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Abstract. Domain adaptation (DA) using labeled data from related
source domains comes in handy when the labeled patterns of a target
domain are scarce. Nevertheless, it is worth noting that when the predic-
tive distribution P (y|x) of the domains differs, which establishes Negative
Transfer [19], DA approaches generally fail to perform well. Taking this
cue, the Predictive Distribution Matching SVM (PDM-SVM) is proposed
to learn a robust classifier in the target domain (referred to as the target
classifier) by leveraging the labeled data from only the relevant regions
of multiple sources. In particular, a k-nearest neighbor graph is itera-
tively constructed to identify the regions of relevant source labeled data
where the predictive distribution maximally aligns with that of the target
data. Predictive distribution matching regularization is then introduced
to leverage these relevant source labeled data for training the target clas-
sifier. In addition, progressive transduction is adopted to infer the label
of target unlabeled data for estimating the predictive distribution of the
target domain. Finally, extensive experiments are conducted to illustrate
the impact of Negative Transfer on several existing state-of-the-art DA
methods, and demonstrate the improved performance efficacy of our pro-
posed PDM-SVM on the commonly used multi-domain Sentiment and
Reuters datasets.

Keywords: Domain Adaptation, Negative Transfer, Predictive Distri-
bution Matching, Progressive Transduction.

1 Introduction

Sentiment classification is an important task [3] for the marketer to predict sen-
timent polarity (e.g. positive or negative) of user reviews collected for different
products. For instance, there are different categories of products from Amazon:
books, DVDs, electronics and kitchen appliances. Users’ comments of these prod-
ucts are usually described by some common words. Traditional machine learning
algorithms can be used to train a sentiment classifier from manually labeled feed-
backs for each of these reviews. When a category of products does not have much
labeled reviews (referred to as target domain), Domain Adaptation (DA) meth-
ods come into hand as these methods can leverage labeled reviews from some
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related products referred to as source domains. Besides sentiment classification,
DA methods have also been applied in many real applications ranging from
Natural Language Processing [13,4,9], text categorization [17], visual concept
detection [11,10], WiFi localization [17] and remote sensing [5].

One of the major challenges of leveraging source domains to train a target
classifier lies on the dissimilarity of predictive distribution among different do-
mains which will be illustrated by an example in Section 3.2. However, many
works on DA are assuming that the predictive distribution between target and
source domains is the same [12,8,16,20]. However, Bruzzone and Marconcini [5]
explained that when there are limited labeled data, these labeled data do not
represent the general population especially for imbalance problem, and introduce
a bias in estimating the predictive distribution (e.g. by Näıve Bayes Classifier).
In most cases, the target domain has very few labeled data and source domains
might have different class distribution from the target one. Thus, this might
easily lead to dissimilarity of the predictive distribution between the domains.

In addition, the true class distribution of the target domain is unknown as the
labeled data are limited, therefore re-sampling strategies (e.g. SMOTE [6]) for
adjusting the source domain to have the same class distribution with the target
domain might not be directly applicable in this setting.

Since the predictive distribution of the source domains might differ from the
target domain, the classifier directly trained with all labeled data from multiple
source domains might not classify well on unlabeled data in the target domain.
Direct transferring of knowledge from the source domains to the target domain
may also lead to adverse effects, which is referred to as negative transfer [19].
In this work, we propose a novel DA method, namely Predictive Distribution
Matching Support Vector Machine (PDM-SVM), to address the challenges arisen
from the difference in predictive distribution among multiple domains.

The main contributions in this paper are as follows: 1) A k-nearest neigh-
bor graph is iteratively constructed to identify relevant source labeled data that
have high similarity in predictive distribution of the target data. Then we ex-
ploit this dependency to define the so-called predictive distribution matching
regularization that leverages only relevant source labeled patterns to train the
target classifier. 2) We demonstrate how to infer the pseudo-labels of target unla-
beled patterns by the use of progressive transduction which eventually learns the
predictive distribution of the target domain. 3) We illustrate how the negative
transfer affects SVMs trained with source domains, Semi-Supervised Learning
(SSL) and DA methods when the source and target domains have dissimilar class
distribution in Section 3.2. We show that our PDM-SVM approach can handle
this problem and significantly outperform those methods in the comprehensive
experiments on Sentiment and Reuters datasets.

2 Related Works

Initial work of leveraging labeled patterns from a source domain for the target
domain was proposed to minimize the weighted empirical risk for both the source
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and target domains [21], which does not consider the distribution difference
between the two domains. To address this, several instance weighting methods
[13] had been proposed, but these methods usually require considerable amount
of target labeled data in order to robustly re-weighting the training instances.

