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Abstract—A Model Predictive Control scheme is used for
voltage control in a three-phase inverter with output LC filter.
The controller uses a model of the system to calculate predictions
of the future value of the system variables for a given voltage
vector sequence. A cost function considering the voltage errors
is defined and the voltage vectors that minimize it is selected and
applied in the converter.

The effect of considering different number of prediction steps
is studied in this work in terms of THD. Simulation results for
one and two prediction steps are presented and compared.

I. INTRODUCTION

The inclusion of an output LC filter allows the inverter to

provide high quality sinusoidal voltages, but it makes more

difficult the controller design and controller parameters ad-

justment. Moreover, for uninterruptible power supplies (UPS)

applications, it is important to achieve a good output voltage

regulation with any kind of load, being very important that

the functionality of the system does not deteriorate under

nonlinear loads, such as diode rectifiers.

Several control schemes have been proposed for this con-

verter, including deadbeat control [1], [2], [3], multiloop

feedback control [4], [5], [6], adaptive control based on bank

resonant filters [7], [8], repetitive-based controllers [9], [10].

Some tuning strategies have been presented including H-

infinity control design [11]. In most of these schemes the

output voltage and one of two currents are used in a cascaded

control structure considering outer and inner control loops,

with linear or nonlinear controllers, and an external modulator

to generate the firing pulses for the power semiconductors.

Predictive control appears as an attractive alternative for the

control of power converters due to its fast dynamic response

[12]. Several control algorithms have been presented under

the name of predictive control, as presented in [13]. Among

these control schemes, Model Predictive Control (MPC) has

demonstrated to be a very interesting alternative for the control

of power converters and drives. It uses a model of the system

to predict the behavior of the variables until a certain horizon

of time, then the optimal future actions are selected by

minimization of a cost function [15], [16], [17]. MPC is a

very flexible control scheme that allows easy inclusion of

system constraints and nonlinearities in the design stage of the

controller. In MPC, different formulations of the cost function

Fig. 1. Three-phase inverter with output LC filter.

are possible, considering different norms and including several

variables and weighting factors [12]. The inputs of the system

can be considered continuous, by using a modulator to apply

the optimal voltages, as presented in [14], [21]. In order to

simplify the implementation of MPC, the converter can be

modelled as a system with a finite number of switching states,

as presented for the current control in a matrix converter

in [22], [23], a three-phase inverter in [24], [25], an active

front end rectifier [26], a multilevel inverter [27] and a flying

capacitor converter [28]. This way, all possible switching states

can be evaluated online, then the one that minimizes the cost

function is selected. All these control schemes control schemes

consider only one time step horizon. However, it is also

possible to consider different prediction horizons, as shown

in [20], improving the behavior of the system but increasing

the complexity of the system and the computational cost.

This work studies the benefit of considering two steps

prediction in the control of an UPS system. The improvement

is measured in terms of THD of the output voltage. Results

are compared with the same system operating with only one

step prediction, considering resistive and nonlinear loads. A

method of reduction of the number of calculations without

affecting the performance is proposed.

II. SYSTEM MODEL

The equation of the filter inductance expressed in vectorial

form is:

L
dif
dt

= vi − vc (1)

where L is the filter inductance.
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Fig. 2. Voltage vectors generated by the inverter.

The dynamic behavior of the output voltage can be ex-

pressed by the following equation:

C
dvc

dt
= if − io (2)

where C is the filter capacitance.

These equations can be rewritten as a state space system as

dx

dt
= Ax + Bvi + Bdio (3)

where

x =

[

if

vc

]

(4)

A =

[

0 −1/L
1/C 0

]

(5)

B =

[

1/L
0

]

,Bd =

[

0
−1/C

]

(6)

Variables if and vc are measured, and io is considered

a disturbance that can be measured or estimated using an

observer, as presented in [29]. In this work, the value of Vdc

is assumed fixed and known.

