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ABSTRACT

We propose a novel statistical method to predict large scale dyadic
response variables in the presence of covariate information. Our
approach simultaneously incorporates the effect of covariates and
estimates local structure that is induced by interactions among the
dyads through a discrete latent factor model. The discovered la-
tent factors provide a predictive model that is both accurate and
interpretable. We illustrate our method by working in a framework
of generalized linear models, which include commonly used re-
gression techniques like linear regression, logistic regression and
Poisson regression as special cases. We also provide scalable gen-
eralized EM-based algorithms for model fitting using both "hard"
and "soft" cluster assignments. We demonstrate the generality and
efficacy of our approach through large scale simulation studies and
analysis of datasets obtained from certain real-world movie recom-
mendation and internet advertising applications.

Categories and Subject Descriptors

H.1.1 [Information Systems]: Models and Principles

General Terms

Algorithms, Theory, Experimentation

Keywords

Generalized linear regression, Co-clustering, Latent factor model-
ing, Dyadic data

1. INTRODUCTION
Predictive modeling for dyadic data is an important data mining

problem encountered in several domains such as social networks,
recommendation systems, internet advertising, etc. Such problems
involve measurements on dyads, which are pairs of elements from
two different sets. Often, a response variable yij attached to dyads
(i, j) measures interactions among elements in these two sets. Fre-
quently, accompanying these response measurements are vectors of
covariates xij that provide additional information which may help
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in predicting the response. These covariates could be specific to
individual elements in the sets or to pairs from the two sets. In
most large scale applications, the data is sparse, high dimensional
(i.e., large number of dyads), noisy, and heterogeneous; this makes
statistical modeling a challenging task. We elucidate further with a
real-world example.

Consider an online movie recommendation application such as
NetFlix, which involves predicting preference ratings of users for
movies. This preference rating can be viewed as a dyadic response
variable yij ; it depends both on the user i and the movie j and
captures interactions that exist among users and movies. Since
both user and movie sets are large, the number of possible dyads
is astronomical. However, most users rate only a small subset of
movies, hence measurements (actual ratings provided by a user)
are available only for a small fraction of possible dyads. In addi-
tion to the known user-movie ratings, there also exists other pre-
dictive information such as demographic information about users,
movie content and other indicators of user-movie interactions, e.g.,
is the user’s favorite actor part of the movie cast? These predictive
factors can be represented as a vector of covariates xij associated
with user-movie dyad (i, j). Incorporating covariate information
in the predictive model may improve performance in practice. It
is also often the case that some latent unmeasured characteristics
that are not captured by these covariates induce a local structure
in our dyadic space (e.g., spatial correlations induced due to cul-
tural similarities). The main contribution of this paper is to show
that accounting for such local structures directly in the predictive
model along with information in the covariates often leads to better
predictions. In fact, the local structures in some cases may provide
additional insights about the problem and may lead to models that
are both accurate and interpretable.

The predictive problem discussed above is not specific to movie
recommendation systems and arises in several other contexts.(e.g.,
click rate estimation for webpage-ad dyads in internet advertis-
ing, estimating probabilities of a call between telephone dyads in
telecommunication networks, etc.) Prior work provide solutions
using both supervised and unsupervised learning approaches. The
supervised learning approach involves building a regression or a
classification model to predict the dyadic response yij solely as a
function of the available covariates xij . It has been well-studied
with considerable literature on selecting informative covariates and
obtaining bounds on the generalization error [18]. However, in gen-
eral, this approach disregards any local structure that might be in-
duced on the dyadic space due to other latent unmeasured factors.
In contrast, the unsupervised approach focuses exclusively on cap-
turing local structures in the response measurements on dyads. The
discovered latent structures (e.g., clusters, principal components)
provide insights about the interactions in the dyadic space which
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are useful in the absence of informative covariates. In fact, these
local structures provide a parsimonious model for succinctly cap-
turing the interactions in the dyadic matrix. However, since this
approach does not adjust for the effects of covariates, the resulting
latent structure may contain redundant information.

In this paper, we propose a statistical method that combines the
benefits of both supervised and unsupervised learning approaches;
we simultaneously incorporate the effect of covariates as in super-
vised learning and also account for any local structure that may be
present in the data as in unsupervised learning. To achieve this,
we model the response as a function of both covariates (captures
global structure) and a discrete number of latent factors (captures
local structure). Referring elements in the two sets that form the
dyads as rows and columns, our model assumes that the row and
column elements are separately assigned to a finite number of row
and column clusters (or factors). The cross-product of these row
and column clusters partition the dyadic matrix into a small num-
ber of rectangular block clusters; these provide an estimate of our
latent factors. The row-column decoupling strategy provides an
efficient algorithm to estimate latent structures by iteratively per-
forming separate row and column clusterings.

To provide further intuition about our method, we note that when
the assignments are exclusive (i.e., "hard") as opposed to proba-
bilistic (i.e., "soft"), each row and column is assigned to one and
only one row and column cluster respectively. This partitions the
dyadic matrix into a small number of rectangular blocks or co-
clusters. In this case, the covariate information and local struc-
tures are incorporated simultaneously by assuming that the mean
(or some function of the mean) of the response variable is a sum
of some unknown function of the covariates and a block-specific
constant; both of which get estimated from the data. We note that
for models solely based on covariates, the additional block-specific
constant that is extracted by our method is assumed to be part of
the noise model; by teasing out this extra information parsimo-
niously through a piecewise constant function, we provide a model
that may lead to better generalization in practice. Furthermore, the
estimated blocks and the corresponding constants are often repre-
sentative of some latent unmeasured factors that contributes to the
interactions seen in our dyadic matrix. For instance, cultural pref-
erences may cause users in a certain geographic region to provide
higher ratings to certain class of movies. The clusters obtained
from our method when subjected to further analysis and follow-ups
with domain experts may discover such patterns. Thus, our model
is both accurate in terms of predictions and interpretable in terms
of the clusters obtained.

To illustrate our methodology, we confine ourselves to the frame-
work of generalized linear models (GLMs), which provides a flexi-
ble class of predictive methods based on exponential families. This
class includes Gaussian, Poisson and Bernoulli distributions as spe-
cial cases. Further, for this special class of statistical models, we
model the latent factors through an approach that is related to co-
clustering using Bregman divergences. The key step in our method-
ology is to find a co-clustering that provides the best predictive per-

formance after adjusting for the covariates; this is accomplished
through an iterative model fitting process in the generalized EM
framework.

