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Predictive Communication Quality Control in Haptic

Teleoperation with Time Delay and Packet Loss
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Abstract—Teleoperation in extreme environments may suffer
from communication delay and packet loss during the trans-
mission of command signals and sensory feedback. The present
study investigates whether online control of communication time
delay by using Quality of Service (QoS) techniques can improve
operator task performance in a virtual teleoperated collision
avoidance task. We first introduce the framework of predictive
communication quality control based on a dynamic performance
model of a human handling the teleoperation system. We then
apply the framework to a virtual collision avoidance scenario,
and evaluate it with two behavioral studies. Study 1 identifies
that prolonging time delay significantly increases the frequency
of collisions and completion time. We develop a model for
predicting the probability of the operator causing collisions with
the wall and fit its parameters with the experimental data. In
Study 2 we compare the completion time and the number of
collisions with and without the predictive QoS control. We find
the predictive QoS control to reduce the number of collisions,
but not affect task completion time. The prediction model and
empirical validation provide a successful proof-of-concept for a
human-centered system design, in which the dynamic model of
the operator is the center of the control architecture.

Index Terms—User centered design, Communication systems,
Haptic control, Human-Robot Interaction, Forecasting.

I. INTRODUCTION

TELEOPERATION systems enable a human operator to

perform tasks in remote, dangerous, micro-scale, or oth-

erwise inaccessible environments by controlling a human-

system interface (HSI), which is coupled via a communication

channel to a robotic teleoperator (TO). Teleoperation has been

successfully applied to various applications, including search-

and-rescue tasks, on-orbit servicing of satellites in space, and

telesurgery [1].

Data transmission between the HSI and the TO over long

distances can suffer from time delay and data loss [2], [3].

These effects are known to challenge the stability of a teleop-

eration system, when the global control loop with the remote

environment is closed via the haptic modality. Appropriate

stabilizing techniques for time-delayed teleoperation alter the

mechanical environment’s impedance and haptic events occur-

ring on the remote side (e.g., impact situations) are less rec-

ognizable [4]–[6]. Besides the perceptual distortions, several

studies have also found task performance to be degraded [7],

[8] as a result of communication time delays.
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Fig. 1. Communication quality control in teleoperation can take into account
various quality requests from the operator and teleoperator.

Packet loss in the communication channel can negatively

affect operator task performance, given that the quality of

haptic feedback depends on the environmental impedance,

packet rate, and loss burst length [5]. It has been shown

that an increase in the packet loss rate reduces the accu-

racy of temporal order judgments between visual and haptic

events [9]. Movement time can also be impacted by packet

loss that is caused by time-varying time delays [10]. In this

paper, we investigate the relation between task performance,

communication delay, and information loss in teleoperation

systems with haptic feedback in greater depth.

Recent developments in communication protocols, such

as the IPv6 protocol, include the ability to online-regulate

the Quality-of-Service (QoS) in terms of transmission time

delay, packet loss rate, traffic throughput, and jitter [11] (see

Figure 1). QoS control can generally improve the performance

of networked control systems [12], such as autonomous control

of mobile robots [13]. For these applications, a specifically

designed control algorithm computes appropriate control ac-

tions based on sensory feedback, the goal to be accomplished

and the QoS strategy itself [13]. In teleoperation, the human

operator acts as a controller, receiving sensory feedback from

the remote site and sending commands in the form of actions

to the TO, but his/her control strategy is largely unknown.

Task-related empirical rules for QoS control can provide for

an informed allocation of communication bandwidth during

teleoperation [14]–[16], potentially boosting the operator’s

task performance. Current approaches, however, focus exclu-

sively on control aspects, rather than explicitly considering

the requirements of the human operator to accomplish the

task at hand when allocating communication resources. The

ecological interface design (EID) framework [17] can provide

important insights into the components of a task that are

crucial for efficiently accomplishing a given goal, and it

has proven applicability to the design of efficient telerobotic
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systems [18]. While it is essential to know the requirements for

the technical system posed by the task, an understanding of the

operator’s task-dependent dynamic behavior may likewise be

important for identifying key factors leading to improved task

performance. Consequently, modeling human behavior under

the influence of communication parameters such as time delay

and packet loss would be crucial for realizing a QoS controller

for the communication channel in teleoperation.

In this regard, the contribution of the present article is

twofold: First, we introduce a framework of dynamic predic-

tion models for human task performance in general; this is

described in Section II. Such predictive models can be utilized

by QoS control algorithms for online-regulating service quality

to improve task performance; we develop one specific model

for this purpose in Section III. Second, we explore online-

control of time delay in the communication channel as a

means for improving operators’ performance in a collision

avoidance task. Two behavioral experiments are reported as

proof of concept for the proposed framework. We develop and

parameterize a dynamic prediction model of task performance

with regard to the number of (to-be-avoided) obstacle colli-

sions, based on Experiment 1 described in Section IV. The

model is then applied in Experiment 2 to online adjust the

communication quality in terms of the time delay, which did

yield a reduction of the number of collisions, as predicted.

This experiment and the findings are presented and evaluated

in Section V. The final Section VI summarizes the implications

of the work presented.

II. METHODS

Here, we describe methods for identifying models of human

performance when performing teleoperation over a disturbed

communication channel and how to include these models

in a control algorithm. We assume that the communication

network is capable of fulfilling every quality request, where

high channel quality corresponds to low time delay, low packet

loss rate, low jitter, and high bandwidth.

A. Model-Based Communication Quality Control

A high-quality communication channel can contribute to

high task performance when interacting with a teleoperation

system [7], [8], but comes at a high cost. Thus, high commu-

nication quality should be applied when it can significantly

improve task performance (e.g., help avoid collisions), while

keeping the costs low should be prioritized when operator task

performance is not greatly affected by the channel’s quality.

For a quantitative network quality control law, the influence

of communication quality parameters on human performance

must be explicitly taken into account. The optimal way to de-

rive the time-varying communication quality parameters θ∗C(t)
is to solve the multi-objective dynamic optimization problem

argmax
θC(t)∈ΘC

[
JP (t) −JC(t)

]T
, (1)

where JP (t) ∈ R governs the achievable task perfor-

mance given the communication parameters over time t,
and JC(t) ∈ R is a function describing the network costs. The

communication quality parameters θC(t) ∈ ΘC are quantized

into permissible quality levels.

