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Predictive Control of Power Converters: Designs

with Guaranteed Performance
Ricardo P. Aguilera, Member, IEEE, and Daniel E. Quevedo, Senior Member, IEEE

Abstract—In this work, a cost function design, based on Lya-
punov stability concepts, for Finite Control Set Model Predictive
Control is proposed. This predictive controller design allows one
to characterize the performance of the controlled converter while
providing sufficient conditions for local stability for a class of
power converters. Simulation and experimental results on a buck
dc-dc converter and a 2-level dc-ac inverter are conducted to
validate the effectiveness of our proposal.

Index Terms—Predictive control, power conversion, finite con-
trol set, controller performance, stability.

I. INTRODUCTION

In the power electronics field, research has been focus on

not only to obtain new advantageous converter topologies, but

also to improve control methodologies to govern them [1],

[2]. In this area, predictive control techniques have emerged

as a promising control alternative for power converters [3]–

[7]. Model Predictive Control (MPC) is a control strategy that

obtains the control action by solving, at each sampling instant,

an optimization which forecasts the future system behaviour

over a finite horizon. The main advantage of MPC comes

from the fact that system constraints (e.g., current and voltage

limitations, and switch position) and non-linearities can be

explicitly considered in the optimization [8].

Different predictive control approaches have been proposed

to handle power converters, showing that these methods po-

tentially have many advantages when compared to traditional

PWM-based controllers. For recent applications of MPC for

power converters see [9]–[13] while for electrical drives see

[14]–[16]. Due to its flexibility and potentiality, Finite Control

Set MPC (FCS-MPC) [4] is one of the most popular predictive

controller for power converters. FCS-MPC directly considers

the power switches in the optimization as constraints on the

inputs [17]. Consequently, there is no need to use modulators.

Despite the good performance that FCS-MPC in principle

offers, there remain several open problems, such as cost

function design and the lack of stability guarantees. In the

context of MPC, the infinite-horizon case, in general, ensures

closed-loop stability provided that a solution with a finite cost

exists [8]. Nevertheless, in power electronics, short horizons

(commonly, horizon one solutions) are preferred due to prac-

tical limitations. For FCS-MPC, this problem becomes more
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Fig. 1. Convergence of the converter state, x(k), to the neighbourhood of
the reference x⋆. a) Practical asymptotical stability; b) Ultimately bounded
set D: x will be confined in D.

involved due to the fact that this MPC strategy, in general, does

not provide an explicit solution. This makes characterizing the

resulting closed-loop performance a non-trivial task [17].

The above issues motivate one to focus on both deriving an

explicit closed-loop solution and developing a cost function

design method to guarantee closed-loop stability and perfor-

mance of horizon-one FCS-MPC for power converters.

In the present work, a Lyapunov based stabilizing cost

function design of horizon-one FCS-MPC for power converters

is presented, which is an extension of the preliminar work

presented in [18]. The key idea of this proposed approach

is based on representing power converters as linear systems

with quantized inputs. Additionally, a quadratic cost function,

similar to the one used for convex MPC (or Explicit MPC), is

considered [19]. Thus, FCS-MPC can be seen as a quantized

version of convex MPC. Therefore, the advantage of using

this proposed cost function comes from the fact that one can

characterize the performance and stability of FCS-MPC in a

similar fashion than in the convex MPC case, i.e., by using

Lyapunov stability theory [20]. In this particular case, practical

stability of the power converter state, x(k), to a neighbourhood

of the desired reference value x⋆ is established. In essence,

as depicted in Fig. 1, it will be shown how to design the

controller to ensure that the tracking error, x(k)− x⋆, decays

in time until finally reaching a neighbourhood of the reference

represented by D. Thus, the decay rate of the tracking error

and the radius of D, δ, can be used to characterize the closed-

loop performance of the power converter in terms of transient

response and steady state error respectively. To validate the

effectiveness of this proposal, simulations and experimental

results on a buck dc-dc converter and a three-phase two-level



2

inverter governed by horizon-one FCS-MPC are carried out.

Notation: Let R and R≥0 denote the real and non-negative

real numbers, respectively. The difference between two sets

A ⊆ R
n and B ⊆ R

n is denoted by A\B , {x ∈
R

n : x ∈ A, x /∈ B}. The transpose of a matrix A and a

vector x are represented via (Ax)T = xTAT . The maximum

and minimum eigenvalues of a matrix A are λmax(A) and

λmin(A), respectively. | · | represents the Euclidean norm. For

any positive definite matrix P , |x|2P = xTPx denotes the

squared weighted Euclidean norm. A n × n identity matrix

and a n × m zero matrix are denoted by In×n and 0n×m

respectively.