However, target labeled patterns are scarce. Instead of using many target
labels, several methods [4,9,17,18] had been proposed to extract some useful fea-
tures to be augmented in the original feature space. For example, a heuristic
method was proposed in [4] to identify some pivot features representing common
feature structure between different domains to learn an embedded space. Then
this space is augmented to the original input feature vector for domain adap-
tation. Another example is Feature Augmentation (FA) [9], which augments
features belonging to the same domain by twice that of the original features so
that data within the same domains would be treated as more similar than data
in different domains.

Recent DA works [8,16,20,10] are taking up the challenge of learning from
multiple source domains. Crammer et al. [8] assumed that the distribution of
multiple sources is the same, and the change of output labels is a result of vary-
ing noise. Luo et al. [16] maximized the consensus of predictions from multiple
sources. In [20], the authors proposed a Multiple Convex Combination of SVM
(M-SVM) trained from multiple source domains and a target domain. However,
some source domains may not be useful for knowledge transfer. In [10], a domain-
dependent regularizer was proposed to enforce that the prediction of the target
classifier on target unlabeled data is close to the prediction of source classifiers
from similar sources only. Recently, Domain Adaptation SVM (DASVM) [5] was
proposed to tackle the mismatch of the predictive distribution between the do-
mains by removing all source labeled patterns progressively; meanwhile, using
Progressive Transductive SVM(PTSVM) [7] to infer the label of target unla-
beled patterns by using all remaining source and target labeled data. However,
when there are many overlapping sources and target data, and the label of some
source labeled data are not consistent with the label of the target data, all these
methods might not perform well.

DA is also similar to several learning paradigms such as multi-task learning
and multi-view learning. The major difference between DA and multi-task learn-
ing is that DA learns a classifier for a specific task in the target domain whereas
multi-task simultaneously learns for multiple tasks. For multi-view learning, a
classifier is trained for each source domain and labels the unlabeled data when
all these source classifiers agree on the predicted output of the unlabeled data to
a certain degree, thus assuming the source domains have the same distribution.

3 Predictive Distribution Matching SVM

3.1 Preliminaries and Problem Statements

Throughout the rest of this paper, whenever superscript s and t appear in the
contents, they represent source domain and target domain respectively. A sum-
mary of all important symbols can be found in Table 1.
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Table 1. Symbol Definition

Symbol Definition
m Total number of domains, the first (m-1) domains represent source domains and

the last domain, mth domain, is the target domain
x Feature vector of a data
y Class Label for the data x or pseudo-label which is a class label that can be

learned for a particular x that is described in Section 3.5,
nr Number of labeled data in rth domain. For the target domain, it is the combi-

nation of labeled and pseudo-labeled data
n

∑ m
r=1 nr

Ds
L ∪m−1

r=1 {xr
i , yr

i }nr , all labeled data in all source domains
Dt

L {xi, yi}nm , all labeled data in target domain
DL Ds

L ∪ Dt
L

xu
i Feature vector of ith unlabeled data in target domain

DU All unlabeled data in target domain
P (x) Marginal distribution

P (y|x) Predictive distribution

Recall that labeled patterns of one domain can be drawn from the joint dis-
tribution P (x, y) = P (y|x)P (x). We also let P (x) be the marginal distribution
of the input sets {xi}nr in the rth domains. DA methods usually assume that
P t(x) of the target domain and P s(x) of the source domain are different. Then
the task of DA is to predict the labels yt

i ’s corresponding to the inputs xt
i’s in

the target domain. Notice that DA is different from Semi-Supervised Learning
(SSL). SSL methods employ both labeled and unlabeled data to achieve better
prediction performance, in which the labeled and unlabeled data are usually
assumed to be drawn from the same domain. It is also worth noting that the
common assumption in many DA methods [12,8,16,20] is that P s(x) �= P t(x),
but the source and target domains share the same predictive distribution, i.e.,
P s(y|x) = P t(y|x), where P s(y|x) and P t(y|x) are the predictive distribution of
the source and target domains, respectively. This is also referred to as covariate
shift [2]. Hence in this work, we attempt to solve domain adaptation in the setting
where the predictive distribution is not to be preserved, i.e. P s(y|x) �= P t(y|x).
This can be materializing by diverse class distribution and limited samples in
each domain, and by class label inconsistency among different domains.

3.2 An Illustrating Example

Before we introduce our proposed method, in this subsection, we first study
how the dissimilarity of the class distribution between the target and source
domains affects Domain Adaptation (DA) and Semi-Supervised Learning (SSL)
methods. Suppose that there are very few labeled data but a lot of unlabeled
data in the target domain, we vary Positive Class Ratio (PCR) of the source
domains. Here, PCR defines the percentage of positive class data in the source
domains. For example, PCR = 0.1 implies that 10% of the data are positive.
Note that when PCR is skewed towards either extremes, the class distribution
of the source domains becomes very imbalanced. As mentioned in Section 1,
when the data is imbalanced, the limited labeled data might introduce a bias
in estimating the predictive distribution. Thus, the difference in the predictive
distribution between the target and source domains might occur. To study this,
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we train two SVM models: SVM T trained with only labeled data Dt
L from target

domain; SVM S trained with only labeled data Ds
L from all source domains. We

include two SSL methods: Transduction SVM (TSVM) [15], trained with the
labeled data from all the source and target domains, DL, and unlabeled data in
target domain, DU ; LapSVM [1], the training set is the same as TSVM. We also
compare with a DA algorithm: SVM ST [21], is a SVM trained with DL.