Multiple approaches exist to solve the optimal control

problem posed in (1) [19]. In theory, the global optimum θ∗C(t)
can be found via dynamic programming and value iteration.

Because this method requires complete knowledge about the

environment, the task, and human behavior, we consider

model-predictive control (MPC) instead [20]. MPC algorithms

repeatedly solve the dynamic optimization problem formulated

in (1) in every time step, while considering only a limited

prediction horizon. Thus, the approach is more robust to

modelling uncertainties. Furthermore, MPC can handle higher-

order system dynamics, whereas dynamic programming suf-

fers from the “curse of dimensionality”.

The communication cost JC(t) depends on the network ar-

chitecture and other factors which can be determined explicitly

(e.g., by using game theory [21]). Task performance models

JP (t) always depend on the specific task and the goal to be

achieved: Assembling and pick-and-place tasks typically need

to be quick and accurate. For micro- or nanomanipulator tasks,

precise positioning is required. Classical task performance

measures, such as completion time or tracking accuracy, are

static measures, meaning there is a one-to-one mapping of a

specific task parameterization to one performance value and

the actual performance value can be quantified only after

completion of the task. Consequently, they cannot be used for

performance predictions during task execution, which would

be a requirement for online-adjustments of communication

quality parameters. In the following section, we develop dy-

namic task performance prediction models, capable of serving

in an online-control scheme for communication parameters.

B. Dynamic Performance and Cost Models

We model task performance JP (t) at a discrete time in-

stance t as the output of a discrete-time state-space model as

JP (t) = φP (θC(t), θT (t),xP (t),u(t), t),

xP (t+ 1) = ψP (θC(t), θT (t),xP (t),u(t), t).
(2)

The dynamics are contained in ψP (·), while φP (·) is a

static mapping between the actual state xP (t) and the task

performance measure JP (t). The input vector u(t) contains

the operator’s action, e.g, the force applied.

Task-specific parameters θT (θC(t), t) that impact the perfor-

mance measure JP (t) can be separated into communication-

independent θiT (t) and communication-dependent θdT (θC(t), t)
parameters. Here, θiT (t) contains factors associated with the

specific task itself, that is, they would influence performance

even when the operator performed it directly, without using a

teleoperation system (e.g., the path length in a navigation task

or the number of items in a pick-and-place task). However,

communication artifacts, such as time delay, can change the

haptic properties of the task, which is reflected in θdT (θC(t), t):
Imperfect communication quality can cause stability prob-

lems [5]–[7], [22]–[24] and change the mechanical properties

of the task. In the simplest case where a stability analysis

reveals large closed-loop stability margins, for example with a

soft environment and manipulators with a limited force range,
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time delay changes the phase characteristics of the haptic

environment instead of causing instability [25]. Both, θiT (·)
and θdT (·) can be time-varying in the case of a dynamically

changing environment where moving obstacles interfere with

the desired movement trajectory.

The state variable xP (t) is used to describe dynamical pro-

cesses defining φP (·). Mechanical states of the teleoperation

system, such as the end-effector position and velocity, may

be included in xP (t) as well as non-observable virtual states

modelling the dynamic control behavior of the human operator.

Similar to the dynamic task performance model, a dynamic

communication cost model using the state variable xC(t) can

be written as

JC(t) = φC(θC(t),xC(t), t),

xC(t+ 1) = ψC(θC(t),xC(t), t).
(3)

where φC(·) is the algebraic output function in xC(t),
and ψC(·) contains dynamical processes. The state xC(t)
can account for cumulative processes (e.g., the overall cost

spent on communication for full task execution). Time-varying

network load or failure of network resources can add a time-

varying component to φC(·).
In general, determining φP (·) and ψP (·) is challenging due

to the complex, stochastic nature of human behavior, and the

generally unknown and ambiguous tasks to be solved. Thus,

model approximations that fit the human behavior sufficiently

well have to be identified.

C. Illustrative Example

As an example illustrating the development of an MPC

algorithm for optimal online-control of communication quality,

we imagine a telepresent pick-and-place task with adjustable

communication bandwidth bw(t) ∈ R
+, directly affecting the

resolution of the transmitted video stream. Without loss of

generality, we constrain movements into one direction and

denote the velocity as v(t) ∈ R. The task performance

measure JP (t) in this task is the positioning accuracy achieved

during the placement component. As a communication cost

criterion JC(t), we consider the transmission cost over one

standardized time unit (e.g., one sample time period of the

dynamic task performance model). Assume that the following

characteristics of the communication system, task, and human

operator are known:

• The cost JC(t) for reserving communication bandwidth

bw(t) for one time unit is γ bw(t) where γ ∈ R
+ is a

constant determining the network’s cost policy.

• The operator task performance JP (t) scales linearly with

communication bandwidth.

• In the placing phase where it is important to achieve high

task performance, the operator’s absolute velocity |v(t)|
is low compared to the maximum speed vmax.

• Due to a large inertia of the object to be placed in

comparison to the available actuator force, the velocity

stays approximately constant within a prediction horizon

of 100 time steps.

Based on experimental observations and considerations

of network quality, performance and cost models can

be derived with communication bandwidth as the

only communication quality parameter θC(t) = bw(t)
where bw(t) ∈ BW = [bwmin, bwmax].

JP (t) = φP (bw(t), v(t)) = (vmax − |v(t)|) bw(t),

v(t+ 1) = v(t).

JC(t) = φC(bw(t)) = γ bw(t).

Resolving the multi-objective optimization problem using a

weighted sum with weighting factors λ1, λ2 > 0, an example

MPC problem with a prediction horizon of 100 samples can

be formulated as

argmax
bw(t)∈BW

100∑

j=0

λ1φP (bw(t+ j), v(t+ j))−

100∑

j=0

λ2φC(bw(t+ j)).

