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Predictive control design on an embedded robust output-feedback

compensator for wind turbine blade-pitch preview control

Wai Hou Lio, J.A. Rossiter and Bryn Ll. Jones

Abstract— The use of upstream wind measurements has
motivated the development of blade-pitch preview controllers
to improve rotor speed tracking and structural load reduction
beyond that achievable via conventional feedback design. Such
preview controllers, typically based upon model predictive
control (MPC) for its constraint handling properties, alter
the closed-loop dynamics of the existing blade-pitch feedback
control system. This can result in the robustness properties
of the original closed-loop system being no longer preserved.
As a consequence, the aim of this work is to formulate a
MPC layer on top of a given output-feedback controller, with
a view to retaining the closed-loop robustness and frequency-
domain performance of the latter. The separate nature of the
proposed controller structure enables clear and transparent
qualifications of the benefits gained by using preview and
predictive control. This is illustrated by results obtained from
closed-loop simulations upon a high-fidelity turbine, showing
the performance comparison between a nominal feedback
compensator and the proposed MPC-based preview controller.

I. INTRODUCTION

The rotor and structural components of large wind turbines

are subjected to unsteady and intermittent aerodynamic loads

from the wind. Such unsteady loads cause the rotor speed

and power generation to exceed the design specification and

also lead to fatigue damage to key turbine structural com-

ponents, resulting in a reduction of the operational lifetime.

Most wind turbines are equipped with blade-pitch controllers

for achieving turbine speed regulation in above-rated wind

conditions. An increasing number of large wind turbines are

beginning to exploit the adjustment of blade pitch angle to

attenuate unbalanced loads on the rotor. These two strategies

are commonly known as: (i) collective pitch control (CPC),

whose role is to regulate rotor speed by adjusting the pitch

angle of each blade by the same amount, and (ii) individual

pitch control (IPC), which provides an additional pitch angle

demand signal, typically in response to measurement of

flap-wise blade bending moments, to attenuate the effect of

unsteady loads on the rotor (e.g. [1], [2]).

In recent years, a growing body of research has emerged,

seeking to utilise real-time measurement of wind conditions

from remote sensing devices for feed-forward control design.

Some earlier results studied the use of preview control design

for CPC (e.g. [3]) and suggested significant performance

improvement over feedback-only designs; the first field test

on feed-forward CPC design was reported by [4]. Lately, [5]

investigated IPC design with advance wind knowledge and
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concluded that the feed-forward IPC design should include

a careful consideration of the pitch actuator activity. As a

consequence, several authors (e.g. [6]–[8]), employed model

predictive control (MPC) in a preview IPC design owing to

its ability to handle constraints and feed-forward information,

and their results demonstrated the efficacy of a preview MPC

design in the flap-wise blade load reduction.

The majority of wind turbine preview MPC studies can be

divided into two categories. The first branch is to formulate

the blade-pitch control problem as one single MPC formu-

lation where the resultant controller handles both feedback

and feed-forward measurements (e.g. [7]), whilst the second

branch is to construct the MPC layer based on a known

state-feedback controller (e.g. [6]). The shortcomings of both

methods are that the robustness and closed-loop frequency-

domain properties are usually not well considered in a stan-

dard MPC design. The loads on turbine blades predominately

exist at the harmonics of the blade rotational frequency,

thus, it is not straightforward to design robust closed-loop

feedback controllers in the time-domain. Furthermore, it is

often assumed that the existing controllers use full state-

feedback, despite the fact that output-feedback controllers

are prevalent in industry.

This work therefore aims to bridge this gap by formulating

a MPC layer based on a known robust output-feedback

controller, where the MPC layer handles constraints and

upcoming wind measurements. A further key focus of this

paper stems from existing research often overlooking the

conditions that separate the original closed-loop dynamics

from the additional control layer design. If the given closed-

loop dynamics are changed by the extra layer design, as a

consequence, the benefits of utilising real-time measurement

of the upstream wind become less transparent. The separate

nature of the MPC layer is important from an industry

perspective, since it can be implemented without replacing

the existing feedback controller. Also, it provides a clear

framework to quantify the benefits of feed-forward and

predictive control over a baseline feedback strategy.