1.1 Key Contributions
This paper provides a predictive modeling approach for dyadic

data that simultaneously exploits information in the available co-
variates and the local structure present in the dyadic response ma-
trix. In particular, the current work makes the following key con-
tributions.

Exponential
PDF Natural Cumulant

Family parameter θ ψ(θ)

Gaussian 1√
(2πσ2)

e
−

(x−µ)2

2σ2 µ
σ

2 σ2

2
θ2

Poisson λxe−λ

x!
log λ eθ

Bernoulli px(1 − p)(1−x) log
“

p
1−p

”

log(1 + eθ)

Table 2.1: Examples of exponential families and associated pa-

rameters and cumulant functions. The natural statistic t(x) =
x for all three cases and σ is assumed to be constant.

• We present a novel method to model dyadic response as a
function of available predictor information and unmeasured
latent factors through a predictive discrete latent factor model

(PDLF hereafter).

• We provide a model-based solution in the framework of gen-
eralized linear models (GLMs), which constitute a broad and
flexible family of predictive models based on exponential
families. In fact, it includes the widely used least-squares re-
gression and logistic regression techniques as special cases.

• We propose a scalable, generalized EM-based algorithms for
“soft” and “hard” assignments, that are linear in the number
of non-zeros in the dyadic matrix. The algorithms generalize
several existing algorithms including GLM regression [16],
co-clustering using Bregman divergences [2], cross-association
learning [4], NPMLE [1], etc.

• We present an extensive empirical evaluation of our proce-
dure through simulation experiments, analysis of a publicly
available movie rating dataset, and illustrations on a real dataset
from an internet advertising application. We show that the
PDLF model provides better prediction results and additional
insights about the data in the form of highly interpretable
clusters or latent factors.

2. PRELIMINARIES

We begin with a brief review of (i) one parameter exponential
families, generalized linear regression models, and (ii) co-clustering
on dyadic data.

2.1 Exponential Families.
One-parameter exponential families provide a coherent frame-

work to study commonly occurring prediction problems with uni-
variate response. A random variable X with density f(x; θ) is said
to belong to a one-parameter exponential family if

f(x; θ) = exp(θt(x) − ψ(θ))p0(x) . (2.1)

Here, the unknown parameter (also called the natural parameter)
θ ∈ Θ; p0(x) is a probability measure that does not depend on θ;
ψ(θ) is the cumulant generating function of X1, t(x) is some func-

tion of x (in most examples, t(x) = x). In fact, E(t(X)) = ψ
′

(θ)

and V ar(t(X)) = ψ
′′

(θ). Table 2.1 shows three important exam-
ples of exponential distributions and the associated parameters and
cumulant functions.

1To keep the exposition simple, dispersion parameter is assumed to
be 1.
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GLM
Response Link Exponential

Type Function g(y) Family

Least-squares
y ∈ R y Gaussian

Regression

Poisson
y ∈ Z++ log(y) Poisson

Regression

Logistic
y ∈ {0, 1} log

“

y
1−y

”

Bernoulli

Regression

Table 2.2: Examples of generalized linear models for different

types of response variables.

2.2 Generalized Linear Models.
Generalized linear models (GLM) provides an abstract frame-

work to study classification and regression problems that are com-
monly encountered in practice. Least squares regression for contin-
uous response and logistic regression for binary response are spe-
cial cases. A GLM is characterized by two components.

(i) The distribution of the response variable Y belongs to a mem-
ber of the exponential family as defined in equation 2.1 with
examples provided in Table 2.1.

(ii) The mean µ(θ) = ψ
′

(θ) is some unknown function of the
predictor vector x, i.e., µ(θ) = g−1(x; β) for some unknown
vector β. The most common choice is to assume g is a func-
tion of xtβ. The function g which ensures that g(µ) is a linear
function of the predictors is often referred to as a link function
and the choice of g that ensures θ = x

tβ is called the canon-
ical link function. For instance, in the case of a Bernoulli
distribution, g(µ) = log(µ/(1 − µ)). Table 2.2 provides ex-
amples of canonical link functions for common exponential
family members. [16] provides an excellent introduction to
GLMs. Unless otherwise mentioned, we will only consider
canonical link functions in our subsequent discussions.

Thus, if the response Y follows a GLM, the conditional density
f(y; βt

x) of y given x depends on the unknown parameter β only
through the linear function βt

x. Although predictive methods
based on GLMs are in general effective, they fail to account for
unobserved interactions that are often present in dyadic data after
adjusting for the covariates; our method provides a solution to this
problem. Before proceeding further, we provide background mate-
rial on matrix co-clustering, which is closely related to our method.
In fact, our method captures unaccounted interactions by perform-
ing co-clustering in a latent space through a mixture model.

2.3 Matrix Co-clustering
Co-clustering, or simultaneous clustering of both rows and columns,

has become a method of choice for analyzing large and sparse data
matrices[15, 2] due to its scalability and has been shown to be ef-
fective for predicting missing values in dyadic data exploiting the
interactions that are often present in the observed response val-
ues. In particular, the Bregman co-clustering framework proposed
in [2], presents a formulation from a matrix approximation point
of view, wherein the row and column clusterings are chosen so
as to minimize the error between the original matrix Y and a re-
constructed matrix Ŷ (called the minimum Bregman information
matrix) that depends only on the co-clustering, and certain sum-
mary statistics of Y, e.g., co-cluster means. This formulation al-
lows the approximation error to be measured as the weighted sum
of element-wise Bregman divergence between the matrices Y and

Ŷ. This co-clustering formulation also permits an alternate inter-
pretation in terms of a structured mixture model as presented in
[17]. We briefly describe this connection.

For dyad (i, j), let ρ(i) and γ(j) denote the row and column
membership of the ith row and jth column respectively. We as-
sume the cluster ids for rows and columns belong to the sets {I :
I = 1, · · · , k} and {J : J = 1, · · · , l} respectively. Whenever
appropriate, I and J would be used as shorthand to mean ρ(i) = I
and γ(j) = J respectively. Now, consider a mixture model given
by

p(yij) =
X

I,J

p(I, J)p(yij |I, J) =
X

I,J

πI,Jfψ(yij ; θi,j,I,J)

(2.2)
where πIJ denotes the prior probabilities associated with the latent
variable pair (I, J) and θi,j,I,J is the corresponding natural param-
eter that could have additive structural constraints, e.g., θi,j,I,J =
θi + θj + θI,J (accommodates row, column and co-cluster inter-
actions) or θi,j,I,J = θI,J (accommodates only co-cluster inter-
actions). Using the bijection result between (regular) exponential
families and a special class of Bregman divergences [3] and the
projection theorem characterizing the optimality of minimum Breg-
man information matrix with respect to generalized additive models
in the natural parameter space [17], it can be shown that maximiz-
ing the log-likelihood of Y with respect to the appropriate choice
of the mixture model eqn. (2.2) is analogous to minimizing the re-
construction error in the Bregman co-clustering framework. The
mixture model, in general, results in soft cluster assignments and
is exactly equivalent to the “hard” Bregman co-clustering formula-
tion when the dispersion of the mixture components is assumed to
be zero.