II. HORIZON-ONE QUADRATIC FCS-MPC

The focus of this work is on power converters that can be

modeled, in a state space framework, via:

x(k + 1) = Ax(k) +Bu(k), (1)

where x ∈ X ⊆ R
n stands for the n-system state variables (e.g.

voltages and currents) and u ∈ U ⊂ Rm represents the m-

control inputs of the power converter, i.e., the switch positions

or voltage levels. Thus, this kind of input belongs to a finite

control set of p elements, represented by

u(k) ∈ U = {u1, u2, . . . , up}. (2)

The desired converter reference (e.g. output current) is

represented by x⋆ ∈ R
n. Therefore, the control goal is

represented by an equilibrium point via the target

x(k + 1) = x(k) = x⋆. (3)

Consequently, in this work, the idea is to govern this class

of power converters via horizon-one FCS-MPC to achieve the

desired reference x⋆. Standard examples of FCS-MPC for this

class of systems can be found in [3]–[5].

A. Cost Function

In power electronics, system states represent variables of

different physical nature and order of magnitude, e.g., currents,

voltages, torques, power, etc. Thus, to evaluate the future

behaviour of the power converter, it is convenient to adopt

a cost function, which considers a weighted positive sum of

the tracking errors of the controlled variables [5]. For example,

for a two-level inverter, in αβ coordinates, one can use

J2LI = w1(iα(k + 1)− i⋆)2 + w2(iβ(k + 1)− i⋆)2, (4)

where the weighting factors w1 and w2 are normally chosen

as w1 = w2 = 1. In the case of a one-phase three-cell Flying

Capacitor Converter (FCC), one can choose (see, e.g., [21])

JFCC =w1(ia(k + 1)− i⋆a)
2 + w2(vc1(k + 1)− v⋆c1)

2

+ w3(vc2(k + 1)− v⋆c2)
2,

(5)

where normally w1 = 1 and w2 = w3. Thus, the above

cost functions can be expressed, in terms of the current state

x(k) = x and input u(k) = u, as

J(x, u) =(x(k + 1)− x⋆)TP (x(k + 1)− x⋆)

=(Ax+Bu− x⋆)TP (Ax+Bu− x⋆),
(6)

Power
Converter

Electrical
Load

Power
Source

~

FCS-MPC

Controller

x
?

S k( )

x k( )

Fig. 2. MPC with finite control set.

where P = diag{w1, . . . , wn}.
Inspired by the above, the focus of this work is on the

following class of quadratic cost function (with x(k) = x):

V (x, u) = |x− x⋆|2Q + |u− u⋆|2R + |x(k + 1)− x⋆|2P , (7)

where matrices Q and R are semi-positive definite and P is

positive definite. Additionally, u⋆ is the required input to keep

(3) during the steady state. Thus, from (1) and (3), the steady

state input, u⋆ can be obtained via

x⋆ = (I −A)−1Bu⋆. (8)

Clearly, (6) is a particular case of (7) where Q = 0n×n,

R = 0m×m, and matrix P is given by the weighting factors wi.

Our subsequent analysis will reveal that by properly adjusting

P the MPC loop can be designed to exhibit provable and

desirable performance properties.

B. Optimal Control Input

Considering the current system state, x(k) = x, the optimal

control input uopt(x) is obtained by minimizing the cost

function V (x, u) in (6) subject that the input belongs to the

finite control set, U in (2). This optimization provides the

optimal predictive control law, say:

uopt(x) , arg{min
u∈U

V (x, u)}. (9)

Consequently, the power converter presented in (1), governed

by (9), yields the closed-loop equation

x(k + 1) = Ax(k) +Buopt(x(k)). (10)

This procedure is repeated at each sampling instant using fresh

measurements of the system state. In Fig. 2, a block diagram

of this predictive control strategy is presented.

III. CLOSED-FORM SOLUTION OF HORIZON-ONE

FCS-MPC

In this section, the closed-form solution in the unconstrained

case is recalled. Based on this nominal solution, the closed-

form solution of horizon-one FCS-MPC is derived.
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A. Unconstrained Optimum

Here, the ideal case where system constrains are not present

is considered, i.e., x ∈ R
n and u ∈ R

m. The cost function

(7), with x̂ = x− x⋆ and û = u− u⋆, can be re-written as

V (x, u) = |x̃|2Q + |ũ|2R + |Ax̃+Bũ|2P (11)

= x̃T (ATPA+Q)x̃+ ũT (BTPB +R)ũ+ 2ũTBTPAx̃.

In this case, the optimization in (9) results in the uncon-

strained optimal solution, uopt
uc(x), which can be obtained by

making the partial derivative of the cost function equal to zero,

i.e.,:

∂V (x̃, ũ)

∂ũ
= 2(BTPB +R)ũ+ 2BTPAx̃ = 0. (12)

Therefore, the minimizer to (7), without taking into account

any system constraints, is given by

ũopt
uc(k) = Kx̃(k),

uopt
uc(k) = K(x(k)− x⋆) + u⋆,

(13)

where

K = −W−1BTPA, W = BTPB +R. (14)

It is worth noting that this nominal solution, uopt
uc(k), will

generally not belong to the finite set U in (2).

B. Constrained Closed-Form Solution

In the case when MPC presents a finite control set con-

straint, the optimal solution, in general, is not necessarily

the quantization of the unconstrained one. Based on [17], the

expression of the optimal control input is given by

uopt(k) = W−1/2qV

(

W 1/2uopt
uc(k)

)

, (15)

where uopt(k) belongs to the finite set U. For the sake

of brevity, the analysis to obtain (15) has been neglected.