The remainder of this paper is structured as follows. In

Section II, the modelling aspect of the blade pitch control

problem, including disturbance modelling, is presented and

the detail of the nominal embedded feedback controller is

discussed. This is followed in Section III by a formulation

of a predictive control layer and the conditions that ensure

the original closed-loop dynamics are retained which is the

main result of this paper. In Section IV, simulation results

on a high-fidelity wind turbine demonstrate the benefits of

having the proposed MPC layer on top of the closed-loop
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Fig. 1. System architecture of a wind turbine blade-pitch control system,
combining of collective pitch control (CPC) and individual pitch control
(IPC). The CPC regulates rotor speed while the IPC attenuates perturbations
in the flap-wise root bending moments on each blade. Additional inputs to
the turbine, such as wind loading and generator torque, are accounted for
in the term f(t)

feedback controller. Conclusions are in Section V.

II. WIND TURBINE MODELLING AND NOMINAL ROBUST

FEEDBACK COMPENSATOR

This section presents background on the wind turbine

model and disturbances. In addition, the details of the

embedded nominal robust feedback controller are discussed.

A. Wind turbine modelling

A typical wind turbine blade pitch control system archi-

tecture for above-rated conditions is depicted in Figure 1.

The CPC regulates the rotor speed ω(t) by adjusting the

collective pitch angle signal whilst the IPC attenuates loads

by providing additional pitch signals on top of the collective

pitch angle in response to flap-wise blade root bending

moment signals. To isolate the action of the IPC from the

CPC (e.g. [1], [9]–[11]), it is convenient to define the pitch

angles and blade moments as follows:

[
θ1(t)
θ2(t)
θ3(t)

]

:=





θ̄(t) + θ̃1(t)

θ̄(t) + θ̃2(t)

θ̄(t) + θ̃3(t)



 ,

[
M1(t)
M2(t)
M3(t)

]

:=





M̄(t) + M̃1(t)

M̄(t) + M̃2(t)

M̄(t) + M̃3(t)





(1)

For simplicity, it is assumed that there is no coupling
between the CPC and IPC loops from the tower dynamics.
The relationship between collective pitch input θ̄(t) and rotor
speed output ω(t) can be modelled by a transfer function
Gωθ(s) obtained by linearising the turbine dynamics around
the operating wind condition of 18 ms−1, chosen because
this value is close to the centre of the range of wind speeds
covering the above-rated wind condition. Similarly, the re-
lationship mapping the perturbations in flap-wise blade root

bending moment M̃1,2,3 to additional pitch angle θ̃1,2,3 of

each blade can be modelled by a transfer function GMθ(s).
These transfer functions are as follows:

Gωθ(s) := Ga(s)Gr(s), (2a)

GMθ(s) := Ga(s)Gb(s)Gbp(s), (2b)

where Gr(s), Gb(s) and Ga(s) describe the dynamics of
rotor, blade and actuator, respectively, whilst Gbp(s) is a
band-pass filter that is included in order to remove the
low and high frequency contents of the blade root bending
measurement signals, obtained from strain-gauge sensors.
These transfer functions are defined as follows:

Gr(s) :=
∂ω

∂θ

1

τrs+ 1
, (3a)

Gb(s) :=
∂Mflap

∂θ

(2πfb)
2

s2 + 4πfbDbs+ (2πfb)2
, (3b)

Ga(s) :=
1

τs+ 1
, (3c)

Gbp(s) :=
2πfh

s2 + 2π(fh + fl)s+ 4π2fhfl
, (3d)

where ∂ω
∂θ

and τr denote the the variation in rotor speed

to pitch angle and time constant of the rotor dynamics,

whilst
∂Mflap

∂θ
, Db and fb represent change in blade bending

moment to pitch angle, blade damping ratio and natural

frequency of first blade mode, respectively. The time constant

of the pitch actuator is τ whilst fh and fl denote the

upper and lower cut-off frequencies of the band-pass filter,

respectively. Values are listed in Table II.