We note that conditional on the latent variables ρ(i), γ(j), the
mixture model in eqn. (2.2) captures interactions through the block2

means; the main issue is to find an optimal clustering to adequately
explain the local structure in our data. Also, omitting covariates
may provide clusters that contain redundant information and in-
ferior predictive performance; hence, the need to simultaneously
adjust both for covariates and find an optimal clustering.

3. PREDICTIVE DISCRETE LATENT

FACTOR MODEL
In this section, we describe our predictive discrete latent fac-

tor (PDLF) model for dyadic response that simultaneously incor-
porates information in the covariates within the GLM framework
and accounts for unmeasured interactions via co-clustering meth-
ods. We also present a generalized EM algorithm to estimate the
model parameters which is guaranteed to monotonically increase
the marginal likelihood until it attains a local maximum.

Let Y = [yij ] ∈ R
m×n denote the response matrix and let

X = [xij ] ∈ R
m×n×s denote the tensor corresponding to s pre-

specified covariates with xij ∈ R
s. Further, let W = [wij ] ∈

R
m×n denote non-negative weights associated with the observa-

tions in Y.3

Given k×l blocks (I, J) with prior probabilities πIJ , the marginal
distribution of response given covariates is given as

p(yij |xij) =
X

I,J

πIJfψ(yij ; β
t
xij + δI,J), [i]m1 [j]n1 , (3.3)

2Henceforth, we refer to each mixture component as a block to
maintain the analogy with the hard assignment case.
3In our examples, this is set to 1 for a valid observation and 0 for
missing ones.
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where fψ is an exponential family distribution with cumulant ψ(·),
β ∈ R

s denotes the regression coefficients associated with the pre-
specified covariates, πIJ denotes the prior and δI,J denotes the in-
teraction effects associated with the block (I, J). Writing θij,IJ =
βt

xij + δI,J and comparing with eqn. (2.2), we see the difference
between the usual co-clustering models and PDLF. The latter is a
richer class which performs co-clustering on the residuals after ad-
justing for the effect of covariates. Furthermore, the estimation of
covariate effects and co-cluster means on the residuals are carried
out simultaneously; the usual practice of detrending the data first to
remove covariate effects and clustering the residuals may provide
suboptimal results since the effects are not orthogonal. We note
than an alternate way of forming a mixture distribution that is often
pursued in the statistics literature is through a semi-parametric hi-
erarchical model wherein g(µij) = βt

xij + δij , and δijs follow a
clustering model, namely, a mixture of distributions. For instance,
if yij |δij ∼ N(βt

xij + δij , σ
2) and δij ∼

Pk

i=1 πiN(µi, τ
i),

the marginal distribution of yij is a mixture of Gaussians given

by
Pk

p=1 πkN(βt
xij + µp, σ2 + τp) which is structurally simi-

lar to eqn. (3.3). However, such an approach does not exploit the
special structure of the dyadic data which is done by the block
model in eqn. (3.3). In particular, the block model assumes that
block membership of dyadic elements can be completely specified
in terms of row and column memberships in the corresponding row
and column clusters respectively. This is the key feature of our
method which makes it scalable; we express a two-dimensional
clustering problem in terms of two iterative one dimensional clus-
terings. In fact, the co-clustering method could viewed as a process
that iteratively clusters rows and columns; clustering on columns
has a smoothing effect which enhances row clustering and vice
versa. More specifically, there exist latent variables ρ(i) and γ(j)
attached to the ith row and jth column which take values in the
cluster membership sets {I : I = 1, · · · , k} (row clusters) and
{J : J = 1, · · · , l} (column clusters). Thus, each observation is
assumed to have been generated from a mixture distribution with
k× l components, each of which corresponds to a particular choice
of (I, J). Further, the mean function of each component distribu-
tion includes a term that models the dependence of response on co-
variates. Thus, the dyads (i, j) are assigned to blocks (I, J) (frac-
tional for soft clustering, degenerate for hard clustering) and within
each block, the mean is some global function of the covariates, but
adjusted by block-specific off-sets {δI,J}. Hence, we capture the
local structure using a piecewise constant function with the row and
cluster assignments imposing a block structure and simplifying the
computations.

3.1 Generalized EM Algorithm.
We present a generalized EM algorithm to fit the mixture model

in eqn. (3.3) to the data. Throughout, θij,IJ = βt
xij + δI,J .

Assuming the observations are all generated from eqn. (3.3) with
weights given by W, the incomplete data log-likelihood is given
by

L(β, ∆, Π) =
X

i,j

wij log(p(yij))

=
X

i,j

wij log(
X

I,J

πIJfψ(yij ; θij,IJ )) (3.4)

where β, ∆ = {{δIJ}
k
I=1}

l
J=1 and Π = {{πIJ}

k
I=1}

l
J=1 denote

the model parameters. As in the case of simple mixture models,
this data log-likelihood is not a convex function of the parameters
(β, ∆, Π) and cannot be readily optimized.

To facilitate maximization of log-likelihood defined in eqn. (3.4),
we consider a complete data likelihood obtained by augmenting
{yij}ij with the latent variables {ρ(i)}i and {γ(j)}j . Following
the analysis in [19], we consider the free-energy function, which is
defined as the sum of the expected complete log-likelihood and the
entropy of the latent variables with respect to an arbitrary distribu-
tion p̃({ρ(i)}i, {γ(j)}j).

Since {yij}ij are conditionally independent given the cluster as-
signments, which are themselves independent for {ρ(i), γ(j)}ij

for different values of (i, j), it suffices to assume that

p̃({ρ(i)}i, {γ(j)}j) =
Y

ij

p̃ij(ρ(i), γ(j)) .