Nevertheless, for further details the interested reader is referred

to [17], [22].

In essences, (15) tells one that to obtain the constrained

optimum, uopt, one must first perform a linear transformation

of the finite control inputs, U, using W 1/2, i.e., V = W 1/2
U.

Thus, in this new space, one can perform the quantization

qV(·). The term W−1/2 represents, then, the inverse transform.

A block diagram of the resulting one-step FCS-MPC closed-

loop is depicted in Fig. 3.

Now, the optimal constrained solution can be re-written as:

uopt(k) = uopt
uc(x) +W−1/2ηV(x), (16)

where ηV stands for the quantization error. Consequently, the

closed-loop recursions becomes

x(k + 1) = AK(x(k)− x⋆) + x⋆ +BW−1/2ηV(x) (17)

where AK , A+BK.
It is important to emphasize that obtaining the optimal input,

uopt(k), by solving the minimization as per (9) is equivalent

to performing the quantization of the unconstrained solution

as per (15). Thus, closed-loop systems (10) and (17) are

equivalent. This opens the door to develop fast algoritms to

obtain the optimal control law, uopt(x), see [22]–[24]

FCS-MPC with horizon one

x k( )

S k( )

~

Power
Converter

Electrical
Load

Power
Source

u W q K x u= +( )W ( - )( )k( x )
V

?-1/2 1/2opt

x
?

?

Fig. 3. Horizon-one FCS-MPC closed-loop.
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Fig. 4. Sets involved in the cost function design; (a) Finite control set U
and nominal input set Ū; (b) Terminal region Xf and bounded set Dδ .

IV. COST FUNCTION DESIGN FOR PERFORMANCE

Here, ideas used for convex MPC formulations, such as

Explicit MPC [19] are adapted to design matrix P to guarantee

stability (as in Fig. 1) and derive performance bounds of FCS-

MPC. Given the nature of this problem, and in view of results

for unconstrained systems (see Chapter 2.5 in [8]), this work

proposes to design the quadratic cost function (7) by choosing

matrix P as the solution of the algebraic Riccati equation

AT
KPAK − P +Q+KTRK = 0, (18)

where K is as in (14). This guarantees that AK is Schur stable,

i.e., |λi(AK)| < 1 for all i ∈ {1, . . . , n} [25].

A. Preliminaries

To obtain a bound for the quantization error, firstly, the

following nominal input set for the finite control set U, in (2),

is introduced

Ū , {ū ∈ R
m : |ū| ≤ ūmax} , (19)

where ūmax ∈ (0,∞) is a design parameter. Since Ū is

bounded, so is the quantization error in U, thus

|ηU| ≤ ∆q , max
ū∈Ū

|qU (ū)− ū| <∞. (20)

Note that ∆q depends upon ūmax. To clarify the concept of

nominal input set, the following example is given:

Example 1 (Two-Level Inverter): In Fig. 4. the typical vec-

torial representation of a 2-level inverter output voltages in

the αβ (or dq) coordinates is presented. The finite input set,
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U, contains the 7 inverter vectors, which are contained by the

nominal input set, Ū, i.e.,

U = {u0, . . . , u6} ⊂ Ū ⊂ R
2. (21)

In this case, the quantization of the nominal input ū ∈ Ū is

given by qU(ū) = u1, thus ηU(ū) = u1− ū. Notice that for the

dq framework, the inverter vectors will be rotating. However,

they always will be contained by the nominal input set, Ū,
producing the same maximum quantization error ∆q as in the

αβ framework.

From the unconstrained solution in (13), the following

nominal local controller is introduced:

uf (x) = uopt
uc(x) = K(x− x⋆) + u⋆. (22)

This motivates us to define a terminal region as

Xf ,

{

x ∈ R
n : |x− x⋆| ≤ b =

ūmax − |u⋆|
|K|

}

(23)

Thus, this terminal region guarantees, from (20), that the

quantization error will be bounded, i.e.:

|ηU(uf (x))| ≤ ∆q, ∀x ∈ Xf . (24)

It is important to emphasize that each system state, x,

which belongs to the proposed terminal region, Xf , produces

a nominal input, uf (x), which belongs to the nominal input

set Ū, i.e., κf (x) ∈ Ū for all x ∈ Xf .

B. Performance Guarantees

By extending [26], next, it will be shown how to design the

MPC cost function to guarantee stability and performance.

Theorem 1: Consider the following positive constants:

a1 = λmin(P ), a2 = λmax(P ), a3 = λmin(Q), a4 = |W |,
and ρ = 1− a3

a2

. Let

Dδ , {x ∈ R
n : |x− x⋆| ≤ δ} (25)

δ2 =
a4

a1(1− ρ)
∆2

q (26)

be a neighbourhood of the reference x⋆. Suppose that matrix

P is chosen as per (18). If ∆q in (20) is bounded by

∆2

q ≤
(

a1 − a2ρ

a4

)

b2, (27)

then, the power converter (1) governed by horizon-one FCS-

MPC (9) or (15) will be led to the neighbourhood Dδ , i.e.,

lim sup
k→∞

|x(k)− x⋆| ≤ δ (28)

for all x(0) ∈ XMPC , where

XMPC , Xf ∪ {x ∈ R
n : g(x) < 0}. (29)

g(x) = −a3(x(k)− x⋆)T (x(k)− x⋆) + a4|νU(x)|2 (30)

The proof of this theorem can be found in Appendix A.

