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Predictive energy management for hybrid
electric aircraft propulsion systems

Martin Doff-Sotta, Mark Cannon, and Marko Bacic

Abstract— We present a Model Predictive Control (MPC)
algorithm for energy management in aircraft with hybrid
electric propulsion systems consisting of gas turbine and
electric motor components. Series and parallel configu-
rations are considered. By combining a point-mass air-
craft dynamical model with models of electrical losses
and losses in the gas turbine, the fuel consumed over a
given future flight path is minimised subject to constraints
on the battery, electric motor and gas turbine. The opti-
mization is formulated as a convex problem under mild
assumptions and its solution is used to define a predictive
energy management control law that takes into account
the variation in aircraft mass during flight. We investigate
the performance of algorithms for solving this problem. An
Alternating Direction Method of Multipliers (ADMM) algo-
rithm is proposed and compared with a general purpose
convex interior point solver. We also show that the ADMM
implementation reduces the required computation time by
orders of magnitude in comparison with a general purpose
nonlinear programming solver, making it suitable for real-
time supervisory energy management control.

Index Terms— Alternating Direction Method of Multipli-
ers (ADMM), Convex Programming, Energy Management,
Hybrid Aircraft, Model Predictive Control (MPC).

I. INTRODUCTION

AVIATION currently contributes to around 2% of current
world-wide human-made CO2 emissions, but demand

for air travel is predicted to grow significantly. The aviation
industry is committed to realising this growth sustainably with
a drastic reduction of CO2 emissions by 2050. One avenue
identified to achieve this ambitious goal is the development of
greener aviation based on new propulsion concepts.

Aircraft equipped with turbo-electric and hybrid electric
powertrains are considered in [1]–[3] where it is shown that
reductions in emissions and energy savings can potentially
be achieved. In [1], simulations of a commercial airliner
with boundary layer ingestion and a turbo-electric propulsion
system predict mission fuel burn savings of up to 7% relative
to a conventional propulsion system. A distributed electric
propulsion concept for the transonic cruise range proposed
in [4] is likewise expected to provide a 7% reduction in
fuel. Potential energy savings were demonstrated for a concept
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year-2030 aircraft equipped with a parallel-hybrid propulsion
system combined with an all-electric propulsion system in [3].

Hybrid-electric propulsion systems rely on energy man-
agement controllers to allocate power demand between the
different components of the powertrain. The energy manage-
ment problem can be tackled with heuristic strategies such as
peak-shaving schemes [5], charge-depleting-charge-sustaining
policies [6], approaches based on state machines [7] and rule-
based fuzzy logic [8]. More sophisticated suboptimal control
strategies have also been proposed, for example using neural
networks [9] and neuro-fuzzy adaptive control [10].

Optimisation techniques that seek to minimise a cost func-
tion (such as fuel consumption) have also been proposed
for energy management problems. For example, the so-called
equivalent fuel consumption minimisation strategy is widely
used in hybrid fuel cell systems [11]. Globally optimal policies
have been computed offline using dynamic programming [12]–
[14] but the computation required is prohibitive for real-time
implementation. Other approaches based on H∞ control [15]
and optimal adaptive control [16] have also been proposed. A
popular framework for energy management problems in elec-
tric and hybrid-electric ground vehicles is Model Predictive
Control (MPC) [17]–[19]. The energy management problem
is formulated as a receding-horizon constrained optimisation
problem, and an optimal power split is found at each discrete
time step. Since MPC is a feedback control strategy that is
updated with information on the system state at each time
step, it can provide robustness to modelling uncertainty and
prediction errors. Although MPC has been proposed for energy
management problems in hybrid-electric aircraft [20], [21],
none of these approaches considered lossless convexification
of the nonlinear programming problem.

A convex energy management formulation is proposed
in [6], which considers a parallel-hybrid aircraft with nonlinear
constraints in a model predictive control framework. Fuel
consumption is predicted over a future flight profile and is min-
imised subject to constraints on state, trajectory and physical
limitations of the components of the propulsion system. The
associated receding-horizon nonlinear programming problem
is posed as a convex program and solved using the general-
purpose convex optimisation framework CVX [22].

This paper extends the results in [6] to series-hybrid archi-
tectures and describes a specialised ADMM solver for efficient
online optimisation. The paper is organised as follows. Math-
ematical models of the powertrain components and aircraft
dynamics are developed in Section II. Energy management
problems for series and parallel configurations are stated as
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receding-horizon optimisation problems in Section III. Sec-
tion IV presents a series of simplifications that yield convex
relaxations of these problems. In particular, a unified formu-
lation is proposed for both powertrain configurations. The
ADMM solver is presented in Section V and its performance
and potential for real-time implementation are discussed in
Section VI. Conclusions are presented in Section VII.