B. Disturbance modelling

The rotor and blade are subjected to a temporally varying
and spatially distributed wind field. Given the feasibility of
estimating the wind-field from a few point measurements
taken upstream of the turbine (e.g. [12] ), this work assumes
the full approaching wind field is known a priori. The
disturbance trajectories of rotor speed ωd and flap-wise blade

bending moment M̃di
, for i ∈ {1, 2, 3}, caused by the

approaching wind, are defined as follows:

ωd(k) :=
∑

l,φ

∂ω

∂v
(v̄, l)v(l, φ) (4)

M̃di(k) :=
∑

l,φ

∂Mflap

∂v
(v̄, l)v(l, φ), i = 1, 2, 3 (5)

where v(l, φ) denote the stream-wise wind speed measure-
ments where l and φ represent the radial and angular co-
ordinates across the rotor disk whilst v̄ denote the averaged
wind speed of the measurements. Noted that span-wise and
vertical wind speed is assumed negligible because the turbine
blades spin fast in span-wise and vertical directions. The
variations in rotor speed and blade bending moment with
respect to the wind are denoted as ∂ωd

∂v
and ∂Md

∂v
. The

rotor speed response ω to wind-induced disturbance ωd is
modelled as a first-order transfer function Gωωd

(s), whilst

the response of flap-wise blade root bending moment M̃i to

wind-induced disturbance M̃di
, for i ∈ {1, 2, 3}, is modelled

as GMMd
(s):

Gωωd
(s) :=

1

τrs+ 1
, (6a)

GMMd
(s) :=

(2πfb)
2

s2 + 4πfbDbs+ (2πfb)2
Gbp(s), (6b)



Combining (2) and (6), the overall transfer function models
G(s) and Gd(s) can be represented as follows:







ω(s)

M̃1(s)

M̃2(s)

M̃3(s)






=






Gωθ(s) 0 0 0
0 GMθ(s) 0 0
0 0 GMθ(s) 0
0 0 0 GMθ(s)






︸ ︷︷ ︸

G(s)







θ̄(s)

θ̃1(s)

θ̃2(s)

θ̃3(s)







+






Gωωd
(s) 0 0 0

0 GMMd
(s) 0 0

0 0 GMMd
(s) 0

0 0 0 GMMd
(s)






︸ ︷︷ ︸

Gd(s)







ωd(s)

M̃d1(s)

M̃d2(s)

M̃d3(s)







(7)

Equivalently, a discrete-time state-space model representa-

tion can be constructed as follows:

x
p
k+1 = Apx

p
k +Bpuk +B

p
ddk, (8a)

yk = Cpx
p
k, (8b)

uk = [θ̄k, θ̃1k , θ̃2k , θ̃3k ]
T , (8c)

yk = [ωk, M̃1k , M̃2k , M̃3k ]
T , (8d)

dk = [ωdk
, M̃d1k

, M̃d2k
, M̃d3k

]T , (8e)

where superscript p denotes plant.

C. Nominal embedded robust feedback controller

The chosen robust feedback controller K(s), consisting
of the CPC Kθω(s) and the IPC KθM (s), employed in this
work is defined as follows:






θ̄(s)

θ̃1(s)

θ̃2(s)

θ̃3(s)






=






Kθω(s) 0 0 0
0 KθM (s) 0 0
0 0 KθM (s) 0
0 0 0 KθM (s)






︸ ︷︷ ︸

K(s)







ω(s)

M̃1(s)

M̃2(s)

M̃3(s)







(9)

where Kθω(s) and KθM (s) obtained from [11], are pre-

sented in Appendix I. It is assumed no dynamic coupling

exists between the fixed and rotating turbine structures. The

simulation results in [11] showed that a controller of the

form (9) could be designed to be insensitive to such coupling

by shaping the open-loop frequency response to have low

gain at the tower frequency. Similar to the plant model, the

nominal feedback controller (9) in a discrete time state-space

realisation is:

xκ
k+1 = Aκxκ

k −Bκyk, (10a)

uk = Cκxκ
k −Dκyk, (10b)

where the vector xκ represents the state of the controller and

the superscript κ denotes controller.