Theorem 1 tells one that if the cost function is designed

as per (18), and the quantization error is bounded by (27),

then any initial state x(0) ∈ XMPC will be steered by the

predictive control law, uopt(x), towards the terminal region Xf

and then to the ultimately bounded set, Dδ , where the system

will be eventually confined (see Fig. 1).

Algorithm 1 Region of Attraction XMPC ⊆ R
2

function XMPC = XMPC(U, K, u⋆, a3, a4, jmax)

Initialization: r ← b, ∆r ← 0.01, j ← 1
while j < jmax do

XMPC ← Br
r ← b+∆r
for k = 1 : 360 do

x̃(1, 1)← r cos(2π(k − 1)/360)
x̃(2, 1)← r sin(2π(k − 1)/360)
u← Kx̃− u⋆ ⊲ See (13)

d2
min
←∞

for l = 1 : p do

d2 ← (u− U(:, l))T (u− U(:, l))
if d2 ≤ d2

min
then

d2
min
← d2

end if

end for

g(x)← −a3x̃T x̃+ a4d
2

min
⊲ See (30)

if g(x) ≥ 0 then

j ← jmax

end if

end for

j ← j + 1
end while

end function

To determine the region of attraction of the proposed

controller, XMPC in (29), one can enlarge Xf by guaranteeing

that g(x) ≤ 0. However, outside Xf , the quantization error,

ηU (x), will be larger than ∆q . Thus, XMPC can be obtained

numerically, by using Algorithm 1. Since the closed loop (10)

may be globally stable, i.e., XMPC = R
n, jmax is used to

stop the algorithm. If the resulting ball is larger than the state

constraints, then XMPC = X.

C. FCS-MPC Design Procedure

The proposed FCS-MPC design can be summarized in the

following procedure.

1) Set the desired control goal, i.e., system reference, x⋆,

and the steady state input, u⋆, which satisfies (8).

2) Set the cost function weighting matrices Q and R. It

is convenient to define the system model in per-unit.

Thus, every system tracking error, xi(k) − x⋆
i , will be

comparable. Therefore, one can choose Q = In×n, and

then only adjust R.

3) Calculate matrix P from (18). This can be easily done

in Matlab by using the command dlqr.

4) Calculate K and W from (14).

5) Choose the nominal control set Ū, by setting ūmax. This

determines the maximum quantization error ∆q .

6) Check the stability condition (27). If (27) is not satisfied,

modify matrix R and repeat steps 3)–6).

7) With K and ūmax, obtain the terminal region Xf in (23).

8) Calculate ρ and Dδ . Here, the decay rate ρ determines

the speed that the system state x is led to the reference,
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x⋆, in the terminal region Xf while δ determines the

maximum steady state error.

9) To obtain the region of attraction of the horizon-one

FCS-MPC, XMPC , enlarge Xf by using Algorithm 1.

Notice that, by modifying matrix R, one can adjust the

transient respond and steady state error of the proposed

predictive controller. With a larger matrix R, one seeks to

apply an input close to u⋆. This allows one to reduce the

control action that is applied to the system, leading to a slower

dynamic response (less aggressive controller) with often better

robustness properties. Nevertheless, since u⋆ may not be part

of the finite control set, the optimization for large matrix R
tends to become the quantization of the steady-state input,

i.e., uopt ≈ q{u⋆}. Thus, FCS-MPC may decide to keep the

power switch always open or closed. Since power converters

are in general open-loop stable systems, i.e., |λmax(A)| < 1,

the system state will not diverge. However, the closed-loop

system will exhibit the largest possible steady-state error, i.e.,

the largest region D. Thus, decreasing matrix R will stimulate

power switches commutation, reducing the size of D while

increasing commutation losses. Consequently, if condition

(27) is not satisfied, the system will not diverge infinitely.

Nevertheless, it is not possible to characterize its performance.

V. SIMULATION STUDY: BUCK DC-DC CONVERTER

This power converter, presented in Fig. 5, contains three

power switches. Each of them can adopt only two values,

i.e., Si = 0 if the switch is open and Si = 1 when it is

closed. Thus, Si ∈ {0, 1}, for all i ∈ {1, 2, 3}. It is clear

that, to avoid internal faults, some of the switch combinations

are forbidden. If the switching input vector is defined as:

s(t) =
[

S1(t)
T S2(t)

T S3(t)
T
]T

, then it will be restricted

to belong to the following finite control set:

s(t) ∈
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0

1



 ,





0

1
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1

0
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. (31)

This is equivalent to considering the input voltage, vi(t), as

control input, which is constrained according to:

vi(t) ∈ V ,

{

0,
Vdc

2
, Vdc

}

. (32)

Considering a base voltage, Vbase = Vdc, and a base current,

Ibase = Vdc/r, the discrete-time per unit model of the buck

DC-DC converter is expressed by:

iL,pu(k + 1) = iL,pu(k)−
hr

L
vo,pu(k) +

hr

L
vi,pu(k),

vo,pu(k + 1) =
h

rC
iL,pu(k) +

(

1− h

rC

)

vo,pu(k),
(33)

where h is the sampling period. Here, x =
[

iL,pu vo,pu
]T

is

the system state, while the control input is u = vi,pu.