II. MODELLING

This section derives models of the aircraft dynamics and
powertrain components (battery, electric motor, gas turbine
etc.), which will be used to formulate the energy management
problem as a model-based optimisation problem.

We consider a hybrid electric aircraft propulsion system
with either a series or parallel topology. When the power
output demand is negative, which may occur for example
while the aircraft is descending, we consider the possibility of
using the same powertrain to generate electrical energy (i.e.
operating in a “windmilling” mode) in order to recharge the
battery. In practice a variable-pitch fan would be required for
this functionality, which would increase complexity.

A. Aircraft Dynamics
The aircraft motion is constrained by its dynamic equations.

Assuming a point-mass model [23] and referring to Figure 1,
the equilibrium of forces yields

m
d

dt
(−→v ) =

−→
T +

−→
L +

−→
D +

−→
W,

where −→v is the velocity vector, m the instantaneous mass of
the aircraft,

−→
T the vector of thrust,

−→
L and

−→
D are the lift and

drag vectors and
−→
W is the aircraft weight.

−→
T

−→
D

−→
W

−→
L

−→v α
γ

Fig. 1. Aircraft forces and motion.

Using the coordinates (v,γ), where v is the velocity vector
magnitude and γ is the flight path angle, and projecting the
vector equation in wind axes along the drag vector

−→
D yields

m
d

dt
v +mg sin γ = T cosα− 1

2
CDρSv

2.

Here S is the wing area, ρ is the density of air, g is acceleration
due to gravity, CD = CD(α) the drag coefficient and α the
angle of attack. Projecting along the lift vector

−→
L yields

mv
d

dt
γ +mg cos γ = T sinα+

1

2
CLρSv

2,

where CL = CL(α) is the lift coefficient.
The drive power is given as follows

Pdrv =
−→
T · −→v = m

d

dt
(
1

2
v2) +

1

2
CDρSv

3 +mgv sin γ.

B. Hybrid Propulsion System

1) Parallel architecture: In the parallel architecture (T =
P), a gas turbine producing power Pgt is mechanically coupled
with an electric motor with power output Pem in a parallel
arrangement (Fig. 2). These two power sources are combined
to give the power output of the propulsion system, Pdrv, via

Pdrv(t) = Pgt(t) + Pem(t),

where 100% efficiency in drivetrain components is assumed.

Battery Electric
Bus

Motor/
Gen.

Fuel Gas
Turbine

Fan

Pb Pc Pem

ϕ Pgt

Pdrv

Fig. 2. Parallel-hybrid propulsion architecture.

2) Series architecture: In the series architecture (T = S),
the propulsion system power output Pdrv is delivered by an
electric motor taking electrical power Pel from two sources: a
battery with effective power output Pc and a turbo generator
set (gas turbine in series with an electric generator) with power
output Pgen (Fig. 3). The power balance is given by

Pel(t) = Pgen(t) + Pc(t).
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Fig. 3. Series-hybrid propulsion architecture.

C. Battery

The battery is modelled as an equivalent circuit with internal
resistance R and open-circuit voltage U , so that the input-
output map between its chemical power Pb and the effectively
delivered electrical power Pc is given by [24]

Pb = g
(
Pc
)
,

=
U2

2R

(
1−

√
1− 4R

U2
Pc

)
,

where U and R are assumed constant [25]. The evolution of
the battery state of charge (SOC) E(t) is given by

Ė = −Pb (1)

and E(t) is subject at all times to upper and lower bounds

E ≤ E ≤ E.
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D. Gas turbine
The rate of change of mass of the aircraft is given by

ṁ = −ϕ = −f(Pgt(t), ωgt(t)), (2)

where ϕ is the rate of fuel consumption and f(Pgt, ωgt) is a
piecewise-quadratic function of the gas turbine power output
Pgt and shaft rotation speed ωgt. We assume that f(·) can be
determined empirically from fuel map data in the form

ϕ = f(Pgt, ωgt),

= β2(ωgt)P
2
gt + β1(ωgt)Pgt + β0(ωgt),

with β2(ωgt)≥0 and β1(ωgt)>0 in the operating range of ωgt.
The power Pgt and shaft rotation speed ωgt are limited by

P gt ≤ Pgt ≤ P gt,

ωgt ≤ ωgt ≤ ωgt.

These limits apply to both parallel and series configurations,
and in the latter case they constrain the turbo generator set.

E. Electric motor
In the parallel configuration, the electric motor input-output

map between input electrical power Pc and effective mechan-
ical power Pem is modelled by a piecewise-quadratic function

Pc = h(Pem(t), ωem(t)),

= κ2(ωem)P 2
em + κ1(ωem)Pem + κ0(ωem),

where ωem is the electric motor shaft rotation speed and
κ2(ωem) ≥ 0, κ1(ωem) > 0 for all ωem in the operating range.
The function h(·) can be determined empirically from electric
motor loss data. The limitations on the electric motor power
and shaft rotation speeds are set by the following constraints

P em ≤ Pem ≤ P em,

ωem ≤ ωem ≤ ωem.

