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Predictive construction of priors in Bayesian
nonparametrics
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Abstract. The characterization of models and priors through a predictive ap-
proach is a fundamental problem in Bayesian statistics. In the last decades,
it has received renewed interest, as the basis of important developments in
Bayesian nonparametrics and in machine learning. In this paper, we review
classical and recent work based on the predictive approach in these areas. Our
focus is on the predictive construction of priors for Bayesian nonparametric
inference, for exchangeable and partially exchangeable sequences. Some re-
sults are revisited to shed light on theoretical connections among them.

1 Introduction

The characterization of models and priors through a predictive approach is a fun-
damental, long studied problem in Bayesian statistics. It is a point often underlined
by de Finetti that one can only express a subjective probability on observable facts,
and parametric models are just a link of the chain that leads from past experience
to the probability of future observable facts. See the discussion and references in
Cifarelli and Regazzini (1996), and Kallenberg (2005).

However, these fundamental problems have often been thought as mainly the-
oretical, and their potentiality in applications somehow undervalued. In fact, in
the recent years they have received a new, exciting vigor in research areas with
strong applied motivations and impact, in particular in the machine learning com-
munity and in Bayesian nonparametrics. In this note, we give a brief overview of
some classical and recent work based on the predictive approach in these areas.
Some results are revisited to shed light on theoretical connections among them.
In Section 2, we discuss predictive constructions of nonparametric priors for ex-
changeable sequences. In Section 3, we consider Markov exchangeable sequences.
Section 4 briefly discusses more recent developments and open problems, and con-
cludes the paper.

2 Exchangeable sequences

The notion of exchangeability has a fundamental role in Bayesian statistics. Let
(Xn,n ≥ 1) be a sequence of exchangeable random quantities, with probability
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law P . For the sake of simplicity, we will only consider the case of real valued
random variables (r.v.’s) Xi , but the results can be extended to more general spaces.
Let F̂n(·) = ∑n

i=1 δXi
(·)/n be the empirical distribution of (X1, . . . ,Xn), where δx

denotes a probability measure degenerate on x, and F be the class of all probability
distributions on R, equipped with the sigma-field induced by the metric of weak
convergence. We will usually denote by the same symbol a probability measure
and the corresponding distribution function (d.f.).

The strong law of large numbers for exchangeable sequences establishes that
the sequence of empirical distributions (F̂n) converges weakly to a random dis-
tribution F̃ , a.s., as n → ∞. On this basis, we have the celebrated representation
theorem for exchangeable sequences (de Finetti (1937)).

Theorem 1 (de Finetti representation theorem). Let (Xn,n ≥ 1) be a sequence
of exchangeable random variables with probability law P . Then there exists a
unique probability measure μ such that, for any n ≥ 1,

P(X1 ≤ x1, . . . ,Xn ≤ xn) =
∫

F

n∏
i=1

F(xi) dμ(F ).

Furthermore, P almost surely, the sequence of the empirical distributions F̂n con-
verges weakly to a random d.f. F̃ that is distributed according to μ.

Through de Finetti representation theorem, exchangeability assumes a basic role
in Bayesian inference, as the probability assumption on observable quantities that

gives the fundamental justification of the hypothetical approach, where Xi | F̃ i.i.d.∼
F̃ (the statistical model) and F̃ ∼ μ (the prior). On the other hand, in the predictive
approach, the emphasis is on the probability law P on the observable quantities
(Xn), and model and prior are then, at least in principle, characterized by P .

This is a fundamental result, but of course, in practice one has to specify P ,
or the de Finetti measure μ. Note that μ is a probability law on the space F of
all distributions on the sample space, and in this sense, its choice indissolubly
implies a choice of the “statistical model,” given by its support. We will refer to
μ as a parametric prior, if it has support on a class Fθ = {Fθ, θ ∈ R

p} indexed
by a finite-dimensional parameter; while a nonparametric prior typically has full
(weak) support F .

For years, a basic problem on which many authors have been working is what
further conditions on the observable quantities, therefore on P , restrict the sup-
port of μ to a parametric class, and what relationship with the observable quan-
tities have the parameters of the model. Characterizations of parametric models
based on invariance and sufficiency conditions include Freedman (1963), Kingman
(1972), Dawid (1978), Smith (1981), Diaconis and Freedman (1984), Diaconis,
Eaton and Lauritzen (1992), Eaton et al. (1993), Iglesias et al. (2009). Further con-
ditions on observable quantities are needed to also characterize the class of prior
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distributions on the parameters of the model; see Diaconis and Ylvisaker (1979),
Zabell (1982), Arellano-Valle, Bolfarine and Iglesias (1994), Arellano-Valle and
Bolfarine (1995), Loschi, Iglesias and Arellano-Valle (2003).

In fact, with the seminal papers on Bayesian nonparametrics in the 1960–70s,
another basic problem that arose is how to characterize nonparametric priors with
full support F , through a predictive approach. This is the problem on which we
focus in the next sections.

2.1 Predictive constructions

In a predictive approach, one can at least in principle characterize the prior through
the sequence of predictive distributions. Here we review some fundamental prop-
erties. A first basic result establishes the asymptotic behavior of the sequence of
predictive distributions for an exchangeable sequence. For brevity, we will use
the notation P(Xn+1 ≤ x | X1 = x1, . . . ,Xn = xn) = Pn(x | x1, . . . , xn), or some-
times, shortly, Pn(x). Let F̃ be the a.s. limit of the sequence of the empirical distri-
butions. Then the sequence of predictive distributions converges almost surely to
F̃ (see Fortini, Ladelli and Regazzini (2000), Proposition 5.7). This result is based
on de Finetti’s work about the approximation of the predictive distribution through
the empirical distribution; in the case of 0–1 exchangeable random variables, he
proved that |P(Xn+1 = 1 | X1, . . . ,Xn) − ∑n

i=1 Xi/n| → 0, a.s. P ; see Cifarelli
and Regazzini (1996). A stronger result has been recently given by Berti and Rigo
(1997), who prove a Glivenko–Cantelli theorem for exchangeable sequences, es-
tablishing that supx |Pn(x) − F̂n(x)| → 0, a.s. P . It follows that Pn → F̃ weakly,
a.s. P . Based on this result, de Finetti representation theorem can be stated in terms
of the predictive distributions.

Theorem 2 (de Finetti representation theorem in terms of predictive distribu-
tions). Let (Xn,n ≥ 1) be an exchangeable sequence of r.v.’s, with probability law
P , and let X1 ∼ P1 and Pn be the predictive distribution of Xn+1 | X1, . . . ,Xn,
for n ≥ 1. Then the sequence (Pn) converges weakly to a random d.f. F̃ , a.s. P .
Furthermore for any n ≥ 1,

P(X1 ≤ x1, . . . ,Xn ≤ xn) =
∫ n∏

i=1

F(xi) dμ(F ),

where μ is the probability distribution of F̃ .

Thus, the law P of an exchangeable sequence can be represented in terms of a
statistical model F̃ (a random probability measure) which is the limit, under P , of
the sequence of the predictive distributions (Pn). The de Finetti measure μ here
arises as the limiting probability law of such sequence.
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Theorem 2 suggests that one can construct an exchangeable probability law P

by specifying the sequence of predictive distributions. Let P0(x) be a probabil-
ity distribution and, for every n ≥ 1, let Pn(x | x1, . . . , xn) be a transition proba-
bility distribution (i.e., Pn is a measurable function of x1, . . . , xn). According to
Ionescu–Tulcea theorem there exists a unique probability measure P on R

∞ such
that P0 is the distribution of the first coordinate and (Pn) is the sequence of pre-
dictive distributions.