The output voltage reference can be defined as v⋆o = αVdc,

with α ∈ (0, 1). From the system model, one can see that this

voltage reference will be reached when the inductor current is

i⋆L = v⋆o/r = αVdc/r. On the other hand, the required voltage

input, v⋆i , to keep this desired steady state is v⋆i = v⋆o = αVdc.

Thus, the per-unit references become i⋆L,pu = v⋆o,pu = α.

dc

v

V
2

dcV
2

S2

S3

S1

C

iL

r vo

L

vvi

Fig. 5. Three-level buck dc-dc converter.

Notice that the output voltage reference, v⋆o = αVdc, may

not be an element of the finite set V in (32). Therefore, it

is not always possible to achieve an equilibrium point. Thus,

the best one can hope for, is that state trajectories be bounded

near the desired reference. It is for this reason the focus of

this work is on practical stability as studied in Section IV.

Considering x̃ =
[

iL,pu − α vo,pu − α
]T

and ũ = vi,pu−
α, the buck dc-dc converter per-unit model is expressed via:

x̃(k + 1) = Ax̃(k) +Bũ(k), (34)

A =

[

1 −hr
L

h
rC 1− h

rC

]

, B =

[

hr
L

0

]

. (35)

Thus, since vi ∈ V, the control input, ũ, is restricted to

belong to the finite set Ũ expressed via:

ũ(k) ∈ Ũ ,
{

−α, 1

2
− α, 1− α

}

. (36)

Consider that, for safety reasons, it is required to operate the

converter under the following conditions: 0 < iL,pu < imax

and 0 < vo,pu < vmax. Hence, the system state, x, is restricted

to belong to the set X defined by:

X =
{

x ∈ R
2 : x1 ∈ [0, imax], x2 ∈ [0, vmax]

}

(37)

Consequently, the control objective is to steer any system

state, x ∈ X, to the origin.

For this simulation study, the electrical parameters of this

DC-DC converter, depicted in Fig. 5, are chosen as Vdc =
100V , r = 5Ω, L = 3mH and C = 110µF . The desired

output voltage reference is set as v⋆o = 37.5V ; thus, α =
0.375. Thus, in this case, the finite control set is

Ũ =
{

−0.375, 0.125, 0.625
}

. (38)

The predictive controller was implemented using a sampling

period of h = 200µs. To design the cost function, the value

of the weighting matrix Q is chosen in a similar manner for

standard FCS-MPC (see P in (6)). Since the system is in per

unit, both tracking errors have the same importance. On the

other hand, matrix R will be chosen as design parameter to

adjust the terminal region Xf and the ultimately bounded set

Dδ . Thus, in this case, Q are R are chosen as

Q = I2×2, R = 0.25. (39)

Then, matrix P is designed by solving the Riccati equation

presented in (18). This can be easily obtained using MATLAB.

Thus, for this case, it results in:

P =

[

2.4393 0.0589

0.0589 1.8784

]

, K =
[

−1.5743 0.4962
]

. (40)
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Based on the finite control set Ũ, the following nominal

control set is considered:

Ū , {ū ∈ R
m : |ū| ≤ ūmax = 0.625} , (41)

which provides, from (20), that

|ηU| ≤ ∆q = 0.25, (42)

for all ū ∈ Ū. The terminal region can be characterized via:

Xf ,

{

x ∈ R
n : |x− α| ≤ b =

ūmax

|K| = 0.3787

}

, (43)

where ũ⋆ = 0. Now, it is possible to verify that condition (27)
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Fig. 9. Convergence of the buck converter to the bounded set Dδ ; R = 0.1.
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in Theorem 1 is satisfied by:

∆2

q = 0.0625 <

(

a1 − a2ρ

a4

)

b2 = 0.2107, (44)

The terminal region Xf , thus, is an invariant set. Therefore,

one can anticipate that the system state, x, will be led by the

predictive controller to the ultimately invariant set:

Dδ , {x ∈ R
n : |x− α| ≤ δ = 0.2062} . (45)

Clearly, Dδ is contained in Xf , i.e., Dδ ⊂ Xf . Then, by

invoking Algorithm 1, it is possible to find that XMPC = X.

The evolution of the buck converter under the proposed

horizon-one FCS-MPC, starting from vo,pu = iL,pu = 0,

is depicted in Fig. 6. Here, one can see that the predictive
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controller leads the system state to the bounded set Dδ .

The per-unit system state (inductor current iL,pu and output

voltage vo,pu) and the finite control input (input voltage vi,pu)

trajectories are shown in Fig. 7. It is clear that the steady-state

system trajectories are bounded around the reference.