In the series configuration, the input-output map between
the input electrical power Pel and effective mechanical power
Pdrv is likewise modelled by Pel = h(Pdrv(t), ωdrv(t)), where
ωdrv is the fan shaft rotation speed. The limitations on the
electric motor power and shaft rotation speeds are set by the
following constraints

P drv ≤ Pdrv ≤ P drv,

ωdrv ≤ ωdrv ≤ ωdrv.

F. Electric generator
In the series configuration a generator converts the gas

turbine mechanical power Pgt into electrical power Pgen.
This electrical machine is modelled by a piecewise-quadratic
function

Pgt = hgen(Pgen(t), ωgen(t)),

= ν2(ωgen)P 2
gen + ν1(ωgen)Pgen + ν0(ωgen),

where ωgen is the electric generator shaft rotation speed and
ν2(ωgen) ≥ 0, ν1(ωgen) > 0 for all ωgen in the operating
range. The loss map hgen(·) can be determined empirically
from electric generator loss data. The limits on power and
shaft rotation speed for the electric generator are encapsulated
by the inequality constraints given for the gas turbine.

G. Objective
The problem at hand is to find the real-time optimal power

split between the gas turbine and electric motor that minimises

J =

∫ T

0

f(Pgt(t), ωgt(t))dt,

while satisfying constraints on the battery SOC and limits on
power flows throughout the powertrain, and while producing
sufficient power to follow a prescribed flight path.

III. DISCRETE-TIME OPTIMAL CONTROL

This section describes a discrete-time model that enables
the optimal power split between battery and fuel over a given
future flight path to be determined as a finite-dimensional
optimisation problem. For a fixed sampling interval δ, we
consider a predictive control strategy that minimises, at each
sampling instant, the fuel consumption over the remaining
flight path. The optimisation is performed subject to the
dynamics of the aircraft mass and the battery SOC. The
problem is also subject to limits on energy stored in the battery
(to prevent deep discharging or overcharging) and limits on
power flows corresponding to physical and safety constraints.

The optimal solution to the fuel minimisation problem at the
kth sampling instant is computed using estimates of the battery
SOC E(kδ) and the aircraft mass m(kδ), so that E0 = E(kδ)
and m0 = m(kδ) at any time kδ. The control law at time
kδ is defined by the first time step of this optimal solution.
The notation {x0, x1, . . . xN−1} is used for the sequence of
current and future values of a variable x predicted at the kth
discrete-time step, so that xi denotes the predicted value of
x
(
(k+ i)δ

)
. The horizon N is chosen so that N = dT/δe−k,

and hence N shrinks as k increases and kδ approaches T .
The discrete-time approximation of the objective is

J =

N−1∑
i=0

fi(Pgt,i, ωgt,i) δ, (3)

with, for i = 0, . . . , N − 1,

fi(Pgt,i, ωgt,i) = β2(ωgt,i)P
2
gt,i+β1(ωgt,i)Pgt,i+β0(ωgt,i), (4)

mi+1 = mi − fi(Pgt,i, ωgt,i) δ, (5)

where the forward Euler approximation has been used to
discretise (2). The same approach applied to (1) yields the
discrete-time battery model

Ei+1 = Ei − Pb,i δ, (6)
Pb,i = gi(Pc,i),

=
U2

2R

[
1−

√
1− 4R

U2
Pc,i

]
, (7)

for i = 0, . . . , N −1. In the parallel configuration, the electric
motor input-output map is given by

Pc,i = hi(Pem,i, ωem,i),

= κ2(ωem,i)P
2
em,i + κ1(ωem,i)Pem,i + κ0(ωem,i),

(8)

while for the series configuration we have

Pel,i = hi(Pdrv,i, ωdrv,i),

= κ2(ωdrv,i)P
2
drv,i + κ1(ωdrv,i)Pdrv,i + κ0(ωdrv,i),

(9)
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and

Pgt,i = hgen,i(Pgen,i, ωgen,i),

= ν2(ωgen,i)P
2
gen,i + ν1(ωgen,i)Pgen,i + ν0(ωgen,i).

(10)

The aircraft dynamics are given in discrete time by

mivi∆iγ +mig cos(γi) = Ti sin(αi) + 1
2CL(αi)ρSv

2
i (11)

Pdrv,i = 1
2mi∆i(v

2) +mig sin(γi)vi + 1
2CD(αi)ρSv

3
i (12)

for i = 0, . . . , N − 1, where

∆i(v
2) = (v2i+1 − v2i )/δ, ∆iγ = (γi+1 − γi)/δ.