Here, we will demonstrate the trends of different SVM-based algorithms ac-
cording to different PCR settings on Sentiment dataset. The task is to classify
whether the reviews are positive or negative. The target domain is the reviews of
Electronics while the source domains are the reviews of Book, DVDs and Kitchen
appliances. In the present setup, the test set is designed to contain equal amount
of positive and negative data. The source domains however possess different PCR
values. The details of other experimental setup will be described in Section 4.

Testing accuracy of different methods against varying PCR in the source do-
mains are reported in Figure 1. Firstly, it is worth to observe that by using both
the source and target data, the TSVM, LapSVM and SVM ST can perform bet-
ter than SVM S and SVM T which use only source and target data respectively.
Secondly, one can observe that most methods perform optimally for PCR of 0.5
(i.e. the source and target domains have the same ratio of positive and negative
data). However, the performances of all methods dropped sharply when the PCR
is skewed toward either extremes (i.e. the source domains are very imbalanced,
or the source and target domains have different class distribution), which implies
P s(y|x) and P t(y|x) would most likely be dissimilar [5]. In addition, leveraging
source labeled data from other domains lead to adverse effects on domain adap-
tation, which is regarded as negative transfer [19]. It is clear that those values
below the line of SVM T can be indicated as negative transfer, as the accuracy
of a classifier borrowing labeled data from other source domains performs worse
than just using the available target labeled data. The possible reason is that
the source and target domains have different predictive distribution, when the
source and target domains are combined together as a training set, which rep-
resents another predictive distribution and does not reflect the true population
of its own domain. Therefore, all classifiers trained with this training set might
have poorer generalization performance.

Interestingly, it can be observed that most of the values reported for the
SSL methods are above the SVM T value. A possible reason might be these
two methods use target unlabeled data as the regularization. TSVM enforces
unlabeled data to have same class ratio as labeled dataset. Therefore when PCR
is 0.5, TSVM will classify the unlabeled data into half of them as positive and
another half as negative which is the true class distribution for the unlabeled
data. Hence this might cause it to perform the best when PCR setting is 0.5.
In other PCR settings, TSVM classifies the unlabeled data into the same class
ratio as the PCR setting, and suffers poorer classification performance.

Note, LapSVM assumes that if two patterns are close together in high density
region, these patterns should have similar predictive outputs. If the manifold
assumption holds strongly, LapSVM should perform well in all PCR settings.
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Fig. 1. Testing accuracies on Sentiment Data with varying PCR in source domains and
Electronics as target domain

However, from our experiences, this is not the case on Sentiment dataset because
two reviews with similar comments can have different meanings. For example,
“I really like this” and “I dare you would really like this”. For the former sen-
tence, it is a positive feedback whereas the latter sentence is a totally negative
comment. Thus, LapSVM achieves lower accuracy than just using supervised
labeled information (i.e. SVM ST) in some PCR settings. We also observe that
LapSVM performs better than TSVM at both extreme ends of PCR settings,
it is possibly because manifold regularization [1] on imbalanced data might be
more robust than cluster assumption in TSVM [15].

3.3 Predictive Distribution Matching across Multiple Domains

From all the observations in Section 3.2, we are motivated to introduce a new DA
method by using target unlabeled data and explicitly considering the predictive
distribution of both the source and target data for multi-domain learning. Here,
we define a regularizer such that two similar patterns xr

i and xc
j from the rth and

cth domains respectively would produce similar predictive outputs for a positive
transfer (i.e. two patterns have a high relevance measured by W rc

ij ):

Ω(f) =
1

n2

m∑

r,c=1

nr∑

i=1

nc∑

j=1

(f(xr
i ) − f(xc

j))
2W rc

ij , (1)

where nr and nc are the number of patterns in the rth and cth domains respec-
tively. Here, xr

i is the ith data in the rth domain and xc
j is the jth data in the

cth domain. The similarity W rc
ij to measure a positive transfer of two patterns

xr
i and xc

j is defined as follows:

W rc
ij =

v∑

z=1

P r(yz|xr
i )P

c(yz|xc
j)I [yi = yj ]D[r �= c]S(xr

i ,x
c
j), (2)

where v is the number of classes, P r(y|xr
i ) is the predictive distribution of the

rth domain on pattern xr
i which can be estimated by means of Näıve Bayes

Classifier on labeled data, while I(·) and D(·) are indicator functions. Here,
S(xr

i ,x
c
j) measures the similarity between patterns xr

i and xc
j , and is defined as

the weight of an edge in a graph constructed by k nearest neighbors.
In this work, we also define the predictive distribution matching score for two

nearby patterns xr
i and xc

j as
∑v

z=1 P r(yz|xr
i )P

c(yz|xc
j) for measuring the simi-

larity of the predictive distribution of two patterns, where
∑v

z=1 P r(yz|xr
i ) and
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∑v
z=1 P c(yz |xc

j) are both equal to 1. Moreover, those patterns not in the same
class will be disconnected, as the indicator function I[yi = yj ] returns a logic of
1 if both labels are the same, otherwise it returns 0. Intuitively, this indication
function can be viewed as a pairwise constraint that two patterns in the same
class can be linked together whereas two patterns belonging to different class
should not be linked [22]. As we do not assume manifold assumption in each
domain, we use an indicator function D[r �= c] to allow only data in different
domains to be connected. Note that if the target domain follows manifold as-
sumption, the manifold regularizer can be easily added into our formulation. But
in this paper, we do not assume manifold property in any dataset and hence our
method can apply in general cases.

From the definition of W rc
ij in (2), two similar patterns from different do-

mains having a high response of the predictive distribution matching score and
the same class label would share similar predictive outputs. Therefore, we can
identify relevant source labeled data from the data having high similar predictive
distribution for domain adaptation.

3.4 Proposed Formulation

In our regularization framework, the decision function is learnedby minimizing the
following regularized risk functional: f∗=arg minf γA‖f‖2 + 1

n

∑n
i=1 �(yi, f(xi)),

where �(yi, f(xi)) denotes the loss function and γA controls the smoothness of the
solutions. In this paper, we employ hinge loss function of SVM as �(·). Together
with our proposed data-dependent regularizer in (1), the regulated risk functional
for domain adaptation is then formulated as:

min
f

γIΩ(f) + γA||f ||2 +
1

n

n∑

i=1

�(yi, f(xi)), (3)

where γI regulates the decision function f(x) according to our proposed regu-
larizer (1) for multiple source domain adaptation. We refer our proposed method
to as Predictive Distribution Matching SVM (PDM-SVM). Note that our reg-
ularizer can be easily added into other standard regularization frameworks. We
use SVM as our formulation since we are investigating and comparing with other
SVM-based methods.

By defining a Laplacian matrix L = D − W where W is a n × n matrix with
entries defined in (2) and D is a n × n diagonal matrix with diagonal entry
Dii =

∑n
j=1 Wij , the resultant optimization problem (3) can be formulated as

LapSVM formulation [1]. Thus allowing us to take advantage of existing LapSVM
algorithm to solve (3) by using (2) as the Laplacian matrix L in the algorithm.
By duality, the minimization problem (3) is equivalent to the dual problem:

max
α∈�n

n∑

i=1

αi − 1

2
α′Y K

(

2γAI +
2γI

n2
LK

)−1

Y α, (4)

where Y = diag(y1, . . . , yn) ∈ �(n×n), K is the n× n kernel matrix and I is an
identity matrix . The decision function is defined as follows:

f(x) =
n∑

i=1

βiK(x, xi), (5)
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where β = (2γAI+2 γI

n2 LK)−1Y α. For more details of the derivations, interested
reader may refer to [1].

3.5 Progressive Transduction on DU

One of major challenges of domain adaptation is that the prediction distribution
P t(y|x) cannot be well-estimated with limited labeled data in the target domain.
Therefore, many existing DA algorithms [12,17] assume that the target domain
and the sources domains share the same prediction distribution, i.e., P s(y|x) =
P t(y|x). However, as illustrated in Figure 1, when the predictive distribution
varies across domains, DA and SSL methods may have impaired performance. In
this subsection, we propose to use progressive transduction method for acquiring
the additional labeled data to estimate P t(y|x).

Progressive transduction is to progressively label certain number of unlabeled
data with pseudo-label which are the most confident predicted outputs in cur-
rent iteration. These learned pseudo-labeled data are then used to estimate the
predictive distribution P t(y|x). After that, we apply the learned P t(y|x) to our
proposed regularizer (1) for multiple source domains adaptation and train a new
classifier with the newly added pseudo-labeled data using (4). The progressive
transduction step is then repeated until it reaches the stopping criterion.