Due to the design of the cost function, V (x), one can see in

Fig. 8 that |x(k)− x⋆| is exponentially bounded as shown in

(85). Hence, when x(k) ∈ Xf , it decreases exponentially, with

a decay factor of ρ = 0.5888, until the system tracking error,

x(k)−x⋆, reaches the bounded set Dδ . Inside this region, the

tracking error, x(k) − x⋆, presents an oscillating behaviour

bounded by δ. This is attributable to the fact that due to the

switching action, which occurs at discrete time-instants, the

system cannot reach an equilibrium point for such reference.

To show how the cost function design affects the system

behaviour, a new simulation for the buck converter using a

different matrix R, namely, R = 0.1, is carried out.

Following the same procedure used previously, it is obtained

that

P =

[

1.8898 0.2307

0.23071 1.7284

]

, K = [ − 2.1224 0.5196 ] (46)

Now, the terminal region can be characterized via:

Xf ,

{

x ∈ R
n : |x− α| ≤ b =

ūmax

|K| = 0.286

}

, (47)

while the ultimately bounded set is expressed by:

Dδ , {x ∈ R
n : |x− α| ≤ δ = 0.1595} . (48)

The results for this new cost function setting are presented in

Figs. 9–11. When comparing both situations, it is clear that

reducing the value of R, reduces the average steady-state error,

which is normally observed in this kind of predictive control

strategy, see [12]. However, it is achieved by increasing the

number of commutations.

VI. EXPERIMENTAL RESULTS: TWO-LEVEL INVERTER

In this section, the stability and performance analysis pre-

sented in this work when applied to a three-phase two-level

inverter is experimentally verified.

A. Two-Level Inverter Model

The topology of this inverter is presented in Fig. 12. The

continuous-time dynamic model for each output current, iy , is

diy(t)

dt
= − r

L
iy(t) +

1

L
(Vdcsy(t)− vno(t)), ∀y ∈ {a, b, c},

(49)

where vno stands for the common mode voltage defined as

vno(t) =
1

3
(via(t)+ vib(t)+ vic(t)). The input, sy , belongs to

the following finite set

S ,
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. (50)

It is well known that, for sinusoidal references in a 3-phase

system, one can apply the so-called abc-to-dq transformation.

Firstly, the current vector in abc frame is defined as: iabc =

a

dcV

ia

ib

ic

L r

vib

via

vic

S bS cS

Fig. 12. Two-Level inverter topology.

u0

U

umax

Dq

hT

a=2/3

Fig. 13. Associated nominal control set Ū for the 2-level inverter.

[ia ib ic]
T . Then, it is transformed into dq frame by applying

the following transformation:

idq(t) = Γ(t)iabc(t), (51)

where:

Γ(t) =
2

3

[

sin(ωt) sin(ωt− 2π
3
) sin(ωt+ 2π

3
)

cos(ωt) cos(ωt− 2π
3
) cos(ωt+ 2π

3
)

]

, (52)

and idq(t) = [id(t) iq(t)]
T .

Thus, considering x = idq and u = sdq , the discrete-time

model of the 2-level inverter, in dq frame, is expressed by:

x(k + 1) = Ax(k) +Bu(k), (53)

A =

[

1− h r
L ωh

−ωh 1− h r
L

]

, B =

[

h
LVdc 0

0 h
LVdc

]

, (54)

in which

u(k) ∈ U(k) = Γ(k)S. (55)

In this case, constant amplitud reference, I⋆, is desired for

the output currents iabc. This is equivalent to setting

x⋆ = i⋆dq = [I⋆ 0]T . (56)

The input required to keep this state value is given by

u⋆ = s⋆dq = [rI⋆/Vdc ωLI⋆/Vdc]
T . (57)

B. Experimental Results

Here, experimental results of the performance of FCS-MPC

when applied to a three-phase two-level inverter are presented.

The inverter prototype was built based on discrete insulated-

gate bipolar transistors (IGBTs) IRG4PC30KD. The electrical

parameters of the converter-load system are Vdc = 200 V , r =
5 Ω and L = 17 mH , see Fig. 12. The predictive strategy was

implemented in a standard TMS320C6713 DSP considering a

sampling period of h = 100 µs. Then, the optimal input was
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Fig. 15. System state and input trajectories, and inverter voltage spectrum.

applied to the converter by using an XC3S400 FPGA. The

desired amplitude for the output current is I⋆ = 5 A with a

frequency of f0 = 50 Hz.

In this case, the cost function was set with Q = I2x2 and

R = 2I2x2. Thus, following the proposed stabilizing design,

one obtains that

P = 1.7455I2×2, K =

[

−0.4514 −0.0146
0.0146 −0.4514

]

. (58)

A key observation is that the time-varying finite control

set, U = Γ(k)S, can be bounded by a fixed nominal set

Ū. In Fig. 13, one can see that when the nominal input ū
is inside the hexagon boundary, the maximum quantization

error, ∆q , is given by the centroid or geometric center of the

equilateral triangle formed by the adjacent inverter vectors.
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Fig. 16. Convergence of the 2-level inverter: R = 0.0001I2×2.
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Fig. 17. System state and input trajectories, and inverter voltage spectrum.