(4)

Because of the system dynamics

v(t+ 1) = v(t+ 2) = . . . = v(t+ 100) = v(t)

the solution to the MPC problem posed in (4) is the simple

control law

bw(t) =

{

bwmax if (λ1(vmax − |v(t)|)− λ2γ) > 0

bwmin otherwise

The choice of performance model is the most challenging

part in the development of an optimal network quality con-

trol scheme. In this example, we implicitly assume that the

operator acts only based on velocity and video quality, and

ignores all other features. Any controller developed on the

basis of a human model should be evaluated to test the validity

of any assumption made and iteratively refined in subsequent

experiments if necessary.

III. DYNAMIC PERFORMANCE PREDICTION MODEL FOR

COLLISIONS

As an application for communication quality control in

a teleoperation system, a specific task requiring speeded

navigation through a course of obstacles was devised and

investigated. Visual and haptic feedback was provided. For

ease of experimentation, evaluation, and comparability of

the results among the participants in our experiment, the

teleoperation system was ‘abstracted’ by a virtual environment,

representing the teleoperator’s position by a circle moving on

the screen. Furthermore, the operator’s permissible motions

were constrained to a plane by using a 2DoF haptic interface.

The obstacle course was represented by a labyrinth with a

unique path, similar to previous studies [26], [27]. Virtual

environment and experimental setup are depicted in Figure 2.

Because time-varying time delay Td(t) and packet loss are

challenging problems for teleoperation systems operating over

long distances [5], [7], [22]–[25], we consider Td(t) and

the packet loss rate pl(t) in the communication quality pa-

rameters θC(t) = [Td(t) pl(t)]
T . To guarantee stability in

the case of contact with an obstacle, the exchange of haptic

signals between the master device and the virtual environment
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Fig. 2. The experimental setup consisted of a 2DoF haptic interface with
monitor for visual feedback, and a virtual environment with emulated network
characteristics, wave variable transformation, and a virtual labyrinth. The
experimental task was to navigate through the labyrinth, as fast as possible,
from the start point S to the goal location G, avoiding any collisions with the
wall.

is mediated by the wave variable transformation, ensuring

stability for arbitrary long time delays [1], [4], [5], [7]. The

following two dependent variables are the performance metrics

considered in JP (t) for the given taskj [26]:

1) task completion time tcom,

2) number of obstacle collisions Ncol at time tcom.

This section focuses on the development of a dynamic task

performance model for predicting (only) the number of ob-

stacle collisions. The nature of Ncol ∈ N to attain only

discrete values is problematic for most optimization algorithms

that rely on the gradient in the objective function, because

gradient estimation on quantized functions is unreliable. Thus,

the probability of colliding with an obstacle within a future

time horizon pcol([t, t+tp]) is taken as an optimization vari-

able. This measure returns quasi-continuous values, where a

collision probability pcol([t, t + tp]) = 1 is equivalent to an

inevitable obstacle collision within tp. Collision probabili-

ties 0 < pcol([t, t+ tp]) < 1 can be used to predict the amount

of network quality that is needed to ensure safe task execution.

The dynamic part ψP (·) and output function φP (·) contained

in equation (2) are derived in the following. We will consider

the prediction model and the network cost model to exhibit

no time-varying parameters.

A. Task Performance Dynamics ẋP (t) = ψP (·)

The state vector xP (t) can contain mechanical states as-

sociated with the teleoperation system as well as states de-

scribing sensorimotor processes of the human operator. Given

that the sensorimotor system is complex, we focus only on

the modeling of mechanical processes. The dynamics of the

human-system interface are often modeled as a mass-damper

system [5]. Motions in one dimension are governed by the

dynamic equation

fh = mẍ+ dẋ (5)

where fh is the operator’s force exerted into a spatial direction

x. For now, any influence of the remote (haptic) environment

is not included, so the inertia m and the damping d to be

moved are solely determined by the haptic device and the

control algorithm, denoted as mHSI and dHSI , respectively.

In favor of presentation clarity, we present the dynamical

process for the continuous case and use an approximated time-

discrete version with equal dynamic properties for computing

the collision probability later on. For usage in a task perfor-

mance model in the sense of equation (2), equation (5) is

extended to two spatial dimensions x and y and formulated

as a state-space system with the continuous state variable

xP (t) =
[
x(t) ẋ(t) y(t) ẏ(t)

]T
. We assume that the

dynamics in x- and y-direction are independent from each

other.

1) Environment Dynamics: The simple task considered in

this paper has two distinct dynamics: Free-space motion with

zero environment impedance in the case of pure navigation,

and a hard contact in case of an impact. The walls are rendered

as damped stiffness. Considering that the goal is to minimize

the number of collisions, it is important to predict the collision

probability before any impact occurs. Consequently, only the

case of free-space motion with Zenv = 0 is considered as

relevant for subsequent computations.

2) Communication-Sensitive Task Parameters θdT (θC(t)):
Communication parameters θC(t) can change properties of the

task, reflected by θdT (θC(t), t), by means of stabilising tech-

niques or other changes in the teleoperation system’s haptic

properties. We limit our considerations for determining θdT (θC)
to the application of the wave-variable transformation [1],

[4], [5], [7] for stable closed-loop control. Following this

approach, linear combinations u and v are computed from

the velocity ẋ{h,t}(t) and force f{h,e}(t) and transmitted over

the time-delayed and ‘lossy’ communication channel. It can

be shown [5] that in the case of free-space motion of the

telerobot, a virtual inertia md
h is added to the impedance of

the human-system interface that needs to be moved by the

human operator on the local side. The magnitude of md
h that

depends on the time delay can be computed as

md
h =

bTd
2
. (6)

The wave impedance b > 0 is a tuning factor [5].