Then, the free-energy function is given as

F (β, ∆, Π, p̃) =
X

ij

wijEp̃ij [log p(yij , ρ(i), γ(j))] +

X

ij

wijH(p̃ij), (3.5)

where Ep̃ij [log p(yij , ρ(i), γ(j))] =
P

IJ p̃(I, J) log(πIJfψ(yij ;
θij,IJ)) and H(p̃ij) = −

P

IJ p̃ij(I, J) log(p̃ij(I, J)).
As proved in [19], EM procedure can also be viewed as a greedy

maximization approach where one alternates between maximizing
F w.r.t. β, ∆, Π for a fixed p̃ (call it the M-step) and maximiz-
ing p̃ for a fixed β, ∆, Π (call it the E-step). This formulation
of the EM algorithm leads to alternative maximization procedures.
For instance, in our case, optimizing p̃ in terms of either {ρ(i)}i

or {γ(j)}j holding the other fixed and alternating with the M-
step would still increase the marginal likelihood at every iteration.
In fact, the value of p̃ which maximizes F for fixed β, ∆, Π is
P ({ρ(i), γ(j)}ij |{yij}ij , β, ∆, Π) =

Q

ij P (ρ(i), γ(j)|yij , β,

∆, Π), where

P (ρ(i) = I, γ(j) = J |yij , β, ∆, Π) ∝ πIJfψ(yij ; θij,IJ )wij .

This forms the basis of the classical EM algorithm in the context
of mixture models but is too slow in practice for our problem, es-
pecially when the number of {yij} gets large. To expedite com-
putations, we confine ourselves to the class of p̃ij that factorize as,
p̃ij(ρ(i), γ(j)) = p̃i(ρ(i))p̃j(γ(j)) in our generalized EM proce-
dure. This implicitly assumes that ρ(i) and γ(j) are independent
a-posteriori, an approximation that approaches the true posterior as
the joint posterior of ρ(i), γ(j) approaches degeneracy. The com-
plete steps of the algorithm are given in table 1 and can be executed
in any order. Under mild conditions, it can be shown that each of
these steps monotonically increase the free energy function, with
at least one step resulting in a strict increase, till a local optimum
is attained. In particular, steps 4 and 5 in Algorithm 1 provide an
iterative clustering scheme whereby rows are clustered exploiting
the column clustering already obtained and vice versa. This charac-
teristic of being able to assign each observed dyadic measurement
to a block through a sequence of row and column clusterings is the
key feature that makes our algorithm scalable and converge fast.

The generalized EM approach in Algorithm 1 provides closed
form updates for the prior block probabilities {πIJ} and also the
row and column cluster assignments, each of which only requires
a computation time of O(Nkl) per iteration, where N denotes the
number of observations in Y (i.e., elements such that wij �= 0).
The regression coefficients β and interaction effects ∆, in general,
do not have closed form updates, but can be readily computed us-
ing convex optimization methods such as the Newton-Raphson’s
method. In fact, since the generalized EM algorithm does not re-
quire an exact optimization over each argument [10], it is sufficient
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Algorithm 1 Generalized EM Algorithm for PDLF Model

Input: Response matrix Y = [yij ] ∈ R
m×n with measure W = [wij ] ∈

[0, 1]m×n, covariates X = [xij ] ∈ R
m×n×s, exponential family with

cumulant ψ, num. of row clusters k and num. of row clusters l.
Output: Regression coefficients β, Implicit interaction effects ∆, Mixture

component priors Π, latent variable assignments p̃ that (locally) optimize
the objective function in eqn. (3.5).

Method:

Initialize with arbitrary latent variable assignments p̃
repeat

Generalized M-Step

Step 1: Update Priors: ∀ [I]k1 , [J ]l1,

πIJ ←
X

ij

wij p̃i(I)p̃j(J)

Step 2: Update Interaction Effects: ∀ [I]k1 , [J ]l1

δIJ ← argmax
δ

X

ij

wij

X

IJ

p̃i(I)p̃j(J)
`

yijδIJ − ψ(βt
xij + δIJ )

´

Step 3: Update Regression Coefficients:

β ← argmax
β

X

ij

wij

X

IJ

p̃i(I)p̃j(J)
`

yijβt
xij − ψ(βt

xij + δIJ )
´

Generalized E-Step
Step 4: Update Row Cluster Assignments: ∀ [i]m1 , [I]k1 ,

p̃i(I) ← ci

0

@

Y

j,J

`

πIJfψ(yij ; β
t
xij + δIJ )

´wij p̃j(J)

1

A

1
wi

where ci is a normalizing factor s.t.
P

I p̃i(I) = 1 and wi =
P

j wij .

Step 5: Update Column Cluster Assignments ∀ [j]n1 , [J ]l1,

p̃j(J) ← cj

0

@

Y

i,I

`

πIJfψ(yij ; β
t
xij + δIJ )

´wij p̃i(I)

1

A

1
wj

where cj is a normalizing factor s.t.
P

J p̃j(J) = 1 and wj =
P

i wij .
until convergence

return (β, ∆, Π, p̃)
Predictive distribution for (i, j):

P

IJ p̃i(I)p̃j(J)fψ(.; βtxij+δIJ)

to perform a few iterations of the Newton-Raphson’s method, each
of which requires a computation time of O(N(kl + s2)). Thus, as-
suming a constant number of iterations, the overall algorithm only
requires a computation time that is linear in the number of observa-
tions. For special cases such as Gaussian and Poisson distributions,
it turns out that the interaction effects ∆ can be computed in closed
form as in Table 3.3. This is possible due to the functional form
of the cumulant which is given by ψ(x) ∝ x2 for Gaussian and
ψ(x) ∝ exp(x) for the Poisson. For the Gaussian, the regres-
sion coefficients β can also be computed in closed form using a
weighted least squares regression on the residuals yij − δIJ .

4. HARD ASSIGNMENT PDLF MODEL

In this section, we analyze a special case of our latent factor
model where each row (column) is exclusively assigned to a sin-
gle latent factor, i.e., a row (column) cluster, and describe a highly
scalable algorithm for this setting.

For the special case corresponding to hard assignments, the la-
tent factor model in eqn. (3.3) can be expressed as

p(yij |xij , ρ, γ) = fψ(yij ; β
t
xij + δρ(i),γ(i)), [i]m1 [j]n1 , (4.6)

where the ijth element is assigned exclusively to the block (ρ(i), γ(j)).

For every block (I, J), let X
latentI,J

denote a binary-valued co-
variate that indicates if a dyad belongs to the IJth block, i.e.,

xlatent
ij

I,J
= 1, when I = ρ(i), J = γ(j)

= 0, otherwise.