III. FORMULATION OF THE MPC LAYER

The architecture combining the proposed MPC layer and

the nominal feedback controller is shown in Figure 2, where

the shaded area depicts the existing closed-loop system. The

closed-loop system dynamics in a state-augmented form can
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Fig. 2. Concept of model predictive control layer on top of a known
feedback controller.

be derived from the discrete-time state-space wind turbine

model (8) and the feedback controller (10):






x
p
k+1

xκ
k+1

uk




 =






Ap 0 Bp

−BκCp Aκ 0

0 0 I






︸ ︷︷ ︸

A






x
p
k

xκ
k

uk−1






︸ ︷︷ ︸

xk

+






Bp

0

I






︸ ︷︷ ︸

B

∆uk +






B
p
d

0

0






︸ ︷︷ ︸

Bd

dk

(11a)

∆uk = Kxk =
[

−DκCp Cκ −I

]

xk (11b)

yk = Cxk =
[

Cp 0 0
]

xk (11c)

Note that an incremental input ∆uk is employed in the

state-augmented closed-loop system model (11a) as the input

variable because of the simplicity of formulation of blade

pitch rate and angle constraints.

A. Augmentation of input perturbations into the underlying

feedback control law

The MPC formulation in this work adopts a closed-loop
paradigm [13] where the degrees-of-freedom (d.o.f) ck can
be set up around the stabilising feedback control law (11b)
∆uk = Kxk such that the input can be parametrised as
∆uk = Kxk + ck with the premise that the perturbation
ck 6= 0 if and only if constraints are active or feed-forward
knowledge is available. Such a feature is particularly useful
in formulating a MPC layer on top of an embedded closed-
loop controller. The closed-loop paradigm employed in this
work uses a dual-mode approach and these two modes of
predictions are the transient mode and the terminal mode.
In transient mode, a sequence of input d.o.f.s, denoted as
c
→k

= [c0|k, c1|k, ..., cnc−1|k]
T , is optimised over the control

horizon nc in respect to handling of constraints and feed-
forward information, whilst in the terminal mode, the closed-
loop dynamics are governed by the pre-determined control
law, which is the embedded robust feedback pitch controller
in this case. Considering (11a), the predictions of input and
state at sample time k can be described as follows:

∆ui|k =

{

Kxi|k + ci|k, ∀i < nc,

Kxi|k, ∀i ≥ nc,
(12a)

xi+1|k =

{

Φxi|k +Bci|k +Bddi|k, ∀i < nc,

Φxi|k +Bddi|k, ∀i ≥ nc,
(12b)



where Φ = A+BK. Noted that x0|k = xk. The predictions

of disturbance measurement d
→k

= [d0|k, d1|k, ..., dna−1|k]
T

is defined as follows:

di|k =

{

dk+i, ∀i < na

0, ∀i ≥ na.
(12c)

It is assumed that beyond the preview horizon na, the

upcoming disturbance measurement becomes zero. Subse-

quently, it is more convenient to represent the dual-mode

predictions in one autonomous model such that the model

consists of state predictions (12b), input prediction se-

quence (12a) and advance disturbance measurement (12c).

The autonomous model with the augmented state zi|k is

defined as follows:

zi+1|k = Ψzi|k (13a)

where the initial augmented state z0|k = [xT
0|k, c→

T

k
, d
→

T

k
]T

and Ψ is defined as:

Ψ =





Φ BE BdE

0 Mc 0
0 0 Md



 , (13b)

E c
→k

= c0|k, E d
→k

= d0|k, (13c)

Mc c→
= [cT1|k, ..., c

T
nc−1|k, 0]

T , (13d)

Md d→
= [dT1|k, ..., d

T
na−1|k, 0]

T . (13e)

Consequently, the prediction of state and input (employed

in the cost function) can be expressed in terms of the

autonomous model (13a) as follows:

xi|k =
[
I 0 0

]