While there is an analytic solution for the impedance

displayed in the case of constant time delay, the effect of

packet loss is non-deterministic, given that packet dropouts

occur randomly. Furthermore, their influence on system trans-

parency strongly depends on the reconstruction strategy for

lost packets. Replacing a lost data packet containing wave

variable information with zero values does preserve pas-

sivity and stability, but causes a significant position drift,

as well as a drastically decreasing transparency [5]. Con-

versely, a hold-last-sample (HLS) technique that repeats the

last transmitted value in case of missing information leads

to better transparency, but induces active, thus potentially

unstable behavior. Therefore, we reconstruct lost packets using
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an energy-supervising algorithm [5], which ensures passivity

while mostly preserving transparency. In this approach, the

HLS reconstruction technique is used as long as the energy

contained in the wave variable does not increase over bounds

(passive behavior). In the case of an energy increase, a wave

variable with zero values is to be sent.

Taking together the dynamic models of HSI, environment,

and the additional communication-induced impedance, the

actual dynamics that the human operator interacts with is of

the form specified by equation (5) with the inertia and damping

parameters

m = mHSI +
bTd
2
, d = dHSI . (7)

Remark 1. The (uncompensated) device inertia as part of

equation (7) contributes to the felt impedance of the de-

vice. Impedance-type haptic interfaces (e.g., the Geomagic R©

Phantom R© and Novint Falcon R©) typically have lower inertial

moments, but at the cost of a lower achievable force range.

With a constant wave impedance b, the relative importance

of the delay-dependent inertial component becomes more

prominent with smaller mHSI . It should be noted, however,

that b is chosen in accordance with the device characteristics,

and thus may be smaller with lower mHSI [24].

B. Task Performance Output Function Jp = φP (·)

The output function φP (·) relates the system state, com-

munication and task parameters to the task performance mea-

sure JP (t), which is the probability to collide with an obstacle

within the prediction horizon [t, t+ tp],

JP (t) = pcol([t, t+ tp]).

The algorithm for computing pcol is based on a number of

assumptions with regard to the human operator:

• The operator is able to exert a (bounded) force in every

direction in the x-y plane.

• The rate at which the human force changes has an upper

bound [28].

• All forces are equally likely to be exerted within a

prediction horizon tp.

The latter assumption is made so as not to restrict to a

specific strategy or forecast of human behavior in the context

of a specific task. Given the present article focuses on the

methodology of using a dynamic performance model and

an experimental proof-of-concept, the complete formalism

for computing pcol will not be described here. We refer

readers to [29], [30] for an overview of methodological aspects

associated with probabilistic reachable sets, and Appendix C

in [31] for an application of this method to mass-damper

systems. The collision probability is inferred in three major

steps:

1) Determine the probability pi([t, t + tp]) of reaching a

discrete system state Xi within a prediction horizon [t, t+ tp].
First, the time horizon is divided into Np equally-sized

intervals of length T , and we assume a constant exerted

force within this time interval. T = 100 ms is chosen in

agreement with observations in the literature that volitional

initial state region

reachable 

state set

(a) 2D-projection of the reachable
state set.

discrete

states

initial state

(b) Abstraction of the reachable set by a
Markov chain.

Fig. 3. (a) A 2-dimensional projection of the 4D reachable set of states,
developing from an initial state set under the influence of a bounded force.
(b) A Markov chain with transition matrix Φ represents the probability of
passing a discrete state Xj . Darker states are more probable to be reached
from the initial state X1.

bandwidth for human movements is between 3 and 10 Hz [28].

Next, the state space is discretized, and the probability of

reaching a specific state Xi within a time horizon [t, t+T ] is

computed using reachable sets and represented as a Markov

chain. This procedure is illustrated in Figure 3. Predictions

beyond t+ T are achieved iteratively by taking the reachable

states at t+ T as initial values and weighting the predictions

with the respective probability pi(tT ).
2) Determine the probability qi([t, t + tp]) if reaching Xi

leads to a collision. The entries in qi are either 1 or 0. In

case Xi corresponds to a position coincident with an obstacle:

qi([t, t+ tp]) = 1, otherwise qi([t, t+ tp]) = 0.

3) As a worst-case estimate, the collision probability

pcol([t, t+tp]) is defined as the maximum reaching probability

in the set of discrete system states leading to a collision

pcol([t, t+ tp]) = max
i
pi([t, t+ tp])qi([t, t+ tp]). (8)

Projections to the x− y plane of pi([t, t+ tp]) are depicted

in Figure 4 for different initial states. Evidently, pi([t, t+ tp])
does not only depend on initial speed, but on the dynamic

properties of the teleoperation system, specifically on m in (7)

which depends on the communication channel’s time delay.

Qualitatively, when there is only a small inertia, it is easy for

the operator to decelerate and avoid a collision during a rapid

approach towards an obstacle. In case of a high inertia, the

rapid approach is likely to lead to a collision. This means that

a communication channel with a long time delay, resulting

in high virtual inertia, would increase the probability of a

collision.

Using collision probability as a performance criterion has

the following benefits compared to other methods:

• Only the range of forces and the force bandwidth are

required for predicting the collision probability, so the

method is not bound to a specific architecture of the path.

• Only local knowledge of the labyrinth is required, that

is, in the vicinity of the current position where pi([t, t+
tp]) 6= 0. Given this, this method is in principle adaptable

to real teleoperation systems equipped with obstacle

detection sensors such as laser scanners.

• Knowledge about the human strategy could easily be

taken into account [30], as well as more detailed task
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Fig. 4. The probabilities pi([0, 500 ms]) of being in a specific discrete state
Xi are projected onto the x/y-plane. Four initial states Xj with different
initial velocities ẋh,y(0) are depicted. Darker states are more likely to be
reached.

knowledge, to improve the estimation of collision prob-

ability.

On the other hand, there are potential weaknesses in the

approach, challenging its application in a model-based com-

munication quality control algorithm:

• The computation of pcol is only based on human motor

capabilities, without considering visual feedback.

• Any changes in communication quality could alter the

control behavior of the human operator, which is not

considered in the present model.

IV. MODEL EVALUATION

We conducted behavioral proof-of-concept experiments to

evaluate the above prediction model. The experimental setup

as depicted in Figure 2 was used for a collision avoidance task

while moving through the course as fast as possible. In favor

of a limited number of degrees-of-freedom in the experimental

design, we kept the parameters of communication quality

constant over each trial and consider only the impacts of time

delay and packet loss rate θC = [Td pl]
T .