We can now express the PDLF model in eqn. (4.6) as a generalized

linear model over the initial set of covariates X ∈ R
m×n×s and

new set of latent covariates X
latent ∈ R

m×n×kl associated with
the k × l co-clusters, i.e.,

p(yij |xij ,x
latent
ij ) = fψ(yij ; β

t
xij + ∆t

x
latent
ij ), [i]m1 [j]n1 ,

(4.7)
with ∆ being the coefficients of the covariates X

latent. However,

unlike in a simple generalized linear model, the covariates X
latent

are not known beforehand. Hence, the learning procedure in this
case, involves two steps:

(a) Discovering the “most informative” set of latent covariates of
a specific form (binary-valued indicators of disjoint blocks of
the response matrix), i.e., the best co-clustering (ρ, γ).

(b) Fitting a GLM over the combination of covariates in X and
X

latent.4

The above two steps, in fact, correspond to the generalized EM
steps in Algorithm 1. To see the connection, consider the free en-
ergy function in eqn. (3.5). Since each row (column) is exclusively
assigned to a single row (column) cluster, the conditional entropy
term vanishes and there is also no dependency of the assignments
on the priors of the mixture components. Hence, the free energy
function (up to an additive constant) for the hard assignment case
is given by

F hard(β, ∆, ρ, γ) =
X

ij

wij log fψ(yij ; β
t
xij + δρ(i),γ(j))

=
X

ij

wij log fψ(yij ; β
t
xij + x

latent
ij

t
∆)

= F hard(β, ∆,xlatent
ij ) . (4.8)

As in the case of the general PDLF model in eqn. (4.6), the above
objective function can be optimized by a repeatedly maximizing
over the parameters β, ∆ and the cluster assignments (ρ, γ) (i.e.,
latent covariates X

latent) until a local maximum of the likelihood
function is attained. Algorithm 2 shows the detailed updates for
this case.

Note that for any exponential family distribution fψ , the update
steps for the regression coefficients β and interaction effects ∆ in
Algorithm 2 can be combined into a single GLM regression. Since
each row (column) is assigned to single row (column) cluster, the
cluster assignments can also be performed quite efficiently requir-
ing a computation time of only O(N(k + l)) per iteration.

4Note that we need to ensure that the covariates in [X,Xlatent] are
linearly independent, possibly by excluding some of the co-cluster
covariates, in order that the model is not over-parameterized.
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Exponential β Update ∆ Update
Family

Gaussian Single least-squares regression δIJ ← 1
πIJ

P

i,j wij p̃i(I)p̃j(J)(yij − βt
xij), [I]k1 , [J ]l1

Poisson Newton-Raphson’s method δIJ ← log

„

P

i,j wij p̃i(I)p̃j(J)yij
P

i,j wij p̃i(I)p̃j(J)βtxij

«

, [I]k1 , [J ]l1

Bernoulli Newton-Raphson’s method Newton-Raphson’s method

Table 3.3: Update steps for the regression coefficients and interaction effects for important special cases.

Algorithm 2 Hard PDLF Algorithm

Input: Response matrix Y = [yij ] ∈ R
m×n with measure W = [pij ] ∈

[0, 1]m×n, covariates X = [xij ] ∈ R
m×n×s, exponential family with

cumulant ψ, num. of row clusters k and num. of row clusters l.
Output: Regression coefficients β, implicit interaction effects ∆, hard latent

variable assignments (ρ, γ) that (locally) optimize the objective function
in eqn. (4.8).

Method:
Initialize with arbitrary latent variable assignments (ρ, γ)
repeat

Generalized M-Step
Step 1: Update Interaction Effects: ∀ [I]k1 , [J ]l1,

δIJ ← argmax
δ

X

i∈I,j∈J

wij

`

yijδ − ψ(βt
xij + δ)

´

Step 2: Update Regression Coefficients:

β ← argmax
β

X

ij

wij

`

yijβt
xij − ψ(βt

xij + δρ(i)γ(j))
´

Generalized E-Step

Step 3: Update Row Cluster Assignments: ∀ [i]m1 ,

ρ(i) ← argmax
I

0

@

X

j

wij(yijδIγ(j) − ψ(βt
xij + δIγ(j)))

1

A

Step 4: Update Column Cluster Assignments: ∀ [j]n1 ,

γ(j) ← argmax
J

 

X

i

wij(yijδρ(i)J − ψ(βt
xij + δρ(i)J ))

!

until convergence

return (β, ∆, ρ, γ)
Predictive Distribution for dyad (i, j): fψ(.; βt

xij + δρ(i)γ(j))

4.1 Special Cases: GLM and Block
Co-clustering

Since the PDLF model combines ideas from GLMs and co-clustering,
one would naturally expect these two methods to be special cases
of the generalized EM algorithm for PDLF.

GLM. When k = l = 1, the entire dyadic space forms a single
co-cluster so that there do not exist any latent covariates. Hence,
the model in eqn. (4.7) reduces to a simple GLM.
Co-clustering. In the absence of pre-specified covariates, the free
energy function (up to an additive constant) in eqn. (4.8) reduces to

F hard(∆, ρ, γ) =
X

ij

wij log fψ(yij ; δρ(i),γ(j)) . (4.9)

Using the bijection between regular exponential families and Breg-

man divergences [3], we can further rewrite it as

F hard(∆, ρ, γ) = −
X

ij

wijdφ(yij , ŷρ(i),γ(j)) , (4.10)

where dφ is the Bregman divergence corresponding to the Legen-
dre conjugate of ψ and ŷρ(i),γ(j) = ψ′(δρ(i),γ(j)). The likelihood
maximization problem can now be cast as minimizing the matrix
approximation error with respect to the original response Y using
a simple reconstruction based on block co-clustering (i.e., basis C2

in [2]).

5. EMPIRICAL EVALUATION
In this section, we provide empirical evidence to highlight the

flexibility and efficacy of our PDLF approach. First, we describe
controlled experiments on simulated data to analyze the predic-
tive performance of our algorithms relative to other existing ap-
proaches. Then, we present results on real-world datasets for movie-
recommendations (MovieLens)[9] and ad click-analysis (Yahoo!
internal dataset) to demonstrate the benefits of our approach for
a variety of learning tasks such as relevance classification, imputa-
tion of continuous missing values and feature discovery.

5.1 Simulation Studies on Gaussian Models
We first study the performance of our predictive modeling al-

gorithms (Algorithms 1 and 2) on synthetic data generated from
PDLF, and some simpler special cases of PDLF described in ta-
ble 5.4.