Further conditions are needed in order to have an exchangeable P . Necessary
and sufficient conditions such that P is exchangeable are given by Fortini, Ladelli
and Regazzini (2000). Suppose first that P is exchangeable, with predictive distri-
butions (Pn). Then it holds a.s.

(a) Pn(A | x1, . . . , xn) = Pn(A | xi1, . . . , xin), for any permutation (i1, . . . , in) of
(1, . . . , n) and n ≥ 2;

(b)
∫
B Pn+1(A | x1, . . . , xn+1)Pn(dxn+1 | x1, . . . , xn) = ∫

A Pn+1(B | x1, . . . ,

xn+1)Pn(dxn+1 | x1, . . . , xn)

for every A, B , x1, . . . , xn and n ≥ 0 (for n = 0 set Pn(· | x1, . . . , xn) ≡ P0(·)).
In terms of the exchangeable sequence (Xn), condition (b) states that P(Xn+1 ∈

B,Xn+2 ∈ A | X1, . . . ,Xn) = P(Xn+1 ∈ A,Xn+2 ∈ B | X1, . . . ,Xn). Fortini,
Ladelli and Regazzini (2000), Theorem 3.1, show that these conditions are also
sufficient in order that the sequence of predictive distributions is consistent with
an exchangeable P . Thus, one can construct an exchangeable probability law P by
assigning a sequence of transition probabilities that satisfy conditions (a) and (b).

In this approach, parametric models can be characterized through further as-
sumptions on the predictive structure. By exchangeability, the empirical d.f. F̂n is
sufficient to predict Xn+1,Xn+2, . . . . Assume that a further summary T (F̂n), with
values in an Euclidean space, is predictive sufficient, that is, the conditional prob-
ability law of Xn+1,Xn+2, . . . | F̂n depends on F̂n only through T (F̂n). Then, in
particular,

P(Xn+1 ≤ x | X1, . . . ,Xn) = P
(
Xn+1 ≤ x | T (F̂n)

)
.

By the previous results, Pn(x | X1, . . . ,Xn) = Pn(x | T (F̂n)) converges weakly to
a random distribution F̃ , a.s. P . Under regularity assumptions, such limit can be
expressed in parametric form, depending on T (F̃ ) (Fortini, Ladelli and Regazzini
(2000), Theorem 7.1). Informally, T (F̂n) → T (F̃ ) ≡ θ̃ , a.s. P , and

P(X1 ≤ x1, . . . ,Xn ≤ xn) =
∫
�

n∏
i=1

P(Xi ≤ x | θ) dμ∗(θ),

where μ∗ is the limit distribution of the sequence of predictive sufficient statistics
T (F̂n). Thus, the parametric model arises as the limit of the predictive distribu-
tions, and the prior is interpretable as the limit law of the predictive sufficient
statistics T (F̂n). An example of this construction is the predictive characterization
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of the exponential family (see Fortini, Ladelli and Regazzini (2000) and references
therein). The basic result of Zabell (1982), that characterizes the Dirichlet conju-
gate prior for multinomial observations through Johnson’s sufficiency postulate,
can be also regarded in this framework.

In the next section, we focus on predictive constructions of nonparametric pri-
ors, whose support cannot be indexed by a finite-dimensional parameter θ . From
the above results, this implies that the complete empirical distribution is needed
for prediction of future observations, that is, a finite-dimensional summary cannot
be predictive sufficient. A main reference on Bayesian nonparametric inference
is the monograph by Ghosh and Ramamoorthi (2003). Recent developments are
discussed in Müller and Quintana (2004) and Hjort et al. (2010).

2.2 Pólya sequences and Dirichlet process

The Dirichlet process is the most popular prior for Bayesian nonparametric infer-
ence. Blackwell and MacQueen (1973) described the construction of a Dirichlet
process prior by a generalization of the k-colors Pólya’s urn scheme. Given a pos-
itive measure α(·) on the Borel subset of R, with 0 < α(R) < ∞, let α = α(R)

and F0(·) = α(·)/α(R). Blackwell and McQueen define a Pólya sequence as a
sequence of random variables (Xn) such that X1 ∼ F0 and for n ≥ 1,

Xn+1 | X1, . . . ,Xn ∼ Pn = αF0 + ∑n
i=1 δXi

α + n
. (2.1)

Theorem 3 (Blackwell and McQueen (1973)). Let (Xn) be a Pólya sequence of
r.v.’s such that X1 ∼ F0 and (2.1) holds for n ≥ 1. Then

(i) Pn converges a.s. as n → ∞ to a random discrete distribution F̃ ;
(ii) F̃ has a Dirichlet process distribution, with parameter αF0, F̃ ∼ DP(αF0);

(iii) X1,X2, . . . are a random sample from F̃ , in the sense that Xi | F̃ i.i.d.∼ F̃ .

The discrete nature of the Dirichlet process, established by (ii) above, implies
that ties are observed in a random sample (X1, . . . ,Xn) from F̃ with positive prob-
ability, as it is also clearly shown by the predictive rule (2.1). Thus, the Dirichlet
process induces a random partition of {1, . . . , n}, defined as i ∼ j (i and j are in
the same group) if Xi = Xj .

The probability law of the random partition is usefully described by Hoppe’s
urn scheme (Hoppe (1984)). Consider sampling from an urn that initially contains
α > 0 black balls. At time n a ball is picked at random from the urn. If it is black,
it is returned together with an additional ball of a previously unobserved color; if it
is colored, it is returned together with an additional ball of the same color. Natural
numbers are used to label the colors and they are chosen sequentially as the need
arises. The sampling generates a process (Sn, n ≥ 1), where the random variable
Sn is the label of the additional ball returned after the nth drawing. Initially there
are only black balls, thus S1 = 1; then S2 = 1 or 2, S3 = 1,2 or 3, etc.
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In this scheme, the actual colors have no relevance, the interest being in their
labels (Sn) and, consequently, in the random partition that they describe. In-
deed, for any n ≥ 1, the random vector (S1, . . . , Sn) defines a random parti-
tion ρn of {1,2, . . . , n} in k nonempty sets (A1, . . . ,Ak) defined by Aj = {i ∈
{1,2, . . . , n} :Si = j} for j = 1, . . . , k, where k = max(S1, . . . , Sn) is the number
of distinct labels in (S1, . . . , Sn). Note that the partition is ordered, specifically the
Aj ’s are in order of appearance. It is easy to check that, if (A1, . . . ,Ak) is the
partition corresponding to a realization (s1, . . . , sn) of (S1, . . . , Sn), then

P
(
ρn = (A1, . . . ,Ak)

) = P(S1 = s1, . . . , Sn = sn) = αk

α[n]
k∏

j=1

(nj − 1)!, (2.2)

where α[n] = α(α + 1) · · · (α + n − 1) and nj is the number of elements of Aj ,
j = 1, . . . , k. The probability law of the random partition ρn, for n ≥ 1, is called
partition probability function.

In genetics, it is of interest to consider the allelic partition corresponding to the
occupancy numbers (n1, . . . , nk), described by an = (m1, . . . ,mn) where mj is the
number of (n1, . . . , nk) that are equal to j ; hence

∑n
j=1 jmj = n. It corresponds

to the partition (A1, . . . ,Ak) but now the order of the elements is not relevant.
Thus, its probability is computed by multiplying (2.2) by the number of possible
partitions with the same occupancy numbers (n1, . . . , nk), which gives (Antoniak
(1974)):

P(an) = αk

α[n]
n!

1m1 · · ·nmn

1

m1! · · ·mn! . (2.3)

Note that
∑n

j=1 mj = k and 1m1 · · ·nmn = n1 · · ·nk . This is the celebrated Ewens
sampling formula (Ewens (1972)). Hoppe (1984) shows that the sequence (an) is
Markov, with marginal distribution given by (2.3).