A. Experimental Methods

1) Participants: Six university students (3 female, age

range 20-26 years) participated in the experiment. One male

participant dropped out prior to completion of the experiment

and was excluded from the analysis. All were right-handed,

had normal or corrected-to-normal vision, and were recruited

through postings in the Technische Universität and Ludwig-

Maximilians-Universität in Munich. They gave their written

consent prior to their participation and were paid at a rate of

15 EUR/h.

2) Apparatus: The haptic feedback was rendered via a

2DoF haptic interface, consisting of a Thrusttube module 2504

(Copley Controls Corp.) mounted on top of a Thrusttube

module 2510 at a right angle. Each actuator was equipped

with an optical position encoder, with a precision of 1 µm. A

6DoF JR3 force-torque sensor attached to the handle measured

interaction force. The haptic interface was controlled in real-

time at a sampling rate of 1 kHz using a Quad-Core AMD

Phenom desktop PC equipped with a Sensoray 626 DAQ

card running Gentoo Linux with the RTAI kernel patch for

maximum timing reliability. Visual stimuli were presented on

a 42-inch flat screen TV at a refresh rate of 60 Hz. The inherent

time delay between visual and haptic stimuli was determined,

using a luminance sensor, to be within one refresh cycle, thus

varying between 0 and 16 ms. The inertia and damping of the

admittance-controlled haptic interface were 9 kg and 8 Ns/m,

respectively. The virtual walls were rendered as a spring-

damper system with spring coefficient kwall = 7000 N/m and

damping dwall = 500 Ns/m.

Network Model: The network used in the experiment was

emulated to ensure maximum reliability of the experimental

conditions. For simulating packet loss characteristics, either a

Bernoulli process or the Gilbert-Elliot model [32], [33] are

popular choices. We selected the latter for the current exper-

iment, as the two-state Markov process of the Gilbert-Elliot

model better characterizes the loss characteristics of packet-

based networks such as the Internet [34]. Lost packets must be

reconstructed on the receiving side of the teleoperation system:

Visual feedback does not affect system stability, therefore we

chose a hold-last-sample reconstruction for the visual data

stream. This caused the image to freeze during loss bursts.

For the haptic feedback, we applied the energy-supervised

hold-last-sample algorithm as described in Section III-A2. The

feel of this reconstruction method is ambiguous and hard to

quantify as it strongly depends on the current situation (ac-

celerating, decelerating etc.) and would be reportedly noticed

as mostly a “disturbing effect”, e.g. an momentary increase in

system damping.

3) Experimental Design: A course of virtual obstacles was

designed to allow movements only along a unique path 3 cm

in width (see Figure 2). The straight length of the course was

approximately 3.0 m, while the actually movement distance

could vary across individual trials owing to deviations from

the midline between the walls. Participants were instructed to

move through the course without touching any wall, while

being as fast as possible. They were also told that avoiding

collisions should have a higher priority compared to mere

speed. To minimize possible learning effects that may be at-

tributable to a specific path through the labyrinth, 12 different

variations of the course, depicted in Figure 2, were presented:

The original configuration as shown in Figure 2 (1), path

rotated by 90◦, 180◦, 270◦ (2-4), horizontally reflected original

configuration (5), rotated by 90◦ and reflected horizontally (6),

and starting point and goal point interchanged (7-12). All paths

were counter-balanced and presented in a random order.

Three levels of round-trip time delay Td = {0, 0.04, 0.1} s

and packet loss rates pl = {0, 0.1, 0.2} with a fixed mean

burst length of 60 ms at a packet rate of 1000 packets/sec

for the haptic modality, and 60 frames/sec for the visual

modality were tested in an orthogonal experiment design.

For reasons of simplicity, we set time delays and loss rates

in the send- and receive-channel to Td1 = Td2 = Td/2
and pl1 = pl2 = pl/2, respectively. The wave impedance

parameter b (compare equation (6)) was fixed to b = 100
as a trade-off between a high transparency in free-space and

oscillations in impact situations. These parameters and the

admittance control scheme for the control of the HSI resulted

in an inertia felt by the human operator of m = 9 kg for
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Fig. 5. Predictions of human velocity ˆ̇xh from real force data and an
identified mass-damper model (solid), compared to the actual velocity ẋh

(dashed) obtained with a packet loss rate of 20%.

Td = 0 s, m = 11 kg for Td = 0.04 s, and m = 14 kg for

Td = 0.1 s. On the virtual side, an ideal position controller

was assumed for driving the abstracted “slave robot”. All

conditions were presented randomly to a human operator with

20 repetitions, yielding a total of 180 trials per participant.

Each trial was completed within approximately 45 seconds.

The experiment was split into two sessions, with 10 repetitions

of each condition to avoid fatigue effects. Each session lasted

for about one hour.

B. Results and Discussion

1) Influence of Communication Quality on Task Parame-

ters: First, we validated the assumptions made about the effect

of time delay and packet loss on task parameters θT (θC), in

our case the time-delay-dependent inertia md
h(Td). A system

identification algorithm was used to parameterize the assumed

mass-damper model in eq. (5), minimizing the error between

the recorded velocity data and the model prediction. The

goodness-of-fit for the identified model is quantified by

ξ = 1−

√
√
√
√

∫ tcom

0
ẋh(t)− ˆ̇xh(t)dt

∫ tcom

0
ẋh(t)− ¯̇xh(t)dt

where ˆ̇xh denotes a predicted handle velocity from the

identified mass-damper system and ¯̇xh is the mean handle

velocity, calculated over data taken from a whole trial of the

experimental procedure, respectively. A value of 1 for ξ stands

for a perfect match between model predictions and actual data,

while 0 means simulated behavior that was no better than

simulating the mean value of all observations. Predictions from

the model and real data with zero time delay and a packet

loss rate of 20% are depicted in Figure 5. In the case of

time delay only, the model fit with measured velocity and

force data is ξ ≥ 0.98 for every trial. The magnitude of

identified damping and mass for the different delay conditions

is consistent with the values of the admittance controller and

the additional inertia due to time delay and the wave variable

transformation as computed from equation (6). The identified

models for the time delay conditions can also fit data from

trials with 20% of packet loss, achieving a goodness-of-fit

measure of ξ ≥ 0.80. Deviations of measured from simulated

handle velocity in (time) instances of packet loss bursts are

attributable to a change of the mechanical impedance during

lost packets, which are responsible for the lower consilience

of model and data. The magnitude of this impedance change

depends on burst length, and the force and velocity profiles

during loss bursts.