Data Simulation. To choose realistic parameters for the genera-
tive models, we analyzed a subsample of the MovieLens dataset
consisting of 168 users, 197 movies and 2872 ratings (response
variable) as well as attributes based on user demographics (e.g.,
age/gender/occupation) and movie genres (e.g., science-fiction).
From this dataset, we obtained four important covariates and com-
puted the corresponding linear regression coefficients (i.e., β) us-
ing a Gaussian linear model for the ratings. We also independently
co-clustered the response matrix (assuming k = l = 5) with-
out using the covariate information to obtain co-clusters, reason-
able values for the co-clusters priors π, the row/column effects (say
µ ∈ R

m and ν ∈ R
n), and the co-cluster interaction effects (i.e.,

∆). We consider five generative models based on various combina-
tions of these parameters as shown in Table 5.4. In each case, we
simulated 200 datasets from the model.5

5.1.1 Model Recovery using Soft and Hard Assign-
ments.

For our first experiment, we used the 200 datasets generated from
the PDLF model, i.e., the mixture of generalized linear models M1.
Our goal here is two-fold: a) To provide a sanity check on the PDLF
model by fitting it to data where it should work and b)To compare

5The data and the models can be downloaded from
http://www.lans.ece.utexas.edus̃rujana
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Model
Parameter Appropriate
Constraints Algorithm

M1 none Soft PDLF Algorithm

M2 µ = 0, ν = 0, ∆ = 0 Linear Regression

M3
∆ = 0 Linear Regression

with row/col effects

M4 β = 0, µ = 0, ν = 0 Co-clustering

M5
β = 0, Co-clustering

with row/col effects

Table 5.4: Generative models used for simulation studies

the effectiveness of the generalized EM (or “soft”) algorithm (Al-
gorithm 1) and the one that uses hard assignments (Algorithm 2) in
estimating the true model parameters.

To each simulated data, we applied the PDLF algorithms corre-
sponding to Gaussian distributions with k = l = 5. To avoid local
optima, for each dataset, we repeated the algorithm with five differ-
ent initializations and picked the best overall solution (we did not
initialize with the true cluster assignments or true parameter values
that were used in the simulations.) Table 5.5 show the true values
of the covariate coefficients β and the 95% confidence intervals for
the soft and hard PDLF algorithms. From the results, we observe
that the true β values always lie in the 95% confidence interval for
both the algorithms providing a sanity check on our code, model
formulation and algorithms. In comparing the soft and hard PDLF
algorithm, while the β values are similar (hard PDLF tends to have
slightly higher variation in estimating β), the dispersion parameter
or variance of the Gaussian distribution is underestimated by hard
PDLF providing evidence of overfitting. The 95% confidence in-
tervals for σ2 obtained from the soft PDLF algorithm includes the
truth. To avoid the overfitting problem with hard PDLF, we imple-
mented a hybrid PDLF whereby we start out with a soft PDLF but
switch to the hard one after a few iterations. say that this amelio-
rates the situation to some extent; recommended strategy if possible
to implement.

Algo β0 β1 β2 β3 β4 σ2

True 3.78 0.51 -0.28 0.14 0.24 1.16

Soft (3.69,3.84) (-0.31,0.71) (-0.52,-0.19) (-0.05,0.17) (-0.64,1.04) (1.14,1.27)

Hard (3.66,3.84) (-0.63,0.62) (-0.58,-0.16) (-0.09,0.18) (-0.68,1.05) (0.90,.99)

Table 5.5: 95% quantiles of the β values estimated using the

“soft” and “hard” PDLF algorithms.

5.1.2 Robustness of PDLF Model.

Next, we consider the various special cases of the PDLF model
in eqn. (4.6) that arise from disregarding the contributions of the
covariates, row/col effects or the interaction effects as listed in Ta-
ble 5.4. For each of these models, there exists a simpler learning
approach that captures the associated structural assumptions. In
this experiment, we study the predictive performance of our PDLF
algorithm when data is generated from a simpler model. This pro-
vides an assessment of robustness and overfitting properties of the
PDLF model. Table 5.6 shows the prediction error 6 (mean square
error with five-fold cross validation) using different algorithms on
data generated from models M1 − M5. From the table, we ob-
serve that for each model, the test error using the PDLF algorithm
is comparable to that of the special case algorithm appropriate for
the model. This provides evidence on the robustness of the PDLF

6Note that it is not fair to compare the log-likelihood or training
error since the different algorithms involve varying number of pa-
rameters.

model. In fact, it shows that the presence of a few irrelevant fea-
tures does not hurt the performance of PDLF and makes it a general
tool to analyze dyadic response data.

Algorithm Mean Sq. Error

Soft PDLF 0.7175 ± 0.0030

Linear Regression 0.7221 ± 0.0031

Linear Regression with row/col effects 0.7332 ± 0.0032

Co-clustering 0.7252 ± 0.0031

Co-clustering with row/col effects 0.7316 ± 0.0032

Table 5.7: Prediction error (mean square error with 5-fold

cross-validation) using different algorithms with partial covari-

ate information. k = l = 5 where applicable.

5.2 Case Study 1: Relevance Classification
using Logistic Model

In this study, we explore the benefits of our approach for rel-
evance classification, which involves predicting a binary response
(relevant or not) given a pair of objects that can be interpreted as the
rows and columns of the response matrix. There are two objectives
in conducting this experiment: a)We show an application of PDLF
for binary response and b) We show that combining covariate in-
formation and modeling local structure leads to better predictive
performance relative to methods that do not account for both these
information simultaneously.

For our experiments, we used a subset of the MovieLens dataset
consisting of 459 users, 1410 movies and 20000 ratings (range 1-5)
as well 23 attributes based on user demographics/movie genres and
their interactions. We binarized the response variable by choosing
ratings > 3 as relevant and ratings ≤ 3 as not relevant. To pre-
dict this binary-valued response, we consider a PDLF model based
on Bernoulli (or logistic) distributions. For scalability, we restrict
ourselves to the hard PDLF algorithm (Algorithm 2) with a fairly
small number of row/column clusters k = l = 5. To evaluate our
approach, we compare it against two methods that have been pre-
viously used to analyze this data: a) Logistic regression which is a
supervised learning method that only incorporates covariate effects
and b) cross-association learning [4] which is an unsupervised ap-
proach to learn a dyadic matrix consisting of binary response vari-
able for prediction purposes. Table 5.8 shows the misclassification
error and Figure 5.1 shows the precision-recall curves obtained us-
ing the different methods. We find better performance with PDLF,
proving the benefit of simultaneously incorporating both covariate
and cluster information for building effective predictive models for
dyadic data.

Baseline
Logistic Cross PDLF

Regression Associations

0.44 ± 0.0004 0.41 ± 0.0005 0.41 ± 0.007 0.37 ± 0.005

Table 5.8: Misclassification error (5-fold cross-validation) on

MovieLens data. We choose k=l=5 for the both PDLF and

cross-association learning.