Thus, considering that a = 2/3, it follows that

hT =

√
3

2
a =

√
3

3
. (59)

Therefore, the maximum quantization error is given by:

∆q =
2

3
hT = 2

√
3

9
. (60)

The associated nominal input set can be chosen as:

Ū , {ū ∈ R : |ū| ≤ 2∆q}, (61)

while terminal region can be characterized via:

Xf ,

{

x ∈ R
n : |x− x⋆| ≤ b =

umax − |u⋆|
|K| = 1.3

}

(62)
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which provides that

|ηU(ū)| ≤ ∆q = 2

√
3

9
(63)

for all x ∈ Xf . Now, it is possible to verify that condition

(27) in Theorem 1 is satisfied by:

∆2

q = 0.1481 <

(

a1 − a2ρ

a4

)

b2 = 0.3825. (64)

Thus, one can anticipate that the system state, x, will be

led by the predictive controller to the ultimately invariant set:

Dδ , {x ∈ R
n : |x− x⋆| ≤ δ = 0.8088} . (65)

Here, it is assumed that, for safety reasons, the converter

will work in the following range:

X = {x ∈ R
2 : x1 ∈ [0 7.5], x2 ∈ [−2.5 2.5]}. (66)

Using Algorithm 1, one obtains that XMPC = X.

The evolution of the 2-level inverter under horizon-one FCS-

MPC, starting from id = iq = 0, is depicted in Fig. 14. Here,

one can see that the predictive controller leads the system

state to the terminal region, Xf , and then to the invariant

bounded set Dδ . As expected for this kind of controller, the

inverter voltage spectrum is spread. This can be observed in

Fig. 15, yielding a distortion per phase of THDv = 1.3367 %.

Nevertheless, it can be noticed that system achieved a non-zero

average steady-state error.

To improve this behaviour, based on the analysis carried out

for the buck DC-DC converter, the value of R is reduced to

R = 0.0001I2×2. (67)

This gives us the following cost function setting:

P ∼= I2×2, K =

[

−0.8249 −0.0267
0.0267 −0.8249

]

. (68)

The results of this new settings are presented in Figs. 16

and 17. In the latter, one can observed that the inverter voltage

pattern is different to the one shown in Fig. 15. This is due

to the fact that the matrix R directly affects the control input.

For the case shown in Fig. 15, i.e., R > Q the predictive

controller gives more importance to minimize the input action,

u − u⋆, than the state tracking error, x − x⋆. Thus, with this

new settings, the harmonic pollution in the inverter voltage is

higher than the one obtained when R > Q. More specifically,

THDv = 2.2802 %. Consequently, by reducing R, the steady-

state average error was reduced as expected. However, similar

to a Linear Quadratic Regulator, the controller dynamic is

increased, resulting in a more aggressive controller [27]. This

can be noticed in an increment of the switching frequency

since the controller is trying to compensate higher frequency

current errors. Therefore, there is a trade off between steady-

state error and power switches losses.

VII. CONCLUSIONS

When controlling solid-state power converters in discrete-

time, in general, voltages and currents will not converge to

the desired steady-state values. This motivates the analysis of

such converters from a practical stability viewpoint, i.e., by

studying convergence of state variables to a bounded invariant

set. The results presented here show how the cost function of

FCS-MPC can be designed to obtain a desired performance

while guaranteeing practical stability of the power converter.

As documented via simulation and experimental results, this

analysis can be used to characterize the controller perfor-

mance, in terms of transient response and steady state error,

by determining the decay rate of the tracking error and the

size of the ultimately bounded set respectively.

Future work may focus on extending the results presented

in this paper to more complex power converter topologies and

also to develop novel high-performance controllers. Another

interesting topic is to further investigate the effect of the input

weighting matrix R on the switching frequency and spectrum.

Additionally, based on [26], the extension of this work for

larger horizon formulation can be also investigated.
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APPENDIX A

PROOF OF THEOREM 1

Firstly, the notion of practical stability is reviewed. The

term “practical” is used to emphasize that only stability to a

neighbourhood of the reference can be guaranteed.

Definition 1: (Practical-Lyapunov Function) A (not neces-

sarily continuous) function V : Rn → R≥0 is said to be a

practical-Lyapunov function (LF) in a region A ⊆ R
n for the

system (1) if there exist a compact set Ω ⊆ A, some positive

constants a1, a2, a3, d, σ, and l ≥ 1 such that

V (x) ≥ a1|x|l, ∀x ∈ A, (69)

V (x) ≤ a2|x|l + d, ∀x ∈ Ω, (70)

∆V (x) = V (x(k + 1))− V (x) ≤ −a3|x|l + σ, (71)

for all x ∈ A.

Theorem 2: (Converse theorem [28]) If system (1) admits a

practical-LF in A, then it is Practically Asymptotically Stable

(PAS) in A.