︸ ︷︷ ︸

Γx

zi|k, ∀i ≥ 0, (14a)

∆ui|k =
[
K E 0

]

︸ ︷︷ ︸

Γu

zi|k, ∀i ≥ 0. (14b)

B. Formulation of the cost function

The input perturbation sequence c
→k

is computed by solv-

ing a constrained minimisation of the predicted cost where

the predicted cost function quantifying the balance between

performance and input effort is defined as follows:

J :=
∞∑

i=0

[

xT
i|kQxi|k +∆uT

i|kR∆ui|k + 2xT
i|kN∆ui|k

]

(15)

where Q, R and N denote the weighting matrices that specify

the penalties on state and input in the cost. For practical

reasons, the infinite-horizon cost function (15) needs to be

expressed in a finite-horizon form such that it can be solved

on-line rapidly by quadratic programming. By expressing

the prediction of the deviation variables of state (14a) and

input (14b) in terms of the autonomous model, the cost

function (15) can be simplified as follows:

J := zT0|k

∞∑

i=0

ΨiT ΓT
xQΓx + ΓT

uRΓu + 2ΓT
xNΓu

︸ ︷︷ ︸

W

Ψi

︸ ︷︷ ︸

S

z0|k

(16)

Consequently, the cost function (16) can be further simpli-

fied, using the Lyapunov equation ΨTSΨ = S −W , as:

J :=





x0|k

c
→k

d
→k





T 



Sx Sxc Sxd

ST
xc Sc Scd

ST
xd ST

cd Sd





︸ ︷︷ ︸

S





x0|k

c
→k

d
→k





︸ ︷︷ ︸

z0|k

(17)

C. Constraint formation in terms of input perturbations

The physical limits on pitch actuator rate and angle are

considered as hard constraints in this work. The limits on

pitch rate are ±8 degrees per second, whilst the pitch angle

is bounded between 0 degree and 90 degrees:

∆u ≤ ∆ui|k ≤ ∆ū, ∀i ≥ 0, (18a)

u ≤ ui|k ≤ ū, ∀i ≥ 0. (18b)

These inequalities can be written in terms of the autonomous

model (13a), with zi|k = Ψiz0|k, as follows:

HΨiz0|k ≤ f, ∀i ≥ 0. (18c)

where Hzi|k = [ui|k,−ui|k,∆ui|k,−∆ui|k]
T and f =

[ū, u,∆ū,∆u]T . It is noted that to ensure no constraint vio-

lations, possible violations must be checked over an infinite

prediction horizon. Nevertheless, there exists a sufficiently

large horizon where any additional linear equalities become

redundant [14]. Consequently, for a practical approach, this

study formulates the inequalities by checking the constraints

over twice the control horizon and the inequalities can be

described by a set of suitable matrices (M,N ,V and b) as

follows:

Mxk +N c
→k

+ V d
→k

≤ b. (19)

To sum up the discussion so far, the optimal input pertur-

bation sequence c
→k

from the MPC layer can be computed

by solving a minimisation of the predicted cost function (17)

subject to constraints (19). This is summarised in Algo-

rithm 1:

Algorithm 1: At each sampling instant perform the opti-

misation below. The first block element of the perturbation

c
→k

is applied within the embedded control law (12a):

min
c
→k

c
→

T

k
Sc c→k

+ 2 c
→

T

k
ST
xcx0|k + 2 c

→

T

k
Scd d→k

(20a)

s.t. Mxk +N c
→k

+ V d
→k

≤ b (20b)

D. Key result - Conditions for separating the original closed-

loop dynamics from the additional layer design

The unconstrained optimal input sequence can be obtained

by solving the minimisation of the cost (17) as follows:

c
→k

= −Sc
−1ST

xcx0|k − S−1
c Scd d→k

(21)

Close inspection of (21) suggests that, to retain the closed-

loop robust properties, the perturbation sequence c
→k

must

be independent of the state x0|k (i.e. ST
xc = 0 in the cost).