5.3 Case Study 2: Imputation of Missing
Values using Gaussian Model

This experiment focuses on the case where the dyadic response is
continuous and the learning task can be viewed as predicting miss-
ing values in a matrix. We used the same MovieLens dataset as in
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Model Soft PDLF Linear Linear Regression Co-clustering Co-clustering

Regression with row/col effects with row/col effects

M1 1.1436 ± 0.0047 1.1496 ± 0.0046 1.1488 ± 0.0050 1.1566 ± 0.0049 1.1520 ± 0.0043

M2 0.7172 ± 0.0030 0.7193 ± 0.0030 0.7178 ± 0.0030 0.7286 ± 0.0030 0.7290 ± 0.0032

M3 0.7178 ± 0.0034 0.7199 ± 0.0029 0.7191 ± 0.0029 0.7312 ± 0.0029 0.7337 ± 0.0032

M4 1.1357 ± 0.0050 1.1485 ± 0.0045 1.1408 ± 0.0048 1.1327 ± 0.0048 1.1426 ± 0.0049

M5 1.1456 ± 0.0044 1.1497 ± 0.0047 1.1471 ± 0.0049 1.1458 ± 0.0046 1.1448 ± 0.0048

Table 5.6: Prediction error (mean square error with 5-fold cross validation) using different algorithms on data generated from

models M1 − M5. k = l = 5 where applicable

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n

 

 

Regression

Co−clustering

LatentFactor

Figure 5.1: Precision-recall curves on MovieLens data. We

choose k=l=5 for the both PDLF and cross-associations learn-

ing.

first case study. Since most of the existing techniques for address-
ing this task such as singular value decomposition(SVD) [8], non-
negative matrix factorization(NNMF) [13] and correlation-based
methods [23] implicitly assume a Gaussian generative model, we
transformed the response, i.e., the rating values using ynew =

p

(6−
y) to eliminate the skew and make the distribution more symmetric
and close to Gaussian.

To predict this response, we use the hard PDLF algorithm (Al-
gorithm 2) for Gaussian distributions with both row and column
clusters set to 5; in addition we used covariates to account for the
row and column effects. Table 5.9 shows the mean absolute er-
ror in the predictions (after inverse transformation) obtained using
PDLF, k-rank SVD (k = 5), k-rank NNMF (squared loss, k = 5)
bias adjusted co-clustering(COCLUST) (scheme C5,squared loss,
k = l = 5) and simple linear regression (LINREG).

PDLF LINREG COCLUST SVD NNMF

0.80 ± 0.006 0.81 ± 0.006 0.83 ± 0.005 0.84 ± 0.004 0.83 ± 0.007

Table 5.9: Mean absolute error (5-fold cross-validation) on

MovieLens data. We choose k=l=5 for the both PDLF and co-

clustering and k=5 for SVD and NNMF.

As in the previous logistic regression example, we find that the
PDLF model provides better predictive performance due of its flex-
ibility to discover special clusters that have information not con-
tained in the available covariates. For example, the PDLF model
discovers a cluster containing not so well-known movies released
in 1930’s (shown in Table 5.10) while the co-clustering algorithm()
without covariates only discovers groups that are predominantly
characterized by the genre and rating levels, e.g. classic oscar-
winning dramas. This demonstrates that other than providing ac-
curate predictions, PDLF discovers clusters that are more informa-
tive.

Movies from the 30’s Oscar winning dramas

(Sample movie cluster —PDLF ) (Sample movie cluster —COCLUST)

Lost Horizon (1937) Dead Man Walking
My Man Godfrey (1936) Braveheart

Gay Divorcee, The (1934) Dances with Wolves
Bride of Frankenstein (1935) Godfather, The

Duck Soup (1933) Silence of the Lambs, The

Table 5.10: Examples of movie clusters obtained using PDLF

and direct co-clustering.

Cluster Id Web-site clusters Ip-domain clusters

(rows) (columns)

1 shopping/search Most non-clicking ips/US
2 popular shopping/search aol/unknown/
3 aol/yahoo educational/European
4 Most websites Japanese
5 smaller portals Korean

Table 5.11: Web-site and ip-domain clusters obtained using

plain co-clustering

5.4 Case Study 3: Feature Discovery using
Poisson Model

This experiment illustrates the utility of the proposed methodol-
ogy for discovering hidden covariates. Specifically, we consider the
task of predicting the number of times an ad served on a web-site is
clicked from an ip (or ip-domain), which is useful for monitoring
click volume and other related applications. For our experiment,
we used a dataset consisting of 47903 ip-domains, 585 web-sites
and 125208 ip-website dyads with click-counts and two covariates,
ip-location and routing type. Since we deal with count data, we em-
ploy a PDLF model based on a Poisson distribution with k = l = 5.
Similar to the earlier experiment, additional covariates that adjust
for row(ip) and column(website) effects are also included. As in
the previous two experiments, the predictive performance of the
hard PDLF algorithm, measured in this case by I-divergence be-
tween observed and predicted (shown in Table 5.13) is better than
a straightforward Poisson regression or the information-theoretic
co-clustering [6] approach.

The clusters from the PDLF algorithm were rigorously analyzed.
Figure 5.2 shows the co-clusters obtained before and after adjusting
for the covariates and the row/column effects and the corresponding
interaction effects. On examining the first co-clustering, we find
that co-clusters (shown in Table 5.11) identify a number of highly
predictive factors including the ip-domain location. In contrast, the
PDLF approach reveals co-clusters (shown in Table 5.12 with a
different set of interactions. In particular, the ip-domain clusters
are no longer correlated with location and identify other interesting
characteristics such as whether an ip-domain is a telecom company
(column cluster 5) or a software/tech company (column cluster 3),
which respectively happen to have positive interactions with inter-
net portals (row cluster 4) and web media (row cluster 1).

Research Track Paper

33



Cluster Characteristic Examples

Web-site cluster 1 Web Media usatoday, newsgroups
Web-site cluster 4 Online Portals msn, yahoo

Ip-domain cluster 3 Tech companies agilent.com, intel.com
Ip-domain cluster 5 Telecom companies sbcglobal.net, comcastbusiness.net

Table 5.12: Examples from web-site and ip-domain clusters ob-

tained using PDLF.

From Section 4, we observe that the newly identified co-clusters
can, in fact, be treated as new covariates allowing us to perform fea-
ture selection to obtain a model which generalize better. Table 5.13
(last column) shows that the predictive accuracy improves slightly
after we eliminate some of the co-cluster based covariates.