Clearly, the sequence (Sn, n ≥ 1) is not exchangeable. However, we can asso-
ciate another process to the urn sampling, the process of colors, which is exchange-
able. If one “paints” the sequence (Sn), generating the colors at random from a dif-
fuse color distribution F0 (i.e., as i.i.d. draws from F0, where F0({x}) = 0 for any
x), then the resulting sequence of colors (Xn) is a Pólya sequence, with X1 ∼ F0
and, for any n > 1, Xn+1 | (X1, . . . ,Xn) ∼ Pn as in (2.1). Therefore, by the results
of Blackwell and MacQueen (1973), the sequence (Xn) is exchangeable, and its de
Finetti measure is a DP(αF0). Colored Hoppe’s urn provides a natural way of de-
composing the joint distribution of (X1, . . . ,Xn) in terms of the probability of the
random partition, generated by (S1, . . . , Sn), and the density of the distinct colors.
Roughly speaking,

p(x1, . . . , xn) = p(s1, . . . , sn)

dn∏
j=1

f0(x
∗
j ), (2.4)
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where x∗
1 , . . . , x∗

dn
are the distinct values in (x1, . . . , xn), with common density f0,

and the labels s1, . . . , sn identify the random partition generated by (x1, . . . , xn);
see Antoniak (1974). In terms of the well-known Chinese restaurant metaphor (see,
e.g., Pitman (1996), Section 4), the labels (S1, . . . , Sn) generated by Hoppe’s urn
give the allocation of customers at tables; then, tables are painted at random from
the diffuse color distribution F0.

Random partitions are of interest in several fields, such as combinatorics and
genetics. In Bayesian inference, this feature of the Dirichlet process is widely ex-
ploited in hierarchical models, to model clustering and dimension reduction. In
particular, a Dirichlet process mixture model assumes that

Yi | θi
indep∼ f (y | θi), i = 1, . . . , n,

θi | G i.i.d.∼ G,

G ∼ DP(αG0).

This model induces a random partition of the individual parameters (θ1, . . . , θn)

and thus a dimension reduction, or “clustering,” of the data. See Quintana and
Iglesias (2003) for a comparison with product partition models. Furthermore, the
predictive urn scheme facilitates the implementation of MCMC algorithms for
simulating from the conditional distributions of interest (MacEachern (1994) and
Escobar and West (1995)). Thus, while a drawback in many applications, the dis-
crete nature of the Dirichlet process, or, in other terms, the structure of the predic-
tive rule which characterizes it, is in fact quite appropriate in hierarchical models,
and it is one of the main reasons of its recent popularity in an extremely wide range
of applied fields. Excellent overviews are given in Dunson (2010) and Teh and Jor-
dan (2010). Some delicate related issues are pointed out by Petrone and Raftery
(1997).

Exchangeable partition probability function. As we have seen, an exchangeable
sequence (Xn) with a DP(αF0) de Finetti measure induces a random partition ρn

of {1, . . . , n}, whose probability law, if F0 is diffuse, is given by (2.2). Note that
the partition probability function (2.2) is a symmetric function of the size of the
groups, (n1, . . . , nk). This property holds more generally. Given an exchangeable
sequence (Xn), we can define a random partition (A1, . . . ,Ak) of {1, . . . , n} by
letting i and j be in the same group if Xi = Xj . Then we have

P
(
ρn = (A1, . . . ,Ak)

) ≡ P

(
k⋂

j=1

(Xi = X∗
j for all i ∈ Aj)

)
= p(n1, . . . , nk) (2.5)

for a symmetric function p of (n1, . . . , nk), where nj is the number of elements in
Aj . A partition probability function p so generated is called exchangeable parti-
tion probability function (EPPF) derived from the sequence (Xn). More formally,
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p is defined on the space of sequences n = (n1, n2, . . .), identifying (n1, . . . , nk)

as n = (n1, . . . , nk,0,0, . . .). Let nj+ be defined from n by incrementing nj by 1.
Clearly, an EPPF p must satisfy

p(1,0,0, . . .) = 1 and p(n) =
k+1∑
j=1

p(nj+).

The concept of EPPF has been introduced by Pitman (1995), based on earlier rel-
evant work by Kingman; see Kingman (1978).

Alternative definitions of the Dirichlet process. Ferguson (1973) gives an alterna-
tive definition of the Dirichlet process, as a normalized Gamma process. The idea
is that, as the Dirichlet distribution is the joint distribution of a set of independent
Gamma variables divided by their sum, the Dirichlet process can be constructed as
a Gamma process with independent increments, divided by the sum.

Theorem 4 (Ferguson (1973)). Let �(1) > �(2) > · · · be the ordered points of
a Poisson random measure on (0,∞) with mean measure αx−1 exp(−x)dx. Let
pi = �(i)/�, where � = ∑

i �(i), and define

F̃ =
∞∑

j=1

pjδX̂j
, (2.6)

where the X̂j ’s are i.i.d. according to F0, independently on the �(i). Then F̃ ∼
DP(αF0), independently on � which has a Gamma(α,1) distribution.

The distribution of the sequence of random weights (pj ) defined in (2.6), with
p1 > p2 > · · · > 0 and

∑∞
j=1 pj = 1 a.s., is called Poisson–Dirichlet with param-

eter (α); see Kingman (1975).
To have a closer intuition of this construction, consider first the finite case. Let

�i,N
indep∼ G(α/N,1), i = 1, . . . ,N , where we denote by G(a, b), or by G(· | a, b),

the Gamma distribution with density proportional to xa−1 exp(−bx). Let �N =∑
i �i,N and pi,N = �i,N/�N . Then the random vector (p1,N , . . . , pN,N) has a

Dirichlet distribution D(α/N, . . . , α/N). Note that, for any set A, the number
N(A) of �i,N which lie in A, has a binomial distribution with parameters N, G(A |
α/N,1); and for disjoint sets A1, . . . ,Am, we have (N(A1), . . . ,N(Am)) ∼
multinomial(N, G(A1 | α/N,1), . . . , G(Am | α/N,1)).

Then for large N , N(A) is approximately Poisson(αG(A | 0,1)), where
G(· | 0,1) is the improper gamma distribution with density x−1 exp(−x), and
N(A1), . . . ,N(Am) are approximately independent. Kingman (1975) motivates
interest for the case where α is small and N large in the “heap problem,” when
a few items are relatively popular, while there is a long tail of items more rarely
demanded.
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To study the limit case for N → ∞, the devise is to “embed” the vector
(pi,N , . . . , pN,N) in a process; more precisely, to regard it as a vector of increments
of a Gamma process. Let (ξ(t), t ≥ 0) be a Gamma process with ξ(0) = 0, such
that the increments of ξ on disjoint intervals are independent, and ξ(t2) − ξ(t1) ∼

G(α(t2 − t1),1). The process ξ increases only in jumps, and can be constructed as

ξ(t) = ∑
i

�(i)δUi
(t),

where the heights (�(i)) of the jumps are the points, in decreasing order, of a
nonhomogeneous Poisson process with mean function γ (·) = αG(· | 0,1) (thus,
the number of �i in A has a Poisson(αG(A | 0,1)) distribution, and arrivals in

disjoint sets are independent), and the atoms Ui
i.i.d.∼ Uniform(0,1), independently

on (�i). Now, consider the normalized increments of ξ(·):
qj,N = ξ(j/N) − ξ((j − 1)/N)

ξ(1)
.