A comparison indicates a <0.5% mismatch between the

values of the identified model parameters and the predicted

inertia and damping from equation (7). This result and the

good agreement between model and experimental data quali-

fies the mass-damper model in equation (5) to be included in

the computation of the collision probability.

2) Influence of Communication Quality on Collision Count

and Completion Time: The influence of time delay and packet

loss rate on the total number of obstacle collisions during task

execution Ncol(tcom) and the completion time tcom is depicted

in Figure 6. Hartley’s Fmax tests applied to the collision and

completion time data confirmed homogeneity of variance, and

the Kolmogorov-Smirnov test failed to reveal a significant vio-

lation of the normality assumption. Thus, two 2-way repeated-

measures ANOVAs with main effects packet loss rate and

communication time delay were conducted for Ncol(tcom) and

tcom, respectively. The Greenhouse-Geisser correction was ap-

plied to correct for lack of sphericity. Note that due to the small

number of participants, the interpretation of non-significant

results must be treated carefully. Packet loss rate yielded no

significant (main) effect on Ncol(tcom) (F (1.8, 7.1) = 2.8,
p = 0.13, η2 = 0.41), while the effect of time delay was

significant (F (1.7, 6.8) = 17.03, p < 0.01, η2 = 0.81).

The interaction between the two factors was not significant

(F (1.6, 6.63) = 0.94, p = 0.42, η2 = 0.19). Tukey HSD tests

indicated that only the highest level of time delay Td = 0.1 s

resulted in a significantly increased rate of collisions, and the

mean number of collisions increased about 1.6 on average

from zero delay to 100 ms delay (see Figure 6a), while the

number of collisions did not differ significantly between condi-

tions Td = 0 s and Td = 0.04 s (p = 0.13). In contrast to col-

lision frequency, completion time was impacted significantly

by both packet loss rate and time delay (F (1.1, 4.4) = 18.51,

p < 0.05, η2 = 0.82 and F (1.3, 5.3) = 48.25, p < 0.01,
η2 = 0.92, respectively); the interaction between the two was

not significant (F (2.2, 8.7) = 0.037, p = 0.97, η2 = 0.01).

The relation of completion time and the communication pa-

rameters Td and pl can be described by a linear regression

within the investigated parameter range. The norm of residuals

to the regression model was 0.18, indicating a good fit.

The combined data suggest that participants attempted to

maintain the same level of collision performance by trading

off the completion time. This kind of trade-off strategy was

manageable for all three packet-loss rates, but it failed for the

longest time delay condition (Td = 0.1 s).

These results confirm previous findings that time delay has

a negative influence on performance, accuracy and completion

time [7], [35], [36]. The negative influence of packet loss

on task completion time, however, contrasts with a previous

report that video game players were unaffected by informa-

tion dropouts [37]. The inconsistent findings may partly be

explained by differences in the loss burst lengths used in the

different studies. In the present experiment, the loss burst

length was relatively long, and loss rate was high, causing

the visual feedback to freeze and the mechanical impedance

to change in the instance of lost information. In the wired,

local networks that were investigated in [37], dropout rates

are usually within a few percent. The range of loss rates
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(b) The experimentally observed completion time tcom depends near-
linearly on time delay Td and packet loss rate pl.

Fig. 6. Time delay had a significant influence on the number of collisions
Ncol and completion time tcom, whereas packet loss had a significant impact
only on completion time.

investigated in the present study is close to the values found

in wireless communication channels to space or underwater.

Humans are, in general, capable of adapting their control

strategy to a technical system to maintain a constant level of

task performance [38]–[40], though this does not necessar-

ily hold for time-delayed sensory feedback [10], [41]. The

degraded task performance observed here may well be at-

tributable to the change in environmental impedance discussed

in Section IV-B1: The time delay-dependent inertia that must

be moved by the human operator in addition to the inertia

and damping from the position-based admittance controlled

haptic interface requires more effort during acceleration and

deceleration. Considering humans’ natural energy-saving be-

havior [42], the task completion time tcom achievable for a

control strategy using similar energy levels is lower when

accelerating the low compared to the high inertia. A similar

argument can also explain the finding that the number of

collisions is larger for high compared to low inertia, as the

amount of energy needed for braking is higher with the former.

The effect of the packet loss rate pl on task performance, in

terms of the number of collisions and task completion time,

cannot be explained by changes in the impedance, as pl does

not influence the mechanical properties; see Section IV-B1.

Instead, we must consider both packet loss rate and time delay

affecting visual feedback. Time delay in visual feedback has

been found to consistently deteriorate task performance [7],

[10], [41]. Corruption of sensory feedback due to packet

dropouts is manifested in a stagnation of visual (perceived)

motion, followed by a position jump and a variation in haptic

impedance during loss bursts. As a consequence, the system

behavior is less predictable for the operator, and the risk of

collision increases when the speed is kept unchanged. Such

unpredictable system behavior can affect operator’s control

strategy [43] in two possible ways: Operators either use a

c
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Fig. 7. An example for the rise in collision probability pcol([0, 100 ms])
before a collision occurs, indicated in gray.

risk-averse control strategy by lowering their control gain, or

they exhibit risk-seeking behavior by raising their gain with

uncertainty in the sensory feedback. A risk-averse strategy

was explicitly recommended by instructing our participants to

focus more on the avoidance of collisions than on execution

speed. A lower control gain lets the human operator, on

average, react with smaller control inputs (e.g., smaller forces).

This fact would lead to a lower speed during navigation and,

thus, prolong completion time. Such a speed-accuracy trade-

off could explain why the task completion time is significantly

affected by the packet loss rate, while the number of collisions

is not.