In jth iteration, a classifier is trained using the available labeled and pseudo-
labeled data using (4). Then the classifier predicts the unlabeled data using
decision function (5). Let us group these unlabeled data into their predicted
classes and assign them with labels accordingly before sorting the positive set in
decreasing order and negative set in increasing order as follows:

T j
+ = {(xu

i , +)|xu
i ∈ Dj

u, f j(xu
i ) ≥ f j(xu

i+1) ≥ 0}, (6)

T j
− = {(xu

i ,−)|xu
i ∈ Dj

u, f j(xu
i ) ≤ f j(xu

i+1) < 0}, (7)

where Dj
u = Du\Bj−1 and Bj are all the pseudo-labeled data from the start of

initialization to the current jth iteration, which is defined as follows:

Bj = Bj−1 ∪ Bj
+ ∪ Bj

−, (8)

where Bj−1 is all the pseudo-labeled data from the start of initialization to the
(j − 1)th iteration and the current jth iteration’s pseudo-labeled data are from
Bj

+ and Bj
− which are defined as follows:

Bj
+ = {(xu

i , yu
i ) ∈ T j

+|1 ≤ i ≤ P j
+}, (9)

Bj
− = {(xu

i , yu
i ) ∈ T j

−|1 ≤ i ≤ P j
−}, (10)

where P j
+ = min(p, |T j

+|), P j
− = min(p, |T j

−|), p is a hyper-parameter. Hence,
the pseudo-labeled set Bj

+ contains data with the highest p predictive values in
T j

+ and Bj
− contains data with the lowest p predictive values in T j

−. Therefore,
the pseudo-labeled data learned from the current iteration are the most confi-
dent predicted labels as they are the furthest away from the decision boundary.
Then these pseudo-labeled patterns are being incorporated as part of training
set in (4). As these pseudo-labeled data and the target labeled domain are from
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Algorithm 1(PDM-SVM)

1. Initialize B0 = ∅,F t = ∅, M=m% of unlabeled data
2. While |Bj−1| < M
3. Build Bj using (8)
4. Train the classifier F t in (4) using DL and Bj

5. if |DL| + |Bj | >= Θ
6. Train a classifier F t in (4) using Dt

L and Bj

the same domain, their predictive distribution P t(y|x) is re-estimated to com-
pute W rc

ij in (2) for the target domain in each iteration. When m% of the entire
unlabeled data are incorporated as part of the training set, the whole progres-
sive transduction process terminates. After that, if the size of the combination
of target labeled dataset and pseudo-labeled dataset is larger than a certain
threshold Θ, then SVM is trained using only the target labeled data and the
pseudo-labeled patterns so the final classifier would consist only target data to
represent the true distribution for the target data. The detailed algorithm of
PDM-SVM is presented in Algorithm 1. Finally, the final trained classifier is
used to classify the test data using decision function (5).

3.6 Demonstration of PDM-SVM on a Synthetic Dataset

Besides the dissimilarity of class distribution among multi-domains, here we also
consider the class label inconsistence from multi-domains, where each domain
has its own modality. We generate a synthetic dataset (Figure 2) to depict how
PDM-SVM uses the predictive distribution similarities between two patterns
from different domains to construct a graph. In this dataset, there are three
labeled source domains and a target domain that contain only unlabeled data.

Figure 2(a) depicts the target domain. Figure 2(b) shows the first two source
domains having their positive and negative data overlapping with the target
positive and negative data respectively and the third source domain having its
negative data overlapping with the target negative data, but its positive data
are near to the target negative data. Intuitively, those target data close to the
positive data of the third source will be classified as positive, which is undesirable.
However, this is the case for SVM ST and its decision boundary is depicted in
Figure 2(c) by a thinner curve line. As the entire dataset is formed from several
domains, and each domain has its own modality, the dataset could become a
multi-modality problem. Hence, traditional DA methods which cannot handle
multi-modal datasets would fail as the classifier trained with all labeled data has
incorrect decision boundary. Whereas, PDM-SVM can classify all the target data
correctly, and its decision boundary is shown by the thicker curve line. This is
because PDM-SVM can iteratively construct a graph to identify relevant source
data as shown in Figure 2(d).

Figure 2 (d) shows that PDM-SVM can construct a graph using the predictive
distribution similarity between two patterns from different domains. The lower
rectangular box depicts the connections of one target pseudo-labeled learned by
PDM-SVM with several source data points which demonstrates that PDM-SVM
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Fig. 2. PDM-SVM demonstration using a Synthetic dataset. The data are in 2-
Dimension represented by two features, F1 and F2 respectively.
(a) Target domain with 500 positive and 500 negative instances. (b)Three source do-
mains related to the target domain except the positive data of the third source domain
near to the target negative data. Each domain consists of 150 positive and 50 negative
instances (c) The decision boundary of SVM ST and PDM-SVM. The space below
the decision boundary is classified as positive, whereas the other side is classified as
negative. (d)The graph’s connections between labeled and pseudo-labeled data which
are learned by PDM-SVM in the final iteration.
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can identify pseudo-labeled data from the constructed graph. The upper rectan-
gular box depicts negative data mainly in the third domain where data closer to
other data in different domains are connected and data that are further apart
from the data in other domains are not connected. When certain regions hav-
ing many nodes with high predictive distribution values are connected together,
these regions can be used to reflect the predictive output of the target regions.
Hence, the pseudo-labeled data can be learned from these regions and eventually
PDM-SVM can learn a classifier using these pseudo-labeled data.