Because qj,N ∼ G(α/N,1) and ξ(1) = ∑N
i=1(ξ(j/N)− ξ((j − 1)/N)), the vector

of increments qj,N has a Dirichlet distribution, (q1,N , . . . , qN,N) ∼ D(α/N, . . . ,

α/N), and we can study its limit behavior as N → ∞ in place of that of
(p1,N , . . . , pN,N). It can be shown (Kingman (1975)) that the ordered vector
q(1),N ≥ q(2),N ≥ · · · ≥ q(N),N is such that q(j),N → �(j)/ξ(1). Thus, the limit-
ing distribution of (q1,N , . . . , qN,N) is the distribution of the ordered normalized
jumps �(i)/ξ(1) of the Gamma process on the interval (0,1), a Poisson–Dirichlet
distribution with parameter α.

Furthermore, if we define a Gamma process such that

ξ(A) = ∑
i

�(i)δX̂i
,

where the X̂i are i.i.d. according to a distribution F0, independently on the �i ,
then ξ(A) ∼ G(αF0(A),1) and the increments on disjoint sets are independent.
Therefore, the normalized process

F̃ (·) = ∑
i

�(i)

�
δ
X̂i

(·),

where � = ∑
i �i , has Dirichlet finite-dimensional distributions with parameters

driven by αF0, thus it has a DP(αF0) probability law, as stated in Theorem 4.

Completely random measures. The construction (2.6) of the Dirichlet process
is a notable example of a more general construction of nonparametric priors
via normalized completely random measures (CRM) (Kingman (1967); see also
Regazzini, Lijoi and Prünster (2003), and Lijoi and Prünster (2010) for an excellent
review). A completely random measure m(·) on R is characterized by the property
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that for disjoint sets A1, . . . ,Am, the random variables m(A1), . . . ,m(Am) are in-
dependent. It can be shown that a CRM (with no determinist components) can
be constructed by first constructing a Poisson process 
 on the product space
R × (0,∞) with mean function μ(·) (thus, the number of points in a subset B

of the product space has a Poisson(μ(B)) distribution). Then, define m(A) as the
sum of the values of �i for all points (X̂i,�i) of 
 for which X̂i lies in A:

m(A) = ∑
i

�iδX̂i
(A).

Then m(·) is a completely random measure, whose distribution is determined by
μ(·) (through it is referred as its Lévy intensity). A random probability measure
can be constructed by normalizing the CRM m(·).

It is usually assumed that the CRM is homogeneous, that is

μ(d�,dx) = γ (d�) × α(dx), (2.7)

that is, the heights (�i) of the jumps of m(·) are independent on the locations (X̂i).
For the Dirichlet process,

μ(d�,dx) = G(d� | 0,1) × αF0(dx)

(where α is now a positive scalar), which defines a Gamma process.
In this general construction, different random probability measures can be char-

acterized, by different choices of the Lévy measure. Kingman (1975) defines the
σ -stable process, which has a geometric tail behavior, different from the expo-
nential tail behavior of the Dirichlet process. A construction based on normalized
Inverse-Gaussian processes is given by Lijoi, Mena and Prünster (2005). Thibaux
and Jordan (2007) show that a Beta process (Hjort (1990)) can be constructed by
taking an improper Beta(0, c) distribution as the measure γ in (2.7); interestingly,
they show that this is the de Finetti measure corresponding to the Indian Buffet
process (Griffiths and Ghahramani (2006)).

Stick-breaking representation. The Dirichlet process is interestingly related to
the problem of species sampling (Fisher, Corbet and Williams (1943); see Pitman
(1996)). Consider a population of N distinct species and suppose that individuals
of the ith species are trapped according to a homogeneous Poisson process with
rate �i ; that is, letting Ni(t) be the arrivals of species i, we have Ni(t) | �i ∼
Poisson process with rate �i . �i represents the abundance of species i, and it is

assumed that �i
indep∼ G(α/N,1) for some α > 0. Consider the ranked abundances

�(1) > · · · > �(N). Fisher already noticed that this model has an interesting behav-
ior for N → ∞. McCloskey (1965) studied the limit model, where (in the terms of
Theorem 4) the species abundances �i are generated as a nonhomogeneous Pois-
son process with rate measure αG(0,1). Suppose that the j th species to appear in
the sampling from such limit model is a species whose abundance is �(πj ), and de-
note by p∗

j = pπj
the corresponding relative frequency. Then from the properties of
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Poisson processes it follows that (p∗
i ) is a size-biased permutation of the sequence

of ranked weights (pi = �(i)/�); that is, for all finite sequences (i1, . . . , ik), the
conditional probability of the event (π1 = i1, . . . , πk = ik) given (p1,p2, . . .) is

pi1

pi2

1 − pi1

· · · pik

1 − pi1 − · · · − pik−1

.

McCloskey (1965) shows that, if (p∗
i ) is a size-biased permutation of a sequence

of random variables p1 ≥ p2 ≥ · · · > 0 with
∑

i pi = 1, then it holds

p∗
j = Vj

j−1∏
i=1

(1 − Vi) (2.8)

for a sequence of i.i.d. random variables (Vi) if and only if (pi) has a Poisson–
Dirichlet(α) distribution. In this case the Vi are i.i.d. according to a Beta distribu-
tion with parameters (1, α). The distribution of the sequence (p∗

i ) so obtained is
called stick-breaking, since the p∗

i in (2.8) can be interpreted as successive breaks
of a stick of unit length, or GEM(α), after Griffiths, Engen and McCloskey, who
contributed to its development in genetics and ecology.

From these results, it follows that if F̃ ∼ DP(αF0), then F̃ is a.s. represented as

F̃ =
∞∑
i=1

p∗
i δX∗

i
,

where the weights (p∗
i ) have a stick breaking distribution (2.8) and the X∗

i are i.i.d.
according to F0, independently on (p∗

i ).
These results can be usefully regarded in a predictive approach. Consider a

Pólya sequence (Xn), with predictive rule: X1 ∼ F0 with F0 diffuse, and

Xn+1 | X1, . . . ,Xn,Kn = k ∼ Pn = α

α + n
F0 + 1

α + n

k∑
j=1

njδX∗
j
, (2.9)

where Kn is the number of distinct “species” in the sample (X1, . . . ,Xn); given
Kn = k, (X∗

1, . . . ,X∗
k ) are the distinct values in the sample, in the order of appear-

ance, and n1, . . . , nk is the vector of their counts. Then, as shown by Blackwell
and MacQueen (1973), (Xn) is exchangeable, with a DP(αF0) de Finetti measure.
But it can also be proved (see Theorem 5 and the following discussion in the next
section) that the sequence of predictive distributions (Pn) converges to a random
measure

F̃ =
∞∑

j=1

p∗
j δX∗

j
, (2.10)

where X∗
j is the j th distinct value that appears, with X∗

j

i.i.d.∼ F0, independently on
(p∗

j ); and the weights (p∗
j ) are a size-biased permutation of the (pi) in (2.6) and



434 S. Fortini and S. Petrone

have a stick-breaking(α) distribution. By the asymptotic properties of the predic-
tive distribution discussed in Section 2.1, it follows that, if F̃ ∼ DP(αF0), with
F0 diffuse, it is a.s. equal to (2.6) and to (2.10). This clarifies the relationship
between the discrete representation (2.6) of the Dirichlet process and the, possi-
bly more popular, stick-breaking one (Sethuraman (1994)), given by (2.10), which
here arises as the limit of the sequence of predictive distributions.