Theorem 1: The input perturbation sequence c
→k

in nor-

mal operation from the MPC additional layer has no impact

on the original closed-loop dynamics if Sxc = 0. This can be



true only if the cost function in Algorithm 1 embeds some

knowledge of the nominal output-feedback control law (10)

such that the weights Q, R, N and Sx satisfy the following

conditions:

ΦTSxΦ− Sx +Q+KTRK = 0, (22a)

BTSxΦ+RK +NT = 0. (22b)

Proof: This is straightforward to demonstrate by inves-

tigating the cost function (17) and the Lyapunov equation

ΨTSΨ = S −W .

Corollary 1: This theorem is significant because it

demonstrates that the extra MPC layer will not impact on the

underlying robust closed-loop properties unless constraints

are predicted to be active. Consequently, in normal operation,

the properties of the underlying robust law are retained.

Nevertheless, a key point in the observation above is

consistency between the performance index in Algorithm 1

and the underlying robust control law of (11b). Since the

underlying controllers (10) employed in this work were

designed using frequency-shaped technique, the weights that

satisfy the conditions (22) can be determined by solving a

linear matrix inequality (LMI) problem [15].

IV. NUMERICAL RESULTS AND DISCUSSIONS

This section demonstrates the efficacy and performance

benefits of the use of the combined MPC/robust control

structure by performing closed-loop simulations on a high-

fidelity wind turbine model.

A. Simulation environment and settings

The turbine model employed in this study is the NREL

5MW turbine [16] based on the FAST code [17]. This model

is of much greater complexity than the model (7) employed

for control design and includes flap-wise and edge-wise blade

modes, in addition to tower and drive train dynamics. The

wind field generated by the TurbSim code [18] numerically

simulates the time series of a three-dimensional wind vectors

at points in a two-dimensional vertical rectangular grid such

that the series of grids march towards the rotor specified by

the mean wind speed and under the assumption of Taylor’s

frozen turbulence hypothesis. The upcoming stream-wise

wind speed measurements on a 17-by-17 grid across the rotor

plane were obtained from the TurbSim code. Nevertheless,

the feed-forward inputs based on such turbulent wind mea-

surements were aggressive and ineffective, thus, to remove

the spatial turbulences that are less sensitive to turbine loads,

the measurements of the turbulent wind field vm(yr, zr) can

be reconstructed into a simplified wind field v(yr, zr):

v(yr, zr) = v̄ + δhyr + δvzr (23)

where yr and zr are the horizontal and vertical co-ordinates

across the rotor plane. The averaged wind speed, horizontal

and vertical shear components are denoted as v̄, δh and

δv , respectively, and these values were obtained on-line by

performing least squares over the wind speed measurements

vm(yr, zr) [19]. Subsequently, these simplified wind speed

measurement would be employed in (6) to estimate the

disturbance trajectories.

B. Tuning of the MPC layer

The predictive controller should anticipate the upcoming

wind far enough ahead to allow beneficial feed-forward

compensation; it was found that na = 15 samples was a

reasonable choice in this simulation setting. The operating

frequency of the MPC controller was 5 Hz which gives a

good compromise between performance and computational

burden; hence the preview horizon is 3 seconds ahead. It

is clear that a similar idea also holds true for the control

horizon nc. The control horizon must be at least as large as

the preview horizon, for the reason that the MPC controller

can then plan effective control sequences to compensate for

the wind disturbance.

C. Simulation results

The closed-loop simulation was performed under a tur-

bulent wind field characterised by the mean speed of 13

ms−1 and turbulence intensity of 14%. Three controllers

were investigated: (i) the baseline robust feedback controller

based on the control law (10) denoted as (FB); (ii) (FB/FF)

represents the unconstrained additional layer on top of

the baseline feedback compensator where the unconstrained

input perturbation (21) is simply added to the feedback

control law and (iii) the constraint-aware additional layer

augmented with the embedded baseline feedback controller,

where the input perturbation is computed on-line by solving

Algorithm 1, denoted as (FB/MPC).