4 Experiments

In this Section, we investigate several existing state-of-the-art SVM-based meth-
ods, DA methods and the proposed PDM-SVM under a multi-domain setting
of differing predictive distribution and scare target labels. SSL methods are also
considered in the present study to see how they perform when they use target
unlabeled data as part of their training. Note that DA methods (e.g. [13]) that
require considerable number of target labels to function and cater only to single
source domain are omitted. Here, apart from investigating the methods consid-
ered in Section 3.2, we also include additional DA learning algorithms such as:
M-SVM, [20], is a linear combination of SVMs trained with Ds

L’s and Dt
L; FA,

[9], is trained with DL; DASVM, [5], is trained with DL and DU .

4.1 Experimental Setup

The parameters of the DA methods are configured by means of k-fold cross-
source domains validation as suggested in [14] (an extension of k-fold cross vali-
dation for domain adaptation) and are tabulated in Table 2. For methods using
only labeled data, i.e. SVM S, SVM B, SVM ST, M-SVM and FA, each parti-
tion represents a source domain in k-fold cross-source domains validation. For
methods using both labeled and unlabeled data, i.e. TSVM, LapSVM, DASVM
and PDM-SVM, the kth source domain is used as the labeled data in the kth
fold evaluation, while the rest are used as unlabeled data and for validation.

Table 2. Parameter Settings

Classifiers Parameter Settings

SVM S, TSVM, C is chosen by cross-validation.
SVM ST, M-SVM,
FA & DASVM

LapSVM γA and γI are chosen by cross-validation. Using 6 nearest
& PDM-SVM neighbors and normalized Laplacian matrix to construct the graph. The

weight for Laplacian matrix is based on cosine distances, as commonly used
in text classification.

SVM T & SVM B C is fixed as 1 since the labeled data are limited. For example, in Reuters
dataset setting, the target domain will only consist two labeled data.

Other parameters p in DASVM and PDM-SVM is fixed as 5. β is fixed as 3.10−2 for DASVM
which is the same value used in [5]. m and Θ for PDM-SVM are set as 20%
and 50, respectively.
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4.2 Datasets

In the present study, we consider two datasets namely Sentiment and Reuters-
21578. Sentiment is a popular multi-domain benchmark dataset, defined in [3]. It
is typically used in the context of DA and consisted of even positive and negative
class distribution, hence it is used here to synthesize diverse PCR settings for
investigating the robustness of SSL and DA methods. Reuters dataset, on the
other hand, allows us to study the efficacy of SSL and DA methods in the
presence of uneven class distribution in each domain.

In the experimental study, we further pre-process the datasets by extract-
ing only the single-terms, removing all stopwords, normalizing each feature and
performing stemming. Finally, each feature of a review is represented by its
respective tf-idf value, and linear kernel is used in the experiments.

Multi-Domain Sentiment Dataset. It is generated from Amazon.com com-
prising four categories of product reviews: Book, DVDs, Electronics and Kitchen
appliances. Each category of product review is considered as a domain and com-
prises of 1000 positive and 1000 negative reviews. For each task, we used one
dataset as target domain while the rest as related source domains. For a target
domain, we randomly selected 10 positive and 10 negative instances as labeled
data and keeping the rest as unlabeled data. In regards to each source domain,
we randomly selected 200 to form the labeled data. To study the mismatch in
predictive distribution between the source and target domains, 9 different PCR
settings are generated for investigations. The 9 PCR settings are chosen from 0.1
to 0.9 at an incremental of 0.1 step size. For example, in a setting of PCR of 0.1,
out of the 200 data selected for each source domain, 20 positive data are selected
while the rest make up the negative data. To study the performance of an ideal
SVM ST with prior knowledge on class distribution, we consider here additional
SVM B classifier. For each source domain, SVM B re-samples the data to have
the same PCR as the target domain. Let ρ and η be the number of positive and
negative samples in each source domain respectively. Since our target unlabeled
data has equal number of positive and negative samples, then for each PCR
setting, the classifier re-samples both positive and negative samples as min(ρ, η)
in each source domain. Thus all domains have the same class distribution.