2.3 Species sampling models

Pitman (1996) defines a class of predictive rules, in the framework of species
sampling, that generalizes Blackwell and McQueen scheme (2.1). The problem
of species sampling is widely studied in ecology, genetics and population dynam-
ics. Suppose that a random sample X1,X2, . . . is drawn from a large population
of individuals of various species, and Xi represents the species of the ith individ-
ual sampled. The space X of possible values of Xi is thought as an arbitrary set
of tags or colors, used to label the various species. It is assumed that to the j th
distinct species to appear in the sample it is assigned a tag X∗

j , where the X∗
j are

i.i.d. according to a diffuse distribution F0. This framework suggests the following
predictive rule for the sequence (Xn):

X1 ∼ F0,
(2.11)

Xn+1 | X1, . . . ,Xn,Kn = k ∼
k∑

j=1

pj (Nn)δX∗
j
+ pk+1(Nn)F0,

where, as in (2.9), Kn is the number of different species to appear in the first n

observations, X∗
j is the j th species to appear, and Nn = (N1,n,N2,n, . . .) is the

vector of counts of various species observed in the sample (X1, . . . ,Xn). This
means that, given (X1, . . . ,Xn) such that species j is observed nj times, the next
individual Xn+1 can be of the previously observed species X∗

j , with probability pj ,
j = 1, . . . , k, or it is a new species, randomly sampled from F0, with probability
pk+1. The predictive weights (p1, . . . , pk+1) in (2.11) only depend on the counts
(n1, . . . , nk). Blackwell and McQueen’s prediction rule (2.1) is the special case
where pj = nj/(α + n) and pk+1 = α/(α + n).

A sequence of r.v.’s (Xn) is called a species sampling sequence if it is an ex-
changeable sequence with prediction rule of the form (2.11) for a diffuse distribu-
tion F0.

Theorem 5 (Pitman (1996), Proposition 11). Suppose (Xn) is a species sampling
sequence, and let Pn denote the predictive distribution of Xn+1 | X1, . . . ,Xn, as
displayed in (2.11). Then

(i) Pn converges in total variation norm a.s. as n → ∞ to the random distribu-
tion

F̃ = ∑
j

p∗
j δX∗

j
+

(
1 − ∑

j

p∗
j

)
F0, (2.12)
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where p∗
j is the frequency of the j th species to appear, that is

p∗
j = lim

Nj,n

n
a.s.;

(ii) the X∗
j are i.i.d. according to F0, independently of the p∗

j ;

(iii) (X1,X2, . . .) is a sample from F̃ , that is, Xi | F̃ i.i.d.∼ F̃ .

Note that the number K∞ of distinct values in the infinite sequence (X1,X2, . . .)

is a.s. equal to inf{k :p∗
1 + · · · + p∗

k = 1}. Thus, the meaning of (ii) is that, con-
ditionally on (p∗

1,p∗
2, . . .) with K∞ = k, the X∗

j are i.i.d. according to F0 for
1 ≤ j ≤ k.

Theorem 5 is an extension of Blackwell and McQueen’s Theorem 3. However,
Theorem 5 makes the assumption that (Xn) is exchangeable, which was instead
part of the conclusions in Theorem 3. Furthermore, it provides no explicit descrip-
tion of the distribution of F̃ (of the distribution of the weights (p∗

j )). In Theorem 3,

instead, it is proved that F̃ ∼ DP(αF0). There are however further results, and re-
markable examples where one can explicitly find the distribution of F̃ .

First, we have a sort of reciprocal of Theorem 5: if we start from a sample (Xn)

from a random distribution

F̃ = ∑
i

piδX̂i
+

(
1 − ∑

i

pi

)
F0, (2.13)

defined for some sequence of random variables (pi) such that pi ≥ 0 and
∑

i pi ≤
1 a.s. and X̂i i.i.d. according to a diffuse distribution F0, independently of (pi),
then (Xn) is a species sampling sequence. This model, with F̃ defined as above
and (Xn) a random sample from F̃ , is called a species sampling model. The weight
pi in (2.13) is interpreted as the relative frequency of the ith species in some
listing of the species present in the population, and X̂i as the tag assigned to that
species. Then a question is what is the relationship between the weights (pi) and
the weights (p∗

i ) in (2.12). This question can be easily answered if the species
sampling model is proper, that is, if

∑
i pi = 1 a.s., so that F̃ is a.s. discrete. Then

F̃ = ∑
i

piδX̂i
= ∑

j

p∗
j δX∗

j
,

where X∗
j and p∗

j are defined as in (2.12), in terms of a sample (Xn) from F̃ .
Furthermore, if (pi) is decreasing, the sequence (p∗

j ) is a size-biased permutation

of (pj ). This was the case of the Dirichlet process, where F̃ = ∑
i piδX̂i

with
decreasing weights having a Poisson–Dirichlet(α) distribution, and then the (p∗

j )

are a size-biased permutation of (pi), with a GEM(α) distribution. Thus, these
results extend the representations (2.6) and (2.10) of the Dirichlet process. It can
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be shown that a species sampling model is proper if and only if p∗
1 > 0 a.s., or if

and only if Kn/n → 0 a.s.
It remains to give conditions on the predictive weights (pj , j = 1, . . . , k + 1) in

the predictive rule (2.11), such that exchangeability of (Xn) holds. It can be shown
that exchangeability holds if and only if the predictive weights are defined in terms
of an EPPF.

Theorem 6 (Pitman (1996), Theorem 14). Let (Xn) be governed by the predic-
tive rule (2.11), with a diffuse distribution F0. The sequence (Xn) is exchangeable
iff the predictive weights can be obtained as

pj = p(nj+)

p(n)
for j = 1, . . . , k + 1,p rovided p(n) > 0 (2.14)

for a nonnegative, symmetric function p. Then (Xn) is a sample from F̃ as in
Theorem 5, and the EPPF of (Xn) is the unique nonnegative symmetric function p

such that (2.14) holds and p(1,0,0, . . .) = 1.

The theorem is based on two results. It can be proved that, for each pair (p,F0),
where p is an EPPF, and F0 is a diffuse distribution, there exists a unique distri-
bution for a species sampling sequence (Xn) such that p is the EPPF of (Xn) and
F0 is the distribution of X1. Furthermore, from formula (2.5) and Bayes rule, it
follows that the predictive weights pj that determine the prediction rule (2.11) of
a species sampling sequence (Xn) can be computed in terms of the EPPF p of
(Xn), as in (2.14).

Example 1 (Dirichlet process). If (Xn) is a Pólya sequence, with F0 diffuse, it
is easy to check that the predictive weights are obtained from the EPPF given by
(2.2). Thus, (Xn) is governed by a species sampling model corresponding to the
EPPF (2.2) and the distribution F0.

Example 2 (Finite Dirichlet). Suppose that the predictive weights in the predic-
tion rule (2.11) are given by

pj = nj + α/N

α + n
for j = 1, . . . , k and pk+1 = α − kα/N

α + n
(2.15)

for a positive constant α and k ≤ N . This predictive rule is obtained from the EPPF

pα(n1, . . . , nk,0,0, . . .) =
∏k−1

j=1(α − jα/N)

(1 + α)k−1

k∏
i=1

(
1 + α

N

)[ni−1]

for k ≤ N . Since pα(1,0,0, . . .) = 1 and pα is symmetric, the sequence (Xn) de-
fined by this predictive rule is exchangeable. Note that the number Kn of distinct
species in a sample converges to N as n tends to infinity. In fact, this predictive
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rule corresponds to sampling from a population of a finite number N of species,
F̃ = ∑N

j=1 pjδX̂j
, where (p1, . . . , pN) ∼ Dirichlet(α/N, . . . , α/N) and the X̂j are

i.i.d. according to a diffuse F0, independently on (pi). For N → ∞, the predictive
distributions (2.15) converge to Blackwell and MacQueen’s (2.1). In this sense, the
prior on F̃ here defined gives a finite approximation of the Dirichlet process, and
it is sometimes called finite Dirichlet prior; see Ishwaran and James (2001), who
also discuss its stick-breaking representation, and Gibbs sampling methods for
Bayesian computations. Extensions have been recently studied by Petrone, Guin-
dani and Gelfand (2009).