The output of the system is the output voltage vc, and

written as a state equation:

vc =
[

0 1
]

x (7)

The inverter voltage vi is the input of the system and

belongs to a finite set of 7 voltage vectors defined by the

possible switching states of the inverter, as shown in Fig. 2.

A. Discrete-time model of the filter

A discrete-time model of the filter is obtained from (3) for

a sampling time Ts, and is expressed as:

x(k + 1) = Aqx(k) + Bqvi(k) + Bdqio(k) (8)

where

Aq = eATs (9)

Bq =

∫ Ts

0

eAτ
Bdτ (10)

Bdq =

∫ Ts

0

eAτ
Bddτ (11)

This model is used to calculate predictions of the output

voltage vc for a given input voltage vector vi. The selection

of the optimal voltage vector to be applied in the converter

is made using the predictive control scheme presented in the

next section.

III. MODEL PREDICTIVE CONTROL OF AN UPS

A block diagram of the model predictive control scheme

used in this work is presented in Fig. 3. The discrete-time

model of the system is used to calculate predictions of the

output voltage until time k+N for a given sequence of inverter

voltage vectors and measurements at time k. A cost function

to be minimized evaluates the error between the output voltage

predictions and the reference voltage. The sequence of votage

vectors that minimize this function is selected and the first

element is applied. This algorithm is repeated each sampling

time.

A. Cost function

The cost function gN is defined as the sum of all square

errors between the reference and predicted voltage vectors

from time k + 1 until time k + N .

gN =
N

∑

n=1

(v∗cα − vp
cα(k + n))2 + (v∗cβ − vp

cβ(k + n))2 + hlim,

(12)

where v∗cα and v∗cβ are the real and imaginary parts of the

reference voltage vector v
∗

c , and vp
cα(k + n) and vp

cβ(k + n)
are the real and imaginary parts of the predicted voltage vector

v
p
c(k + n), calculated using (8) for a given inverter voltage
vector sequence [vi(k), · · · ,vi(k + N − 1)]. An additional
term hlim is included in the cost function in order to limit the

inverter output currents, and is defined as:

hlim =

{

0 if |if (k + 1)| ≤ imax

∞ if |if (k + 1)| > imax

(13)

In this way, if the magnitude of the predicted filter current

if (k + 1) is larger than the allowed maximum value imax for

a given inverter voltage vector, the value of the cost function

will be ∞, and this voltage vector will not be selected. In

the other hand, if the predicted filter current is lower than the

maximum value, the cost function considers only the output

voltage errors.

In this work, the voltage reference is kept constant until

time k + N and equal to v
∗

c(k). However, it is possible the
use of extrapolation methods in order to calculate the future

values of the reference voltage.
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Fig. 3. Model predictive control of an UPS.

Fig. 4. Prediction of the output voltages considering different input se-
quences. a) One step prediction. b) Two steps prediction considering different
voltages during each sampling period. c) Two steps prediction considering the
same voltages applied during two sampling periods.

B. Selection of the set of voltage vector sequences

When only one step prediction is considered, the effect of

applying a voltage vector during one sampling period is eval-

uated. In this case only seven voltage vectors are considered.

When two steps are considered for prediction, one voltage

vector is applied during the first sampling period and another

voltage vector is applied during the second sampling period. In

this case, 49 sequences of two voltage vectors are possible. For

N steps, a total of 7N possible sequences must be evaluated.

This leads to a very high number of calculations, which can

make very difficult the experimental implementation of the

algorithm.

In order to reduce the number of calculations, it is possible

to evaluate the application of the same voltage vector duringN
steps, instead of different vectors. This approach simplifies the

algorithm and, as will be shown in the next section, presents

a similar performance than evaluating different vectors for the

same number of steps. The different approaches considered in

this work are represented in Fig. 4 for one and two steps.

IV. RESULTS

The performance of the proposed model predictive con-

troller is tested by simulation using PSCAD. The system

parameters are listed in Table I. Behavior of the system is

evaluated for one and two prediction steps. Resistive loads

and nonlinear loads are considered.

