

execution. The suggestion here is that these generative

models can be inverted to infer the causes given the data.

One of the obvious problems with such a model is that

this scheme will only work when the processes generating

the sensory inputs from the causes are invertible, i.e., when

one sensory input is associated uniquely with one cause. In

general, this is not the case since the same sensory input can

have many causes. In the specific case of action–observa-

tion the same kinematics can be caused by different goals

and intentions. For example, if, while walking along the

street, someone suddenly waves his arm, is he hailing a taxi

or swatting a wasp? A trivial example of this is given by the

generative model u = v2. In this example knowing u does

not uniquely determine v, which could be negative or po-

sitive. The nature of this ill-posed problem has been dem-

onstrated empirically in the MNS. Mirror-neurons in area

F5 that discharge when a monkey is observing a reach and

grasp action also discharge when the sight of end point of

this movement is occluded (Umilta et al. 2001). Critically,

this result shows that mirror-neurons in area F5 are not

simply driven by the visual representation of an observed

movement. Therefore, if the inversion of a generative model

is not sufficient to explain how we can understand others’

actions through observation, then how can this be achieved?

The question remains, if mirror-neurons do mediate

understanding of actions done by others how do they do it?

Predictive coding and the MNS

The perspective we propose here is that the role of the

mirror-neuron system in reading or recognising the goals of

observed actions can be understood within a predictive

coding framework. Predictive coding is based on mini-

mizing prediction error though recurrent or reciprocal

interactions among levels of a cortical hierarchy (Box 1).

In the predictive coding framework, each level of a hier-

archy employs a generative model to predict representa-

tions in the level below. This generative model uses

backward connections to convey the prediction to the lower

level where it is compared to the representation in this

subordinate level to produce a prediction error. This pre-

diction error is then sent back to the higher level, via for-

ward connections, to adjust the neuronal representation of

sensory causes, which in turn change the prediction. This

self-organising, reciprocal exchange of signals continues

until prediction error is minimised and the most likely

cause of the input has been generated. It can be shown that

this scheme is formally equivalent to empirical Bayesian

inference, in which prior expectations emerge naturally

from the hierarchal models employed (see Box 2; Friston

2002, 2003, 2005). It should be noted that the prediction

addressed in predictive coding is predicting the sensory

effects from their cause. This is about the mapping between

the cause (motor commands to grasp) and the sensory (i.e.,

visual or proprioceptive) expression or effect of that cause.

It is not about forecasting (i.e., predicting the sensory states

in the future, given the sensory state now), aka prospective

coding (see Schultz-Bosbach and Wolfgang Prinz 2007 this

issue for a review of this topic).

For the MNS this means that anatomically the areas

engaged by movement observation are arranged hierar-

chically and the anatomical connections between these

areas are reciprocal. In terms of functional anatomy it

means that the prediction error encoding higher-level

attributes will be expressed as evoked responses in higher

cortical levels of the MNS. For action observation the

essence of this approach is that, given a prior expectation

about the goal of the person we are observing, we can

predict their motor commands. Given their motor com-

mands we can predict the kinematics on the basis of our

own action system. The comparison of this predicted

kinematics with the observed kinematics generates a pre-

diction error. This prediction error is used to update our

representation of the person’s motor commands (Fig. 1b).

Similarly, the inferred goals are updated by minimising the

prediction error between the predicted and inferred motor
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commands (see Box 1). By minimizing the prediction error

at all the levels of the MNS, the most likely cause of the

action will be inferred at all levels (intention, goal, motor

and kinematic). This approach provides a mechanistic

account of how responses in the visual and motor systems

are organised and explains how the cause of an action, can

be inferred from its observation.