Example 3 (Two parameters Poisson–Dirichlet process). Suppose that the pre-
dictive weights in the prediction rule (2.11) are defined as

pj = nj − θ

α + n
for j = 1, . . . , k and pk+1 = α + kθ

α + n
(2.16)

for real parameters α and θ such that 0 ≤ θ < 1 and α > −θ . This predictive rule
is obtained according to (2.14) for the EPPF

p(α,θ)(n1, . . . , nk,0,0, . . .) =
∏k−1

j=1(α + jθ)

(1 + α)n−1

k∏
i=1

(1 − θ)[ni−1]. (2.17)

Since p(α,θ)(1) = 1 and p(α,θ) is symmetric, the sequence (Xn) defined by this
predictive rule is exchangeable. The predictive rule (2.16) characterizes the two
parameters Poisson–Dirichlet process, introduced by Perman, Pitman and Yor
(1992) and further studied by Pitman (1995) and Pitman and Yor (1997), and some-
times also referred as Pitman–Yor process. As appears from (2.14), the Poisson–
Dirichlet process allows a more flexible predictive structure than the Dirichlet pro-
cess, which may be too poor in some problems, depending only on the counts of
the different sampled species. Instead, in (2.16) the predictive probability of ob-
serving a new species also depends on the number k of distinct species sampled.
The distribution of the ranked weights in the population F̃ characterized by (2.16)
is a two parameters extension of the Poisson–Dirichlet distribution that we have
for the Dirichlet process, which corresponds to the case θ = 0. By Theorem 5
and the following discussion, the predictive distribution (2.16) converges to a ran-
dom measure F = ∑∞

j=1 p∗
j δX∗

j
, where (p∗

i ) is a size-biased permutation of (pi).
It can be shown that (p∗

i ) has a stick-breaking representation as in (2.8), where

Vj
indep∼ Beta(α + jθ,1 − θ).

Pitman (2003) derived general laws, termed Poisson–Kingman distributions, for
sequences of ranked probability masses (pi). Gnedin and Pitman (2005) define a
class of Gibbs-type EPPFs that extends (2.17):

p(n1, . . . , nk) = wn,k

k∏
j=1

(1 − θ)[nj−1]
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(for a suitable array wn,k) from which one can define the predictive rule

Xn+1 | X1, . . . ,Xn ∼ wn+1,k+1

wn,k

F0 + wn+1,k

wn,k

k∑
j=1

(nj − θ)δX∗
j

characterizing a class of Gibbs-type priors. They give characterization results of
Gibbs-type priors F̃ = ∑

j pj δX̂j
in terms of ranked weights (pj ) with a Poisson–

Kingman distribution.
For a wide review of these problems, and of nonparametric priors beyond the

Dirichlet process, we refer again to Lijoi and Prünster (2010).

3 Mixtures of Markov chains

The previous results give predictive constructions of exchangeable probability
laws. In this section, we review some nonparametric prior constructions for
Markov exchangeable sequences.

3.1 de Finetti theorem for Markov chains

Diaconis and Freedman (1980) give a de Finetti theorem for Markov chains. We
briefly remind their basic results. Let (Xn,n ≥ 0) be a stochastic process taking
values on a countable set I , whose elements are referred as “states”; with no loss
of generality, we can let I = {0,1,2, . . .}. Two sequences x = (x0, . . . , xn) and y =
(y0, . . . , yn) in In are equivalent, x ∼ y, if they start from the same state and have
the same transitions counts. The sequence (Xn) is partially exchangeable in the
sense of Diaconis and Freedman (or, following the terminology of Zabell (1995),
Markov exchangeable, to distinguish this notion from de Finetti’s partial exchange-
ability), if x ∼ y implies P(X0 = x0, . . . ,Xn = xn) = P(X0 = y0, . . . ,Xn = yn).
The sequence (Xn) is recurrent if P(Xn = X0 for infinitely many n) = 1.

Theorem 7 (Diaconis and Freedman (1980), Theorem 7). Let (Xn) be a recur-
rent sequence of random variables taking values in a (at most) countable set I .
Then (Xn) is Markov exchangeable if and only if it is a mixture of Markov chains.
That is, given the initial state x0, there exists a unique probability measure (prior)
μ on the space of transition matrices on I , such that

P(X1 = x1, . . . ,Xn = xn | X0 = x0) =
∫ n∏

i=1

πxi−1(xi) dμ(π),

where πi(j) := πi,j (i.e., πi is the ith row of the transition matrix π , considered
as a probability measure).



Predictive construction of nonparametric priors 439

In other words, a recurrent process (Xn) is Markov exchangeable if and only
if there exists a random transition matrix 
 such that, conditionally on 
, (Xn)

is a Markov chain with transition matrix 
. The (prior) distribution of 
 is the
probability measure μ in the above equation.

Define a x0-block for the sequence (Xn) as a finite sequence of states that be-
gins at x0 and contains no further x0. The proof of the above result is based on
the fact that Markov exchangeability and recurrence imply exchangeability of the
sequence (Bn,n ≥ 1) of the successive x0-blocks. It is useful to note that the lat-
ter property implies that for any measurable transformation φ(B) (e.g., φ(B) may
be the length of the x0-block B), the sequence (φ(Bn), n ≥ 1) is also exchange-
able. Thus, the above theorem implies a de Finetti theorem for the exchangeable
sequence (φ(Bn)).

Following a suggestion in de Finetti (1959), Fortini et al. (2002) give a differ-
ent characterization of mixtures of Markov chains, based on successor states. The
properties of the sequences of successors states were already studied by Zabell
(1995), in a beautiful note extending the characterization of conjugate Dirichlet
priors through Johnson’s sufficiency postulate to Markov exchangeable sequences.
Fortini et al. (2002) clarify the relationship between Diaconis and Freedman’s no-
tion of partial exchangeability and de Finetti’s one. The mth successor of state i,
Xi,m, is defined as the value of the process immediately after the mth visit to state i.
In order to avoid having rows of finite length, they introduce a “dummy state,” de-
noted by ∂ , and, if a state is visited only a finite number of times n, let Xi,m equal
to ∂ for m > n. Thus, the sequence of successors of state i is well defined, as an
infinite sequence of random variables with values in I ∗ = I ∪ ∂ . It can be eas-
ily shown that, if the process (Xn) is recurrent and Markov exchangeable, then it
is also strongly recurrent, meaning that for any state i ∈ I , P(Xn = i infinitely
often | i is visited) = 1. Strong recurrence implies that any state is either never
visited or it is visited infinitely often. In this case, the sequence of successors of
any state i is either (∂, ∂, . . .), if state i is never visited, or it is an infinite I -valued
sequence, if state i is visited infinitely often.

Zabell (1995) shows that, if a process (Xn) is recurrent and Markov exchange-
able, then the matrix of the successors states is partially exchangeable; that is, its
distribution is invariant under permutations within rows. Fortini et al. (2002), The-
orem 1, show that the reciprocal implication also holds; that is, a process (Xn)

is recurrent and Markov exchangeable if and only if the matrix of the successors
states is partially exchangeable. Under this hypothesis the process is a mixture of
Markov chains, that is, there exists a stochastic transition matrix 
 on I ∗, such
that, conditionally on 
, (Xn) is a Markov chain with transition matrix 
; further-
more, the prior distribution is uniquely determined (provided the class of transition
matrices is suitably defined, see Fortini et al. (2002) for more details). It comes
from their results that the prior distribution of 
 is the de Finetti measure of the
array of successors states.
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The above mentioned results are exploited to provide predictive characteriza-
tions of priors for Bayesian inference on Markov chains. We discuss some impor-
tant constructions, based on urn schemes, in the next sections. Intuitively, one can
define a process along a sequence of related urns, such that draws from urn i repre-
sent the successors of state i; if drawn according to an exchangeable scheme, one
can expect to characterize a mixture of Markov chains, together with the prior on
the random transition matrix.