The above theorem tells one that, if one can find a practical-

LF for the system to be controlled, then it is practically

asymptotically stable. In other words, a practical-LF pro-

vides sufficient conditions for the existence of a controller

u(x) = κ(x) which ensures asymptotic (exponential) stability

to a neighbourhood of the reference for the system (10). This

stability concept is illustrated in Fig. 1.

Proof: (Theorem 1) To prove stability of the closed-loop

(10), the following candidate LF is considered

Vf (x(k)) = (x(k)− x⋆)TP (x(k)− x⋆). (72)

Then, for this particular candidate LF the conditions presented

in Definition 1 are verified.

Firstly, notice that conditions (69) and (70) are satisfied

when l = 2, a1 = λmin(P ), a2 = λmax(P ), and d = 0,

i.e.,

a1|x− x⋆|2 ≤ Vf (x) ≤ a2|x− x⋆|2. (73)

Then, to analyze condition (71), one can obtain that (with

x(k) = x and x̃ = x̃(k) = x(k)− x⋆)

∆Vf (x) = Vf (x(k + 1))− Vf (x)

≤ Vf (x(k + 1))− Vf (x) + |ũopt(x)|2R
= |Ax̃+Bũopt(x)|2P − |x̃|2P + |ũopt(x)|2R
= x̃T (AT

KPAK − P +KTRK)x̃+ |ηV(x)|2

+ 2x̃T (AT
KPB +KTR)W−1/2ηV(x)

(74)

where ũopt(x) is as in (16), and W is as per (14). Since matrix

P is chosen according to (18), it follows that

AT
KPAK − P +KTRK = −Q

AT
KPB +KTR = ATPB +KT (BTPB +R) = 0.

(75)

Thus, it can be confirmed that

∆Vf (x) ≤ −x̃TQx̃+ |ηV(x)|2. (76)

Notice that the quantization error ηV may differ from ηU.

However, for any ū ∈ R
m, the quantization error can be

bounded as

|ηV(ū)| ≤ |qV
(

W 1/2ū
)

−W 1/2ū|

≤ |W 1/2qU (ū)−W 1/2ū|
≤ |W |1/2|qU (ū)− ū|
≤ |W |1/2ηU(ū).

(77)

The, the following relationship is obtained

∆Vf (x) ≤ −a3|x− x⋆|2 + a4|ηU(x)|2, ∀x ∈ R
n. (78)

Considering the case where x(k) = x ∈ Xf , from (24), it

follows that |ηU(x)| ≤ ∆q , which allows one to obtain

∆Vf (x) ≤ −a3|x− x⋆|2 + a4∆
2

q, ∀x ∈ Xf (79)

Therefore, property (71) holds with a3 = λmin(Q), a4 = |W |,
and σ = a4∆

2

q for all x ∈ Xf .

Now, considering that Vf (x) ≤ a2|x|2, see (73), it is

possible to establish the following relationship

Vf (x(k + 1)) ≤ ρVf (x(k)) + a4∆
2

q, ∀x(k) ∈ Xf , (80)
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which implies that

|x̃(k + 1)|2 ≤ a2
a1

ρ|x̃|2 + a4
a1

∆2

q, ∀x(k) ∈ Xf . (81)

Notice that ρ ∈ [0, 1).
Suppose that x(k) ∈ Xf , i.e., |x(k)| ≤ b. and that the

quantization error is bounded as in (27), from (81), it follows

that

|x̃(k + 1)|2 ≤ a2
a1

ρb2 +
a4
a1

(a1 − a2ρ)

a4
b2 = b2, (82)

thus x(k+1) ∈ Xf , which implies that Xf is an invariant set

for the closed-loop system (10).

Now, it is necessary to determine in which region

the candidate-LF, Vf (x), is monotonically decreasing, i.e.,

∆Vf (x) < 0. Notice that as the system state, x, moves away

from the reference, the first term, −a3|x − x⋆|2 becomes

more negative. However, the quantization error also increases

making a4|ηU(x)|2 larger. Thus, a region of attraction where

the horizon-one FCS-MPC can stabilize the system is given

by:

XMPC , Xf ∪ {x ∈ R
n\Xf : g(x) < 0}, (83)

where g(x) = ∆Vf (x). This condition is introduced in

Theorem 1, as (29) and is used in the Algorithm 1. Therefore,

for any initial state x(0) ∈ XMPC\Xf , there exists a finite

instant t > 0, such that x(k) ∈ Xf for all k ≥ t.
By iterating (80) for an initial condition x(t), it follows that

Vf (x(k)) ≤ ρkVf (x(t)) +

(

1− ρk

1− ρ

)

a4∆
2

q, (84)

for all x(t) ∈ Xf . Taking into account (73), it can be confirmed

that

x̃(k) ≤ a2
a1

ρkx̃(t) +

(

1− ρk

1− ρ

)

a4
a1

∆2

q, ∀x(k) ∈ Xf . (85)

Therefore, for all x(t) ∈ Xf , it follows that

lim sup
k→∞

|x(k)− x⋆| ≤ δ (86)

as presented in (28). Consequently, Vf (x) in (72) is a practical-

LF in XMPC for the closed-loop system (10) with Dδ in (25)

as an ultimately bounded set.
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