Generative models in motor control

Predictive coding is particularly appropriate for under-

standing the function of the MNS; predictive coding

provides an established computational framework for

inferring the causes (intentions, goals and motor com-

mands) of sensory inputs (observed kinematics). It is now

generally accepted that forward or generative models play

a critical role in motor control (Wolpert et al. 1995, 2003;

Wolpert and Miall 1996). The suggestion here is that these

same models are used to infer motor commands from ob-

served kinematics produced by others during perceptual

inference (see Chater and Manning 2006) for a similar

heuristic in the domain of language perception). Box 3

illustrates the formal similarities and differences between

action–optimisation and action–perception. In execution,

motor commands are optimised to minimise the difference

between predicted and desired kinematics, under the

assumption that the desired kinematics (i.e., goals) are

known. Conversely, in action–perception, these goals have

to be inferred. However, in both optimisations a forward

model of motor control is required. In the predictive coding

account of the MNS, the same generative model used to

predict the sensorial effects of our own actions can also be

used (with appropriate transformations) to predict the ac-

tions of others (see Friston 2005 for a description of the

relationship between forward and inverse models and

predictive coding).

There have been several previous accounts that have

proposed the use of forward and inverse models in action–

observation (Keysers and Perrett 2004; Wolpert et al. 2003;

Miall 2003). ‘‘Skilled motor behaviour relies on the brain

learning both to control the body and predict the conse-

quences of this control. Prediction turns motor commands

into expected sensory consequences, whereas control turns

desired consequences into motor commands. To capture

this symmetry, the neural processes underlying prediction

and control are termed the forward and inverse internal

models, respectively’’ (Flanagan et al. 2003). First, forward

Hierarchical architecture for predictive coding with empirical Bayes
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The empirical Bayesian perspective on 
perceptual inference suggests that the 
role of backward connections is to
provide contextual guidance to lower
levels through a prediction, of the lower
level's inputs. Given this conceptual
model, a stimulus-related response can
be decomposed into two components
corresponding to the transients evoked in
two functional subpopulations of units.
The first encodes the conditional
expectation of perceptual causes, µ. The
second encodes prediction error, .
Responses are evoked in both, with the
error units of one level driving appropriate
changes in conditional expectations
through forward connections.  These 
expectations then suppress error units
using predictions that are mediated by 
backward connections.  These
predictions are based on the brain’s
generative model of how sensory states
are caused.

Generation

Recognition

Box 1

Predictive coding and empirical Bayes

Predictive coding is a framework that, in a hierarchical setting, is
equivalent to empirical Bayesian inference. Schemes for identifying
the causes of sensory input that are based entirely on bottom-up,
forward connections, such as the feedforward recognition model in
Figure 1a, are ill-posed when the generative model linking sensations
and causes can not be inverted. This can occur when there are
inherent ambiguities in the way sensations are generated (e.g., visual 
occlusion) However, identification is possible for noninvertible
generative models by incorporating constraints and prior information.
This is equivalent to full Bayesian inference. Although full Bayes
enables recognition with noninvertible generative models it creates a 
new problem for the brain. Namely, the brain cannot construct prior
expectations de novo; these have to be learned and adapted to the 
current experiential context. Statistical solutions are available for this
problem using empirical Bayesian inference, in which priors are
estimated from data. Empirical Bayesian inference harnesses the 
hierarchical structure of a generative model, treating the estimates at
one level as priors on the subordinate level. This provides a natural
framework within which to treat cortical hierarchies in the brain, each
level providing constraints on the level below. This approach models
the world as a hierarchy of systems where supraordinate causes
induce and moderate changes in subordinate causes. These priors
offer contextual guidance towards the most likely cause of the 
sensory input.  This scheme can be implemented with simple
architectures that have a degree of biological plausibility (see Box 3)

Box 2
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and inverse models have been proposed as an account of

imitation; the inverse model (mapping kinematics to motor

signals) is identical to feedforward recognition model of

the MNS (shown in Fig. 1a). The logic is that the inverse

model can used as recognition model and therefore infer

the cause of an observed action. Once the cause of the

observed kinematics is inferred the action can then be

imitated. Second, the HMOSIAC model for motor control

has recently been proposed as a model for understanding

social interactions (Wolpert et al. 2003). The links between

this model and the predictive coding account exist at a

number of levels. In the HMOSIAC model several of

predictor–controller pairs are organised hierarchically. The

predictor (forward) model is employed to predict the input

in a subordinate module and the controller is used to adjust

the predictor to maximise the prediction.