3.2 Reinforced urn processes

Muliere, Secchi and Walker (2000) define a class of reinforced urn processes
(RUPs) that are Markov exchangeable, thus, when recurrent, are conditionally
Markov. The urn scheme characterizes the prior on the transition matrix. RUPs
have been applied for Bayesian nonparametric inference in different contexts, from
survival analysis (Bulla, Muliere and Walker (2009)) to credit risk (Cirillo, Hüsler
and Muliere (2010)).

RUPs are informally defined as random walks on a space of Pólya urns. More
formally, a RUP is defined by four elements: a countable state space I , a finite
set of colors E = {c1, . . . , ck}, and a law of motion q : (I × E) → S; finally, to
each x ∈ I it is associated an urn Ux , with known initial composition α(x) =
(αx(c1), . . . , αx(ck)), where αx(c) ≥ 0 is the number of balls of color c initially
contained in urn Ux , and we let αx = ∑k

j=1 αx(cj ). It is assumed that the law
of motion q has the property that, for every x, y ∈ I , there is at most one color
c(x, y) ∈ E such that q(x, c(x, y)) = y.

Given these ingredients, a RUP is defined as follows. Fix X0 = x0 and move
to urn Ux0 . Pick a ball from Ux0 and return it, along with another ball of the same
color. If c ∈ E is the color of the sampled ball, set X1 = c, and move to urn Uq(x,c),
as determined by the law of motion. If q(x, c) = y, say, move to urn Uy , pick a
ball, and so on. Thus, balls are drawn from each urn according to a Pólya scheme,
and one moves across urns according to the given law of motion. The process of
colors (Xn) so defined is called RUP, with the four given elements.

The main property of RUPs is that they are Markov exchangeable. There-
fore, a recurrent RUP (Xn) is a mixture of Markov chains. The reinforced urn
scheme characterizes the probability law of the sequence (Xn) and therefore
the prior μ. Muliere et al. (2000), Theorem 2.16, show that μ is such that the
rows of 
 are independent, and the xth row is a random probability measure on
(y1 = q(x, c1), . . . , yk = q(x, ck)), with probability masses (
x(y1), . . . ,
x(yk))

which have a Dirichlet distribution with parameters (αx(c1), . . . , αx(ck)).
An interesting example of RUP gives a characterization of the Beta-Stacy pro-

cess (Walker and Muliere (1997)), that is widely used as a prior in Bayesian non-
parametric survival analysis. Suppose that: I = {0,1,2, . . .}, the set of colors con-
tains only two colors, white and black say, E = {w,b}, and the law of motion is
such that q(x, b) = x +1 and q(x,w) = 0, for all x ∈ S. From the previous results,
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when the resulting RUP is recurrent, it is a mixture of Markov chains. Further-
more, letting Tn be the length on the nth 0-block (e.g., for a 0-block (0,1,2,3,0),
T = 4), the sequence (Tn, n ≥ 1) is exchangeable. Muliere et al. (2000) show that
its de Finetti measure is a Beta-Stacy process on I with parameters {αj (w),αj (b)}.
Thus, Tn can be interpreted as the survival time for the n-individual and, assum-
ing that individuals are exchangeable, this construction gives a characterization of
the Beta-Stacy as a prior on the survival times. These results can be extended to
characterize neutral to the right processes (Doksum (1974)).

A restriction of RUPs is that they are defined only for a finite number of colors.
This implies that, in each step, the chain can only reach a finite number of states;
in other words, each row of the transition matrix has at most k nonzero entries;
and the states that are reachable in one step from x have to be fixed a priori. For
example, from state x, one can only move to the states (q(x, c1), . . . , q(x, ck)),
which is a restrictive assumption in many applications. An extension that allows
for a countable set of colors is discussed in Fortini and Petrone (2011), and charac-
terizes a prior on the random transition matrix such that the rows are independent
Dirichlet processes.

3.3 Urn schemes for Bayesian inference in hidden Markov models

A clever and extremely fruitful urn scheme for Bayesian nonparametric inference
in hidden Markov models (HMM) has been proposed by Beal, Ghahramani and
Rasmussen (2002). HMMs are widely applied in several fields, from speech recog-
nition to time series analysis. However, one restriction is that the number of latent
states has to be known a priori. Beal, Ghahramani and Rasmussen (2002) suggest
a model that allows Bayesian inference for HMMs without bounding a priori the
number of states, which is therefore referred as infinite HMM.

The urn scheme which is the basis of the infinite HMM is defined as follows.
Consider first an oracle Hoppe’s urn, which initially contains γ black ball. The
process of the colors’ labels generated by Hoppe’s sampling from the oracle urn is
denoted by (S

(o)
n , n ≥ 1). When a new color with label i is sampled from the oracle

urn, we create a Hoppe’s urn labeled as Ui , which initially contains α black balls,
and define a processes (Sn) generated by recursively sampling from these urns as
follows.

We start with a draw from the oracle urn; since initially it contains only black
balls, a new color with label 1 is generated, and we let S

(o)
1 = 1 and S0 = 1. Then,

we create a Hoppe’s urn U1 and pick a ball from it. Being necessarily black, a new
color should be generated, and to this aim we enquire the oracle urn. That is, we
pick a ball from the oracle urn, and if it is labelled 1, we set S

(o)
2 = 1 and S1 = 1; if

black, a new color with label 2 is generated, and we set S
(o)
2 = 2 and S1 = 2. Then

we move to urn US1 , and so on.
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Thus after n draws, given (S1 = s1, . . . , Sn = i,M = m,S
(o)
1 = s

(o)
1 , . . . , S

(o)
m =

s
(o)
m ), where M denotes the random number of draws from the oracle urn, we gen-

erate Sn+1 as follows:

• with probability ti,j /(α + ti), Sn+1 = j , for j = 1, . . . , dm, where ti,j are the
transitions from i to j in (s1, . . . , sn) (i.e., the number of balls of label j in urn
Ui), ti = ∑

j ti,j and dm = max(s
(o)
1 , . . . , s

(o)
m ) is the number of colors already

generated from the oracle urn;
• with probability α/(α + ti), a black ball is sampled from Ui , thus a new draw is

generated from the oracle urn:

S
(o)
m+1 | M = m,S

(o)
1 = s

(o)
1 , . . . , S(o)

m = s(o)
m ∼ γ

γ + m
δdm+1 +

dm∑
j=1

mj

γ + m
δj ,

where mj is the number of j in (s
(o)
1 , . . . , s

(o)
m ); and we let Sn+1 = S

(o)
m+1.

Thus,

Sn+1 | S1 = s1, . . . , Sn = i,M = m,S
(o)
1 = s

(o)
1 , . . . , S

(o)
M = s(o)

m

∼
dm∑
j=1

(
ti,j

α + ti
+ α

α + ti

mj

γ + m

)
δj +

(
α

α + ti

γ

γ + m

)
δdm+1.