3) Influence of Communication Quality on Collision Proba-

bility: To serve as a key parameter in the dynamic task perfor-

mance model, the predictive power of the collision probability

pcol on the number of collisions Ncol must be experimentally

verified. First, the maximum force fmax = 8 N is identified as

a boundary for the force range used in the task. Based upon

the known device and environment dynamics and fmax, the

time-course of the collision probability pcol([t, t+ 100 ms])
can be computed off-line for a trajectory recorded in the

experiment. In the example depicted in Figure 7, the collision

probability increases prior to the actual collision. This behavior

is consistent for all occurring collisions. Note that pcol does not

increase to 1 because estimation of the collision probability re-

lies solely on the system dynamics, the operator’s force range,

and bandwidth. It is thus conceivable, though unlikely, that the

collision might be avoided. The elevated value of pcol ≈ 0.7 as

compared to situations with no imminent collision is indicative

of high predictive power for detecting a collision within the

next time step. On this basis, we hypothesize that minimizing

the collision probability by applying communication quality

control would lead to a reduced number of collisions.

We also examined how time delay and packet loss rate

influence the collision probability pcol, by computing the

mean collision probability for different levels of time delay

and packet loss. The difference in mean collision probability

to the non-delayed baseline condition is depicted, as a

function of time delay, in Figure 8. Curve fitting showed the

collision probability to increase when the delay increases

(∆pcol([t, t+ 100 ms]) = 1− 0.964 exp(−3Td), r
2 = 0.96).

On the other hand, packet loss rate had no predictive power

with regard to collision probability computed with our model.

This is because we only consider the mechanically displayed

impedance and assume a constant human force range and

bandwidth across all levels of time delay (see Section IV-B1).
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is higher with longer time delays.

V. COMMUNICATION QUALITY CONTROL FOR IMPROVED

COLLISION AVOIDANCE PERFORMANCE

Our aim is the minimization of collisions and communica-

tion costs by online-adjustments of the communication quality.

For this purpose, we designed a model predictive controller

(specified below), based on the dynamic performance model

developed in Section III and a model for network costs. We

did not consider the effect of packet loss in the MPC scheme,

given that it had no significant influence on the number of

obstacle collisions (see the results in Section IV-B2) and no

predictive power in the performance model.

A. Model Predictive Control Algorithm

For deriving a MPC algorithm suitable for communication

quality control, a multi-objective optimization problem in the

sense of equation (1) has to be formulated. Given that our mo-

tivation is to minimize the number of obstacle collisions while

saving communication costs, the equivalent to equation (1) is

argmin
θC(t)∈ΘC

[
Ncol(t) Cnet(t)

]T
. (9)

The controlled communication quality parameter is the chan-

nel time delay Td ∈ Γd, where Γd is a set of permissible time

delay values. Following the considerations in Section III, a

model predictive controller based on the collision probability

pcol instead of the collision count Ncol is preferred. Instead

of solving the optimization problem (9) directly, the MPC

repeatedly solves

argmin
Td([t, t+tp])∈Γd

λ1pcol([t, t+ tp]) + λ2JC([t, t+ tp])
︸ ︷︷ ︸

J1(Td(t))

(10)

to determine the optimal time delay value T ∗
d ([t, t+ tp])).

The relation between J1 and Td is in the probability distri-

bution pi([t, t+ tp]) in equation (8), as depicted in Figure 4.

B. Communication Cost Model JC = φC(·)

The costs for guaranteeing a specific communication quality

in terms of time delay is generally dynamic, see equation (3).

There are several possibilities of defining network costs, for

example the cost per packet and the overall cost at task

completion. As the task and its completion time are usually

unknowns in a teleoperation scenario, the overall cost cannot

be considered. Instead, we use the cost per packet, making

the use of a state xC(t) as in equation (3) unnecessary.

The relation between network cost and time delay is usually

defined to be monotonically decreasing with increasing time

delay [21], [44], such as exponential or rational functions. We

set the cost function to a first-order rational function, in line

with [21],

φC(Td(t)) = cmax −
cmax

Td,max

Td(t) (11)

such that a time delay Td = 0 s corresponds to a maxi-

mum cost cmax and the highest possible time delay Td,max

comes free of charge’. Without loss of generality, we set the

maximum cost cmax = 1. For the experimental validation,

we assume that sufficient network resources are available,

such that every quality request can be fulfilled and dealt with

immediately.

C. System Stability Considering Time-varying Time Delay

The online-control of time delay poses problems for guar-

anteeing stability. The wave variable transformation is known

to provoke active, and thus potentially unstable, behavior of

the communication channel if time delay is time-varying. To

counteract this problem, a time-varying scaling factor

k(t) =

√

1− Ṫd(t)/2

is applied to into the communication channel [22], as shown

in Figure 9. This factor depends on the temporal derivative of

time delay and can fully prohibit communication in the case

of a rapidly rising value of Td(t). To soften this effect, we

constrain the rate of the variable time delay by inserting a

first-order low-pass filter with cut-off-frequency of 5 Hz.

D. Experimental Validation

1) Participants: Five right-handed male students (age range

21-25 years) participated in this experiment; none of them had

participated in Experiment 1. All had normal or corrected-to-

normal vision and none reported any history of somatosensory

disorder. They gave their written consent to participate in the

study and were paid at a rate of 15 EUR/h.

2) Apparatus and Design: The same hardware setup as in

Experiment 1 was used here. The network emulator described

in Section IV-A2 was complemented with the ability to regu-

late the time delay online. Furthermore, a virtual environment

with different obstacle positions as depicted in Figure 9 was

considered. In contrast to the Experiment 1, there was no

unique path for the human operator to follow; instead, an

obstacle course was designed allowing different alternative

routes of similar overall length and structure. Path width

was 1cm at the most narrow gap between obstacles and

included phases without any obstacle to avoid. We designed

this scenario to require fine positioning within narrow bounds

and dynamic braking in free-space – two extreme cases where

the communication quality control mechanism would have to

prove its effectiveness. The time delay was regulated at a

rate of 25 Hz in 5 equal steps between 0 and 200 ms. We

chose a wider range of time delays here since small values

of Td did not produce a significant effect on human task
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Fig. 9. The experimental setup is complemented with a communication
quality control mechanism and a time-varying gain to ensure stability.
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Fig. 10. The number of collisions with the walls was (across participants)
consistently lower when time delay was controlled (QoS condition, light
grey), compared to the control condition (no QoS, dark grey). The influence
of communication quality control on completion time was not statistically
significant.

performance in Experiment 1. The weighting factors λ1 and λ2
in the MPC algorithm resulting from equation (10) were set

to weight collision probability higher than network costs.