Although these generalisations of forward–inverse

models in motor control to imitation and social interactions

are exciting, they are formally distinct from, and more

complicated than, the predictive coding account of the

MNS. In predictive coding there is no separate inverse

model or controller; a forward model is simply inverted by

suppressing the prediction error generated by the forward

model. This inversion depends on the self-organising, re-

ciprocal exchange of signals between hierarchical levels

(see Box 1). This simplicity translates into an algorithmic

architecture that could be implemented plausibly by the

brain (and for which there is a considerable amount of

anatomical and physiological evidence). Indeed Miall

(2003) when describing the HMOSIAC model wrote,

‘‘Quite how this multi-level controller could be generated

neurally is not yet clear, but the link with mirror-neurons

seems appealing’’. In contrast, the predictive coding

account has been described in some detail at the neural

level (see Friston 2002, 2003, 2005).

An example of the predictive coding account

of the MNS

Within predictive coding, recognition of causes is simply

the process of jointly minimizing prediction error at all

levels of a cortical hierarchy. The most likely cause of an

observed action (i.e., motor commands, goal or intention)

can be estimated from the visual representation of the ob-

served movement. An intuitive example is given in Fig. 2.

Here we use the predictive coding account of the MNS to

address the Dr. Jekyll and Mr Hyde thought-experiment

described in Jacob and Jeannerod (2005). In this thought-

experiment, one is invited to watch identical movements,

made by Dr. Jekyll and Mr Hyde. In both cases one ob-

serves the same person, taking hold of a scalpel and

applying it to a human body. However, in one case Dr.

Jekyll is using the scalpel to cure a patient but in the other

Mr Hyde’s aim is to inflict pain. Jacob and Jeannerod argue

that the MNS is incapable of distinguishing between these

two intentions, as the observed movement is identical in

both cases. This is certainly true for the bottom–up inverse

or recognition model described in Fig. 1a but it is not true

for the predictive coding scheme. The observed kinematics

motor plant
ux

Simplified scheme for motor control: The motor plant
receives commands (u) and changes the sensory input
(x). These commands are constructed by a controller
(inverse model) to minimise the difference between the
desired trajectory of the states (v) and those predicted by
the forward model. The forward (predictor) model is a
function of the [efference] copy of the motor command. In
this case, the goal is known and only u is optimised. The
inverse model or controller is represented as a recognition
function that minimises prediction error by gradient
descent (the dot above a variable means rate of change).
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Simplified scheme for action-perception: A hierarchical
generative or forward model of sensory states is inverted
to infer their [unknown] causes. These causes include the 
motor commands (u) of the observed agent that are
inferred by minimising the difference between the
observed and predicted states (using a forward model of
the motor plant). The agent’s goals are inferred by
minimising the error between the inferred commands (u)
and those predicted by their forward model, which is a
function of goals.
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can be explained at a number of levels that are hierarchi-