The process (Sn) is not Markov exchangeable. However, if we “paint” the pro-
cess (S

(o)
i ) with colors ξ∗

j , i.i.d. from a diffuse color distribution F0, the resulting
process (Xn) defined by the colored (Sn) is Markov exchangeable and recurrent
(see Fortini and Petrone (2011)). Thus, it is a mixture of Markov chains, for which
the urn construction characterizes the mixing measure. More precisely, there exists
a discrete random probability measure p0 such that, conditionally on p0, (Xn) is a
mixture of Markov chains; precisely

• (Xn) | p0,
 is a Markov chain, with state space corresponding to the support
I (p0) of p0, transition matrix 
 on I (p0) and initial distribution p0:

• 
 | p0 is a transition matrix on the support I (p0) of p0, whose rows 
i are

exchangeable, with (
i, i ∈ I (p0)) | p0
i.i.d.∼ DP(αp0)

• and p0 ∼ DP(γF0).

In other words, (Xn) is conditionally Markov and the prior on the rows of the
random transition matrix is a hierarchical Dirichlet process (Teh et al. (2006)).
Interesting developments of the infinite HMM, to encourage stronger state persis-
tence, are discussed in Fox et al. (2011).

An area of research that seems still open is how to define natural priors for
Bayesian inference on Markov chains with given properties. A direction of re-
search is given by Diaconis and Rolles (2006), who introduce a conjugate prior for
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the transition matrix of a reversible Markov chain, through a random walk with
reinforcement on a graph. They show that the prior can be characterized in a pre-
dictive way, along the lines of Johnson’s characterization of the Dirichlet conjugate
prior (Zabell (1982, 1995)). Bacallado (2011) has recently extended Diaconis and
Rolles construction, to the case of reversible Markov chains of order r , and to
variable-order Markov chains.

4 Developments and final remarks

A problem widely studied in the recent years, for Bayesian nonparametric in-
ference with dependence structures more complex than exchangeability, is the
construction of dependent random measures. For example, consider partially ex-
changeable data, modeled as

Yj,1, . . . , Yj,n | θj1, . . . , θj,n ∼
n∏

i=1

f (yj,i | θj,i), j = 1, . . . , k,

θj,1, θj,2, . . . | Gj
i.i.d.∼ Gj,

G = (G1, . . . ,Gk) ∼ μ.

Heterogeneity is modeled inside each of k groups, by allowing individual param-
eters θj,i, i ≥ 1 inside group j . Such parameters are regarded as a random sample
from a group specific latent distribution Gj . Clustering inside group j can be mod-
eled assuming a Dirichlet process prior for the random distribution Gj . To borrow
strength across groups, it is desirable to assign a prior on the vector of random dis-
tributions G = (G1, . . . ,Gk) such that the components Gj are dependent. Early
work on this problem is due to Cifarelli and Regazzini (1978), who proposed a

mixture of products of Dirichlet processes; that is, Gj | λ
i.i.d.∼ DP(αG0(· | λ)),

with λ ∼ H(λ). See Muliere and Petrone (1993) for an application in a regression
context. A recent development is the hierarchical Dirichlet Process (Teh et al.

(2006)), that assumes that Gj | G0
i.i.d.∼ DP(αG0), where G0 is itself a Dirichlet

process. The clever choice of a Dirichlet process as the base measure G0 allows to
model common clusters across groups, since, because of the discrete nature of the
Dirichlet process, all the random distributions Gj have the same support, given by
the atoms of G0. An important application of the hierarchical Dirichlet process as
a prior in hidden Markov models has been reviewed in the previous section.

In a regression context, MacEachern (1999) and (2001) suggested a general
construction of dependent Dirichlet processes (DDPs). Here, the groups are in-
dexed by the values x1, . . . , xk of a covariate x. Assume that (θx1, . . . , θxm) |
(Gx1, . . . ,Gxm) ∼ ∏

i Gxi
. McEachern suggested a general class of priors for

G = (Gx1, . . . ,Gxm), such that the Gxi
are dependent and marginally Gxi

∼ DP,
by exploiting the stick-breaking discrete representation of the Dirichlet process.
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Following MacEachern’s idea, many ways for constructing DDP priors have
been proposed in the recent literature. The so called single-p DDP assumes that
Gxi

= ∑
j pj δθ∗

j (xi ), where the common weights (pj ) have a GEM(α) prior, and
the atoms (θ∗

j (x1), . . . , θ
∗
j (xk)), j = 1,2, . . . , are i.i.d. from a joint distribution

G0 on R
k , therefore inducing a dependence among the random distributions

Gxi
. In other applications, for example, in the analysis of temporal or spatial

data, the object of inference is a vector (or, more generally, a stochastic process)
θ = (θx, x ∈ X ), where x denotes a temporal or spatial coordinate. In this case, one
can assume that θ | G̃ ∼ G̃, where G̃ is a random probability measure on R

X . In
particular, if G̃ ∼ DP(αG0), then the random marginals Gx of G have a single-p
DDP prior. More general constructions of multiple-p DDPs have been proposed,
by linking the stick breaking weights. We refer to Dunson (2010) for an excel-
lent overview and references. Recent proposals aim at giving a general framework
to model the dependence structure among the stick-breaking weights, and study
general properties of the resulting priors (Barrientos, Jara and Quintana (2011)).
Griffin and Steel (2011) propose a flexible class of time-dependent nonparametric
priors for Bayesian nonparametric modelling of time series, whose marginals have
a general stick-breaking form.

These prior constructions largely extend the availability of Bayesian nonpara-
metric methods besides exchangeability, to highly complex depended data. How-
ever, the structure of the predictive rules are in general analytically complicated,
and computations can consequently be highly demanding. A predictive approach
leading to clearer predictive assumptions appears therefore appealing also in con-
structing dependent random measures. A bivariate Dirichlet process based on de-
pendent urn schemes has been proposed by Walker and Muliere (2003); devel-
opments for time-dependent random measures are suggested by Caron, Davy and
Doucet (2007). The central focus on prediction in the learning process has possibly
been the basic reason of the impressive developments of Bayesian nonparamet-
rics methods in the machine learning community in the recent years. The already
quoted hierarchical Dirichlet process and the infinite HMM are just remarkable
examples of the extremely active research in this field. A very fruitful construction
of a predictive scheme for infinite latent features problems is the Indian buffet pro-
cess (Griffiths and Ghahramani (2006)). Here, exchangeable objects or individuals
are described through a potentially infinite array of features, resulting in an under-
lying random binary matrix with exchangeable rows and an unbounded number of
columns. The Indian buffet characterizes the prior on this random matrix through
the predictive rule, such as the Chinese restaurant characterizes the Dirichlet pro-
cess. The de Finetti measure of the Indian buffet has been later found by Thibaux
and Jordan (2007). Binary arrays with exchangeability structures are of interest in
many contexts, such as in social network studies; see, for example, Roy and Teh
(2009), who propose a Mondrian process as a prior on random binary matrices for
Bayesian inference for relational data. These works relate with theory in Aldous
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(1981). This is just to mention some interesting lines of developments. Our review
is certainly far from being exhaustive. This is a very active area of research, and
further fruitful interaction across theoretical, applied, statistical, machine learning,
genetics literature can certainly be envisaged.

We have focussed on predictive characterizations of nonparametric priors, and
did not discuss the inferential aspects, updating rules and computational issues.
The recent volume by Hjort et al. (2010) provides a rich reference.

All the constructions that we have briefly reviewed in this note characterize
priors that are a.s. discrete. A problem is whether it is possible to give a predic-
tive characterization of nonparametric priors with support on a class of absolutely
continuous distributions. Dirichlet process mixture models are commonly used as
nonparametric priors for continuous data, for example, in density estimation prob-
lems. Petrone and Veronese (2010) discuss a general framework where Dirichlet
process mixture models are interpreted as a smoothing of discrete nonparametric
priors. However, the predictive structure of these models is complicated. Gaussian
processes offer another powerful tool for Bayesian nonparametric inference; how-
ever, their predictive characterization does not seem to be fully explored. Predic-
tive constructions of absolutely continuous nonparametric priors seems to remain
an open problem.
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