A. One step prediction

The use of MPC with only one step prediction is similar

to the one presented in [29]. It considers the following cost

function

g1 = (v∗cα − vp
cα(k +1))2 +(v∗cβ − vp

cβ(k +1))2 +hlim, (14)

which is evaluated for each one of the seven voltage vectors

generated by the inverter.

The output voltage and current, and the filter current ob-

tained using one step prediction are shown in Fig. 5 for

resistive load.

B. Prediction horizon larger than 1

The behavior of the system using MPC with two steps

prediction is shown in Fig. 6 for resistive load. The cost

function for these results is

g2 =(v∗cα − vp
cα(k + 1))2 + (v∗cβ − vp

cβ(k + 1))2

+ (v∗cα − vp
cα(k + 2))2 + (v∗cβ − vp

cβ(k + 2))2 + hlim

(15)

Here, two cases are considered: using different vectors in each

sampling period (Fig. 6.(a)) and using the same vector during

two sampling periods (Fig. 6.(b)). It can be observed that in

both cases the performance is very similar and considerably

better that the case of one step prediction. This improvement

can be noticed in the lower THD and in less ripple in the

output voltage.

Considering that the behavior of the system using two steps

is almost the same with the evaluation of two different vectors

and the evaluation of the same vector during two sampling

period, and the higher amount of calculations required by the

first case, the second case is selected for extension to three

steps prediction. It was observed that the THD is increased

when a three steps prediction is considered. This is due to

TABLE I
PARAMETERS OF THE SYSTEM.

Parameter Value

DC link voltage Vdc 520 [V]
Filter inductance L 2.4 [mH]
Filter capacitor C 20 [µF]
Sampling time Ts 50 [µs]



Fig. 5. One step prediction with resistive load. THD=2.15%.

the assumptions and approximations considered for the model,

which are not valid for such long prediction horizons.

Performance of the proposed controller for a nonlinear

load composed by a three-phase resistor and three single-

phase diode bridge rectifiers, as the one shown in Fig. 7,

connected between the phases of the output filter. Results are

shown in Fig. 8 and Fig. 9, for one and two step prediction,

respectively. It can be observed that the improvement with two

steps prediction is even more noticeable than with resistive

loads.

A summary of the THD value obtained using different

number of prediction steps is shown in Table II.

TABLE II
COMPARISON OF THD VALUES FOR DIFFERENT NUMBER OF PREDICTION

STEPS.

Number of prediction steps THD %

Resistive load

1 step 2.15
2 steps (same vector during 2Ts) 1.54
2 steps (different vectors) 1.56
Nonlinear load

1 step 2.85
2 steps (same vector during 2Ts) 2.17
2 steps (different vectors) 2.19

V. CONCLUSIONS

A model predictive control for an UPS system considering

two steps prediction is presented. It can be observed that the

behavior of the system improves when a higher number of

prediction steps is considered. However, when the number

of prediction steps is increased, the number of calculations

increases exponentially.

This paper shows that the problem of high number of

calculations can be simplified by considering the application of

the same voltage vector for several sampling periods. However,

there is no improvement for more than two prediction steps,

because the assumptions and approximations considered for

(a)

(b)

Fig. 6. Two steps prediction with resistive load. (a) Considering different
vectors applied in k and k+1. THD=1.56%. (b) Considering the same vector
applied during 2Ts. THD=1.54%..

470 uF 100 Ohm

10 mH

Fig. 7. Single-phase diode bridge rectifier used as part of the nonlinear load.

the model, which are not valid for such long prediction

horizons.

In order to increase the number of prediction steps with

further improvement of the system performance, more accu-

rate models and considerations are required. More intelligent

algorithms are also required in order to use a higher number

of prediction steps without an increase of the computational

effort. Possible solutions include the use of offline optimiza-

tion.



Fig. 8. One step prediction with nonlinear load. THD=2.85%.
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