PDLF
Linear COCLUST PDLF with

Regression feature selection

54.09 ± 6.76 72.21 ± 0.94 77.72 ± 7.65 52.12 ± 2.44

Table 5.13: I-divergence loss (5-fold cross-validation) on click-

count dataset. We choose k=l=5 for the both PDLF and co-

clustering.
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Figure 5.2: Co-clusters obtained using direct information-

theoretic co-clustering and the hard PDLF method and the cor-

responding interaction effects.

The proposed algorithm is quite efficient and can execute a single
run of the algorithm (30 iterations) on this moderate sized dataset
in about 40s in Matlab on a 1.86GHz Pentium M with 1GB RAM.

To briefly summarize the findings of this section. We provide
sanity checks and a comparative analysis of soft and hard versions
of PDLF through large scale simulations. We show both versions of
the algorithm perform well with the hard version having a tendency
to slightly overfit. We show that PDLF is robust in cases where a
few covariates are not predictive and/or there is no local structure
present in the data.

We conduct experiments on a publicly available MovieLens dataset
using a logistic and Gaussian response model. We compare PDLF
with existing supervised and unsupervised approaches that have
been used to analyze this data and find superior performance. We

also show that the clusters obtained from PDLF after adjusting for
covariate effects are more informative. Finally, we conduct co-
clustering analysis on a new real world dataset that is obtained from
an application in internet advertising. The response variable in this
case are click counts, hence we demonstrate PDLF on a Poisson
model. This experiment is conducted on a much larger dataset and
demonstrates the scalability of PDLF. Here again, simultaneous in-
clusion of both covariates and latent factors provides better perfor-
mance relative to cases which does not include both. In fact, the
cluster obtained for this experiment after adjusting for covariates
are much more informative; the ones obtained without adjusting
for covariates contain redundant information.

6. RELATED WORK
In this section, we briefly discuss how our PDLF model is related

to existing literature in the machine learning and statistics commu-
nities. Our current work is primarily related to two active areas of
research, namely (i) latent factor modeling of dyadic data, and (ii)
hierarchical random effects modeling.

Latent Factor Modeling. In recent years, considerable research
has been done on unsupervised learning methods in the context of
dyadic data. Most methods of similar flavor such as singular value
decomposition [8], non-negative matrix factorization [13],proba-
bilistic latent semantic analysis [12], cross-association learning [4],
Bregman co-clustering [2] are matrix approximation techniques,
which impose different constraints on the latent structure depend-
ing on the choice of loss function. Among these approaches, co-
clustering methods [15] based on iterative row and column cluster-
ing, have become popular due to their scalability. For a detailed
survey on co-clustering methods, we refer the reader to [15]. We
note that none of these methods make use of additional covariates
for modeling the response as we do in our PDLF model.

Recently, Long et al. [14] proposed a relational summary net-
work (RSN) model for clustering over k-partite graphs describ-
ing relations between k classes of entities. The RSN model con-
siders not only pairwise interactions, but also allows for intrinsic
attributes (covariates) associated with each entity. For the case
k = 2, the data model associated with RSN (i.e., dyadic response
and row/column predictors) is a special case of our data model.
However, the RSN algorithm uses covariates only to influence the
co-clustering, which is later used for predictive inference instead
of directly leveraging the information contained in them. An im-
portant fact to note here is that in the RSN approach, the row and
column clusters are chosen so as to be similar not only in terms of
the associated dyadic responses, but also the associated covariates
values, whereas in our approach, the co-clusters are forced to be
maximally predictive of the response given the covariates.

Random Effects Modeling. The proposed PDLF model can
also be interpreted as a statistical model that approximates local
structure via a piecewise constant function in case of hard assign-
ments. The mixture model formulation helps in smoothing out
edge-effects in a hard cluster assignment model and provides bet-
ter performance. An alternate strategy that has been widely used
in the statistics literature provides a more continuous approxima-
tion through a hierarchical random effects model [22]. However,
such models are mainly used for explanatory analysis and are not
well suited for prediction tasks. Models similar to ours have been
studied for small problems in one dimension [1]. More recently,
[20] proposed a block model for binary dyadic data which models
incidence matrices in social networks where both row and column
elements are the same. However, their method does not incorpo-
rate covariates and was illustrated only on a small dataset. Another
model of similar nature was proposed by [7] for spatial data. This
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method employs a one-dimensional discrete cluster model where
the cluster assignment variables are modeled using a Potts alloca-
tion model.

Other Work. In the context of recommender systems, [21]
considered combining information in the local structure of prefer-
ence ratings as well as demographic and content-based covariates
using an ensemble-based approach. This ensemble method, how-
ever, does not leverage the full potential of the underlying local
structure and is not as interpretable as the PDLF model. Our cur-
rent work is also related to recent work [5] on goal oriented or pre-
dictive clustering, which uses a bottleneck-like method, where the
rows are clustered to retain maximal information about the dyadic
response. Unlike our method, this approach only involves single-
sided clustering and does not take into account additional covariates
that might be available.

7. CONCLUSION
To summarize, our current work provides a fairly general and

scalable predictive modeling methodology for large, sparse, dyadic
data that simultaneously combines information from the available
covariates and discovers local structure by using a statistical model-
based approach that combines ideas from supervised and unsuper-
vised learning. We prove the efficacy of our approach through sim-
ulation, analysis on a publicly available dataset and a new dataset
in the domain of internet advertising. We find better predictive per-
formance relative to simpler models and other existing approaches;
we also demonstrate the interpretability of our approach by discov-
ering meaningful clusters in our example datasets.

The hard PDLF approach, although scalable and fairly accurate
in practice, showed signs of overfitting in our simulation experi-
ments. We are currently exploring a hybrid algorithm which start
with a hard PDLF, but switches to a soft PDLF after a few itera-
tions. As is in the case of other statistical approaches, model and
feature selection are critical to the predictive performance and these
issues need to be further explored. We showed that our discrete la-
tent factor model provide good approximations to account for the
missing factors. However, this may involve choosing large values
of k and l. An alternate strategy would be to work with a continu-
ous latent factor model where the interactions are modeled through
a distance function. Such strategies have been pursued recently for
social network data [11]; generalization to dyadic data with ele-
ments obtained from two different sets is challenging. Although
the current work focuses on predictive discrete latent factors based
on generalized linear models, in principle, the proposed method-
ology could apply to non-linear predictive models where the mean
is modeled using non-parametric methods like generalized additive
models, splines, etc., but requires further investigation.
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