Multi-Domain Reuters Dataset. 3 out of 4 main categories of the dataset
namely People, Organizations and Exchanges are considered in the present study,
thus resulting 3 tasks being experimented: People versus Organizations, People
versus Exchanges and Organizations versus Exchanges. Places category is not
used due to the vast instances belonging to this category that overwhelms all
other categories, thus making the study fruitless. Further, in each main cate-
gory, the subcategory with largest dataset is used as target domain while the
remaining 4 largest subcategories as related source domains. Then in each task,
the xth largest subcategory of a main category is labeled as positive while the
xth largest subcategory from another main category is labeled as negative. All
data in the source domains are used as labeled data and for the target domain,
one positive and one negative data are randomly selected to form the labeled
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data while the rest are used as unlabeled data. Note that this dataset has uneven
positive and negative samples in each subcategory, hence the testing distribution
is imbalanced and the predictive distribution of the source domains is quite di-
verse with respect to one another. Furthermore, since it is not always feasible to
re-sample the source domains to match the SVM B setting, it is not considered
in the study of this dataset.

4.3 Results and Discussions

We first study the performance of various classifiers with varying PCR in the
source domains on Sentiment dataset. For the sake of conciseness, Figure 3 de-
picts the testing accuracies on Sentiment data for 9 different PCR settings in the
source domains, with Electronics and Kitchen Appliances as the target domain.
Note that PCR of the target unlabeled dataset is confirmed at approximately
0.5, hence when the PCR of the source domains is also in the region of 0.5, the
predictive distribution of the source domains is most likely to be similar to the
target unlabeled dataset. The rest of the PCR settings on the other hand would
likely result in mismatch of predictive distribution between the source and target
domains. Each of the four domains in the Sentiment dataset will take turns to
be used as the target domain. Their detailed results for PCR at 0.3, 0.5 and 0.7
are then reported in Table 3.
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Fig. 3. Testing accuracies on Sentiment dataset for varying PCR in source domains.
(a) Target domain is Electronics (b) Target domain is Kitchen Appliances.

As shown in Figure 3, at both extreme ends of the PCR settings, for the
same labeled and unlabeled data, LapSVM and TSVM are found to underper-
form DASVM and PDM-SVM. This is expected since LapSVM and TSVM do
not consider the predictive distribution mismatch between different domains.
Furthermore, TSVM is shown to underperform SVM T since P (y) of unlabeled
differs significantly from that of labeled data at PCR = 0.1 and 0.9. Apart
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from the extreme ends of PCR settings, it can also be observed that DA meth-
ods including SVM ST and FA underperform SVM T on some of the imbalance
PCR settings, indicating the presence of negative transfer. This is because both
SVM ST and FA require predictive distribution of the source and target do-
mains to be similar, but the predictive distribution of imbalance PCR settings is
quite diverse. From Table 3, when the predictive distribution of the source do-
mains is similar to target domain (i.e. PCR≈0.5), SVM S, SVM ST and FA are
shown to outperform SVM T on all datasets. This implies that additional source
labeled data can be useful for improving testing accuracy when the predictive
distribution between source and target domain matches.

In all PCR settings, SVM B is reported with better accuracies than many DA
methods including SVM ST, FA, M-SVM and DASVM. This implies re-sampling
of the source domains to match the target predictive distribution is important
for transfer learning to work well. In contrast, PDM-SVM can be observed to
outperform all other classifiers, implying the predictive distribution matching
of source and target domains in the PDM-SVM is deemed to be effective. In
particular, even under extreme conditions of PCR settings in the source domain,
PDM-SVM reported up to 28% accuracy improvements over the other classifiers.

As shown in Figure 3, each classifier displayed similar performance trends
on the subgraph where most of the classifiers (excluding LapSVM, DASVM
and PDM-SVM) showed sharp declining accuracies when the PCR is skewed
toward either extremes. It can be observed that SVM ST, FA and SVM S gave
the best accuracy of around 75% at PCR=0.5 and the worst accuracy in the

Table 3. Testing accuracies on Sentiment data set for PCR at 0.3, 0.5 and 0.7 in the
source domains. The values below the accuracy results are the standard deviation.

Target PCR SVM T SVM S SVM B TSVM LapSVM SVM ST M-SVM FA DASVM PDM-SVM

Book 0.3 58.51 59.91 69.11 68.65 68.89 62.4 57.8 56.27 66.25 74.47
±2.31 ±1.25 ±1.34 ±0.71 ±1.24 ±1.37 ±3.12 ±1.48 ±4.61 ±2.06

0.5 58.51 70.88 71.77 72.8 71.14 71.77 69.08 71.48 65.35 74.23
±2.31 ±1.57 ±1.24 ±1.19 ±1.28 ±1.24 ±1.55 ±1.73 ±2.93 ±1.17

0.7 58.51 58.98 69.11 69.39 61.15 61.05 58.96 55.9 62.4 72.71
±2.31 ±1.18 ±1.34 ±0.93 ±2.57 ±1.27 ±2.23 ±1.11 ±1.11 ±1.58

DVDs 0.3 60.1 60.73 72.1 70.05 70.74 63.7 59.74 56.74 67.86 75.64
±2.40 ±2.16 ±1.24 ±0.94 ±1.21 ±2.24 ±3.02 ±1.84 ±3.61 ±1.32