cally organised, the visual representation of the kinematics,

the underlying motor signals, the short-term goal (e.g., to

grasp the scalpel), and the long-term intention (‘to cure’ or

‘to hurt’). These three levels are shown schematically in

Fig. 2a. In predictive coding, the intentional level predicts

a goal that in turn predicts the kinematic representation of

the motor acts. At each level the predicted activity is

compared to the actual activity and any difference is pro-

jected back-up the hierarchy as a prediction error (see Box

1). In the case where both intentions produce identical

movements there are identical prediction errors and

therefore the predictive coding account can not infer a

unique intention from the observed movement. However,

in contradistinction to the bottom–up model, the predictive

coding model also has to explain sensory information

pertaining to the context in which the movement has been

observed. This induces high-level sensory causes that

provide empirical priors on action–perception; for exam-

ple, a therapeutic intention explains the action and the vi-

sual scenery, if seen in an operating theatre (Fig. 2b). This

does not mean that context is coded by mirror-neurons but

rather the MNS is part of a larger hierarchy, where inten-

tions are encoded. In this scheme, the intention that is in-

ferred from the observation of the action now depends

upon the prior information received from a context level. In

other words, if the action was observed taking place in an

operating theatre there would be a large prediction error for

the intention ‘to hurt’ and a smaller prediction error for the

intention ‘to cure’. The prediction error would be the same

at all other levels of the hierarchy for the two intentions. By

minimising the overall prediction error the MNS would

infer that the intention of the observed movement was to

cure. Therefore, the MNS is capable of inferring a unique

intention even if two intentions result in identical move-

ments. This observation is supported empirically. Mirror-

neurons in area PF have been shown to have differential

patterns of firing when viewing movements that are virtu-

ally identical at the kinematic level, but differ at the level

of intention. In this task there is a contextual cue, the object

that is grasped, that informs the monkey of the intention of

the action to be observed. Within the predictive coding

account the MNS will always be able to infer the most

likely intention of an observed action, given the observer’s

priors.

Summary

Social interaction depends upon our ability to infer beliefs

and intentions in others. Impairments of this ability can

lead to major developmental and psychiatric disorders such

as autism (Dapretto et al. 2006; Oberman et al. 2005) and

schizophrenia (Arbib and Munhenk 2005). It has been

Kinematics 

Goals

Intentions

Context Operating Theatre 

To Cure To Hurt 

Grasp scalpel 

To Cure To Hurt 

Grasp scalpel 

a b

Fig. 2 Examples of the predictive coding account of the MNS. Here

we consider four levels of attribution in an example hierarchy of the

MNS; kinematics, goal, intention and context. In a action–observation

is considered in the absence of a context, in b the identical action is

observed in but now in the context of an operating theatre. The bars
depict the level degree of prediction error. In a both intentions predict

identical goals and kinematics and therefore the prediction error is

identical in both schemes. In this case the model can not differentiate

between the intentions causing the action. In b the context causes a

large prediction error for the goal ‘to hurt’ and a small prediction error

for the goal ‘to cure’. In this case the model can differentiate between

the two intentions
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suggested that the MNS could underlie this ability to ‘read’

someone else’s intentions. Here we have proposed that the

MNS is best considered within a predictive coding

framework. One of the attractions of predictive coding is

that it can explain how the MNS could infer someone else’s

intentions through observation of their movements. Within

this scheme the most likely cause of an observed action is

inferred by minimising the prediction error at all levels of

the cortical hierarchy that is engaged during action–

observation. Central to testing the predictive coding ac-

count of the MNS is that the nodes of the cortical hierarchy

are well characterised both anatomically and functionally.

From the existing literature we can assume that any MNS

network will include areas of ventral premotor cortex,

inferior parietal lobule and STS. However, the function of

each node in the MNS and the hierarchical organisation of

the MNS are not known. Implicit in many accounts of the

MNS is the notion that the area F5 is the highest level of

the hierarchy. This is the hierarchical arrangement shown

in Fig. 1. However, there is no direct evidence to support

this view and the results of recent studies suggest that the

inferior parietal lobule area may be superordinate to pre-

motor areas in the MNS hierarchy (Hamilton and Grafton

2006; Fogassi et al. 2005). Specifically, the theory under-

lying the predictive coding account of the MNS is inde-

pendent of the hierarchical organisation. The predictive

coding account of the MNS specifies a precise role for the

MNS in our ability to infer intentions and formalises the

underlying computations. It also connects generative

models that are inverted during perceptual inference with

forward models that finesse motor control.
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