Figure 3 shows the sample time history excerpted from a

20-minute simulation result. Figure 3(a) illustrates the time

history for the pitch angle of blade 1 where the controllers

reached the pitch angle constraints and behaved differently.

Consequently, in Figure 3(b), the rotor speed deviation for

FB/MPC was slightly better than FB/FF. More importantly,

Figure 3(c) shows significant reductions in flap-wise blade

bending moment achieved by FB/MPC compared to FB/FF.

The results from the full 20 minute simulation are sum-

marised in Table I. As shown in Table I, it is not surprising

that FB/FF and FB/MPC achieved lower standard deviations

on rotor speed and blade load rejections compared to FB

since they used of approaching wind measurements. Further-

more, the results showed that the constraint-aware controller

FB/MPC also outperformed FB/FF slightly. The difference is

not significant because violations of pitch actuator constraints

were infrequent. It is surmised that better improvement could

be achieved by FB/MPC if soft-constraints on rotor speed

and blade loads were also included.

V. CONCLUSION

This work has shown the MPC layer design on top of a

given output-feedback blade-pitch controller where the layer

handles the upstream wind measurements and constraints.

The conditions for separating the original closed-loop dy-

namics from the additional control design were also proposed

in this paper. Such MPC layer design retains the robustness

properties of the given feedback controller unless constraint

violations are expected. Closed-loop simulations on a high-

fidelity turbine were performed, showing the benefits gained
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(a) Time history of the pitch angle of blade 1. Dash-dot lines represent
the pitch angle constraint at 0 degree.
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(b) Time history of the rotor speed deviation. Dash-dot line represents
the targeted rotor speed.
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(c) Time history of the flap-wise blade root bending moment of blade
1. Dash-dot line represents the targeted blade loads.

Fig. 3. Simulation results upon the NREL 5MW turbine, showing the
performance of the various controllers studied in this paper.

TABLE I

CONTROLLER PERFORMANCE COMPARISONS

Description FB (Baseline) FB/FF FB/MPC

std(ω) (rpm) 0.32 (100%) 0.27 (84%) 0.27 (84%)

std(M̃1) (kNm) 629 (100%) 589 (94%) 581 (92%)

std(θ̇1) (deg s−1) 1.60 (100%) 1.56(98%) 1.56 (98%)
Note that std denotes the standard deviation. The percentage in bracket

represents the relative difference to the baseline controller.

by the proposed MPC-based preview controller. Future work

will include constraints on rotor speed and blade loads.

APPENDIX I

The model parameters for (7) are shown in Table II and
the closed-loop robust controllers are described as follows:

Kθω(s) =
10.74s+ 3.845

3.142s
(24a)

KθM (s) = 104 ×
2.3s4 + 6.1s3 + 25.4s2 + 18.1s+ 39

(s4 + 0.20s3 + 8.06s2 + 0.46s+ 10.38)
(24b)

TABLE II

MODEL PARAMETER OF G(s) (7)

Parameters Values Units Parameters Values Units
∂ω
∂θ

−0.84 rpm deg−1 ∂Mflap

∂θ
−9.02× 105Nmdeg−1

τr 4 s fb 0.70 Hz
Db 0.47 - τ 0.11 s
fh 0.80 Hz fl 0.014 Hz

REFERENCES

[1] K. Selvam, S. Kanev, J. W. van Wingerden, T. van Engelen, and
M. Verhaegen, “Feedback-feedforward individual pitch control for
wind turbine load reduction,” International Journal of Robust and

Nonlinear Control, vol. 19, no. 1, pp. 72–91, 2009.
[2] W. Leithead, V. Neilson, and S. Dominguez, “Alleviation of Unbal-

anced Rotor Loads by Single Blade Controllers,” in European Wind

Energy Conference & Exhibition, 2009.
[3] D. Schlipf, T. Fischer, and C. Carcangiu, “Load analysis of look-ahead

collective pitch control using LIDAR,” in Proc. of 10th German Wind

Energy Conference, 2010.
[4] D. Schlipf, P. Fleming, F. Haizmann, A. Scholbrock, M. Hofsäß,
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