This means that the maximum latency was applied in non-

critical situations, but the time delay was lowered in case of

an imminent collision, where lower latencies reduce collision

probability pcol([0, tp]). A prediction horizon of 500 ms, which

is well beyond the time delay, was chosen.

After being familiarized with the system and training of the

task on at least five trials with quality-controlled time delay

and five constant-delay trials, participant performed 40 trials

with communication quality control using the cost function

from equation (10) and 40 trials using a cost function without

considering the collision probability, resulting in a constant

time delay of Td = 0.2 s.

All experimental conditions, with and without applying

the communication quality control algorithm, were randomly

shuffled to avoid adaptation effects. The time taken for a trial

was less than 30 seconds, thus all 80 trials could be completed

within one hour.

E. Results and Discussion

The same statistical analyses for homogeneity of variance

and normality that were used in Experiment 1 were applied

here and confirmed the applicability of ANOVA and t-tests.

Paired t-tests revealed communication quality control to have

a significant positive effect by reducing the number of obstacle

collisions (t(4) = 3.73, p < 0.05, JZS Bayes Factor = 0.32,

on average 2.67 (QoS) vs. 4.06 (no QoS) collisions per

trial), as depicted in the left panel of Figure 10. However,

completion time was not significantly influenced by QoS

control (t(4) = 0.052, p = 0.96, JZS Bayes Factor = 2.34).

t [s]

T
∗ d
(t
)

[s
]

J
1
(T

d
(t
))

10.2 10.4 10.6 10.8
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Fig. 11. The value of the cost function J1(Td(t)) is depicted for three
(example) levels of time delay Td,{1,2,3}. The optimal time delay T ∗

d
(t)

resulting from the optimization in equation (10) (dashed) was low-pass-filtered
(solid) and applied to the communication channel.

Figure 11 depicts a schematic of the online control of

communication quality using the predictive controller model

we developed. In cases where a better cost/task performance

tradeoff could be achieved with a long delay, the channel’s

quality was switched accordingly (e.g., in the case of no

imminent collision). The success of the communication

quality control scheme can be explained by considering that

in case of a rapid obstacle approach, the operator usually

decelerates movement to avoid a collision. Lowering the

inertia during this phase leads to a shorter breaking distance,

thus helps the operator to perform the task.

Our experimental finding suggests that the proposed quality

adjustment algorithm does improve operator’s performance,

rather than merely inducing a speed-accuracy trade-off, given

that reducing collisions did not increase completion time

with the proposed algorithm. Time-varying time delay causes

packet loss [5] that could potentially increase task completion

time, but in contrast to randomly varying time delay, we pre-

dictively lower the time delay when the operator approaches

an obstacle. While lower time delay could potentially also

speed up task completion, we found no such effect which

may be explained by the operator normally decelerating in

phases of low time delay. In these situations, a low delay-

dependent inertia supports a fast braking action and helps

avoid a collision, while not necessarily affecting task execution

time.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced a framework for model-

predictive control based on a dynamic task performance

model, controlling the level of communication quality to

improve human task performance. The approach was evaluated

in two proof-of-concept behavioral studies using a virtual

teleoperation scenario with visual and haptic feedback over

a ‘lossy’ and time-delayed communication channel. Com-

munication delay as well as packet loss hindered operators’

task performance, as indicated by an increased number of

obstacle collisions and a longer completion time when moving

through a course of obstacles. The communication quality

control algorithm based on a model for collision probability
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demonstrated the usefulness of this approach for assisting

collision avoidance.

All testing has so far been confined to a virtual reality setting

with simulated networking conditions. Although we chose a

network model that governs the characteristics of packet loss

and time delay conditions well, the next step would be to

evaluate communication quality control under real network

conditions. One way to do this is to physically relocate the

simulation of the remote environment to a different location

and establish a quality-controlled communication link between

the human-system interface and the remote virtual environ-

ment. This could be realised e.g. by using an acoustic modem

for underwater communication that allows a variable trans-

mission power to influence the amount of packet losses [45].

A controllable time delay could be achieved by using active

queue management techniques. Future research should also

include teleoperation in “real” remote environments instead

of virtual reality.

It is noteworthy that there are several overlaps of the

approach described here with the EID (ecological interface

design) framework. For instance, the notion of an affordance

according to the EID framework is essentially equivalent to

our approach that considers the operator’s physical ability

in combination with the dynamics of the task [46]–[48].

Taking into account the task-relevant information for the

human operator as well as the temporal requirements may

enhance both the design of teleoperation systems and the EID

framework in the future.

One important issue for future investigations, for improving

task completion time in addition to collision avoidance, it

would be important to consider multiple task performance

prediction models in the predictive control scheme. Also, it

may be interesting to compare and contrast different commu-

nication quality control algorithms in terms of the performance

improvements they yield under equal-cost conditions (e.g., the

current MPC algorithm could be compared with static quality

assignment). The dynamic performance model developed in

this paper was only based on a mechanical model with time

delay-dependent inertia. More sophisticated models, taking

into account the human control strategy and the role of the

visual modality in time-delayed teleoperation, would arguably

be needed to achieve a more accurate prediction of the opera-

tor’s forthcoming behavior. Furthermore, the present approach

assumes that every quality request on the communication

channel can be fulfilled. However, this assumption is likely to

be too strict for real-life situations. It is yet to be answered how

the operator’s task performance is affected if the optimal time

delay determined by the communication quality controller is

too small to be achieved. We presume that task performance is

still higher than without QoS control. Finally, the generality

of the present claims should be underpinned by evaluating

the method in larger-scale studies using different tasks and

apparatus.
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