0.5 60.1 73 73.24 74.3 73.06 73.24 68.75 73.18 71.58 75.94
±2.40 ±1.07 ±0.93 ±1.34 ±1.18 ±0.93 ±2.05 ±0.90 ±3.51 ±1.46

0.7 60.1 61.04 72.1 71.38 63.03 63.45 60.9 57.53 67.01 75.19
±2.40 ±1.86 ±1.24 ±0.88 ±2.55 ±2.01 ±1.76 ±1.44 ±6.94 ±3.32

Electronic 0.3 61.78 61.54 74.37 73.35 74.42 65.64 61.7 60.07 71.55 78.55
±2.56 ±2.34 ±1.10 ±1.10 ±0.93 ±1.88 ±1.69 ±1.95 ±2.48 ±0.98

0.5 61.78 74.67 75.36 78.79 75.08 75.36 70.03 75.17 74.88 78.84
±2.56 ±1.85 ±1.67 ±1.14 ±1.48 ±1.67 ±2.59 ±1.63 ±1.65 ±1.05

0.7 61.78 68.52 74.37 73.7 65.22 71.11 63.67 65.47 72.01 77.76
±2.56 ±1.70 ±1.10 ±1.17 ±1.29 ±1.64 ±2.26 ±2.68 ±3.11 ±1.03

Kitchen 0.3 62.47 67.16 75.8 75.29 74.72 70.84 63.49 64.23 69.91 79.06
±2.62 ±1.83 ±1.38 ±0.75 ±1.32 ±1.75 ±2.59 ±1.91 ±2.01 ±1.12

0.5 62.47 77.96 78.34 80.94 77.88 78.34 74.85 78.29 75.91 81.15
±2.62 ±1.01 ±0.96 ±1.28 ±0.86 ±0.96 ±0.98 ±1.16 ±2.06 ±1.34

0.7 62.47 65.88 75.8 74.39 64.75 68.97 62.26 62.7 74.72 80.01
±2.62 ±1.96 ±1.38 ±0.91 ±2.37 ±1.50 ±1.37 ±2.27 ±3.81 ±1.68
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region of 50% at PCR=0.1 and 0.9. Note that this marks a large difference
in accuracies of up to 25%. Other methods also displayed significant variance
in accuracy under the diverse PCR settings. As opposed to existing approaches
suffering in performances due to the effect of negative transfer, on the other hand,
PDM-SVM can effectively identify useful knowledge from multi-source domains
by means of prediction distribution matching, thus achieving robust prediction
performances in the target domain on the Sentiment data. In particular, PDM-
SVM can still give readily stable results, and the accuracies are within 5% across
all the PCR settings. This demonstrates the robustness of PDM-SVM under
different PCR settings by benefiting from the positive transfer.
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Fig. 4. Testing accuracies on Reuters data sets. (a)People versus Organizations
(b)People versus Exchanges (c)Organizations versus Exchanges

Last but not least, we further experiment the classifiers on Reuters dataset
with uneven class distribution in each domain. The results are reported in Fig-
ure 4. It can be observed that both PDM-SVM and DASVM had outperformed
all other classifiers considered, see Figure 4(b,c). PDM-SVM on the other hand
is competitive to DASVM. Interestingly, Figure 4(a) also indicated that PDM-
SVM attained significant improvement in accuracy over DASVM. In all the ex-
periments, SVM S is shown to be competitive to some DA methods: SVM ST,
M-SVM and FA. It appears that most of the labels in the source domains are
consistent with the target domain. This may be the reason why DASVM had
performed well on the Reuters dataset while most DA methods outperform-
ing SSL methods and SVM T, whereas LapSVM and TSVM outperformed the
other counterparts on Sentiment dataset. SSL methods on the other hand had
performed much worse than the others on Reuters dataset. This is likely due
to the manifold assumption and cluster assumption failing to hold on Reuters
dataset. Overall, PDM-SVM is able to perform robustly and outperform all clas-
sifiers considered on both datasets, due to success of the predictive distribution
matching regularizer in the identification of relevant data from source domains.

5 Conclusion

In this paper, we have presented a formalization of predictive distribution match-
ing for addressing the effects of differing predictive distributions between related
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domains. We address this problem by leveraging multiple domains to identify
high predictive density regions, in which the class label represents the target
class label in the same regions. Furthermore, we also present how to estimate
the predictive distribution P t(y|x) of the target domain by using progressive
transduction. On the other hand, empirical results obtained showed that while
most DA methods suffer from the effect of negative transfer when the problem
domains have mismatched predictive distributions, the proposed PDM-SVM re-
ported robust prediction accuracy for diverse levels of PCR results on the dataset
considered. In addition, PDM-SVM is shown capable of generating a substantial
improvement over existing methods in most cases.
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