The power balance in discrete time for the parallel and series
case respectively is given by

Pdrv,i = Pgt,i + Pem,i, (13)
Pel,i = Pc,i + Pgen,i. (14)

A. Parallel architecture
For the parallel architecture the problem solved at the kth

time step is

min
Pgt, Pem, Pdrv,m,
E, ωgt, ωem, α

N−1∑
i=0

fi(Pgt,i, ωgt,i)δ (15)

s.t. Pdrv,i = Pgt,i + Pem,i

Pdrv,i = 1
2mi∆iv

2 +mig sin (γi)vi + 1
2CD(αi)ρSv

3
i

mivi∆iγ +mig cos γi = Ti sinαi + 1
2CL(αi)ρSv

2
i

mi+1 = mi − fi(Pgt,i, ωgt,i) δ

Ei+1 = Ei − gi (hi (Pem,i, ωem,i)) δ

m0 = m(kδ)

E0 = E(kδ)

E ≤ Ei ≤ E
P gt ≤ Pgt,i ≤ P gt

ωgt ≤ ωgt,i ≤ ωgt

P em ≤ Pem,i ≤ P em

ωem ≤ ωem,i ≤ ωem

B. Series architecture
For the series architecture, the problem solved at the kth

time step is

min
Pgt, Pel, Pdrv, Pgen, Pc,
m,E, ωgt, ωdrv, α

N−1∑
i=0

fi(Pgt,i, ωgt,i)δ (16)

s.t. Pel,i = Pc,i + Pgen,i

Pdrv,i = 1
2mi∆iv

2 +mig sin (γi)vi + 1
2CD(αi)ρSv

3
i

mivi∆iγ +mig cos γi = Ti sinαi + 1
2CL(αi)ρSv

2
i

mi+1 = mi − fi(Pgt,i, ωgt,i) δ

Ei+1 = Ei − gi(Pc,i) δ

Pel,i = hi(Pdrv,i, ωdrv,i)

Pgt,i = hgen,i(Pgen,i, ωgen,i)

m0 = m(kδ)

E0 = E(kδ)

E ≤ Ei ≤ E
P gt ≤ Pgt,i ≤ P gt

ωgt ≤ ωgt,i ≤ ωgt

P drv ≤ Pdrv,i ≤ P drv

ωdrv ≤ ωdrv,i ≤ ωdrv

IV. CONVEX RELAXATION

The optimisation problems in (15) and (16) are nonconvex,
which makes a real-time implementation of an MPC algorithm
that relies on its solution computationally intractable. In this
section a convex approximation is proposed that is suitable
for an online solution. We make three simplifications: 1)
we prescribe a flight profile and impose an assumption on
the monotonicity of the loss map functions which results in
convex loss map functions and allows their coefficients to
be computed a priori; 2) we reformulate the dynamics as a
quadratic function of aircraft mass under mild assumptions;
3) we introduce a lossless change of optimisation variables
that shifts the nonlinear term in the battery update equation to
the power balance inequality.

A. Reformulation of the loss map functions
We assume that the aircraft speed vi and flight path angle

γi are chosen externally by a suitable guidance algorithm for
i = 0, . . . , N − 1. This assumption is reasonable for an actual
air traffic management application where flight corridors are
prescribed. For the series configuration, we assume that the
generator speed is constant: ωgen,i = ω∗gen, ∀i, where the
optimal speed ω∗gen is determined empirically so as to operate
the turbo generator set at its maximum efficiency. This allows
us to fix the coefficients in (10) to constant values and express
hgen,i(Pgen,i, ωgen,i) as a convex quadratic function of Pgen,i

hgen,i(Pgen,i) = ν2P
2
gen,i + ν1Pgen,i + ν0, (17)

with constant coefficients ν2 ≥ 0, ν1 > 0.
For the parallel configuration, we assume for simplicity that

the gas turbine, electric motor and fan share a common shaft
rotation speed, i.e. ωgt,i = ωem,i = ωdrv,i, ∀i. If the fan shaft
speed is known at each time step of the prediction horizon,
then the coefficients in (8) and (9) can be estimated from a set
of polynomial approximations of hi(·) at a pre-determined set
of speeds. This allows hi(Pem,i, ωem,i) and hi(Pdrv,i, ωdrv,i) to
be replaced by time-varying convex functions of power alone

hi(Pem,i) = κ2,iP
2
em,i + κ1,iPem,i + κ0,i, (18)

hi(Pdrv,i) = κ2,iP
2
drv,i + κ1,iPdrv,i + κ0,i, (19)

with κ2,i ≥ 0, κ1,i > 0, κ2,i ≥ 0, κ1,i > 0, for all i. Regarding
the gas turbine fuel map, since the spool speed is assumed
constant, the coefficients are independent of gas turbine spool
speed such that fi(Pgt,i, ωgt,i) can also be replaced by a convex
functions of power alone

fi(Pgt,i) = β2P
2
gt,i + β1Pgt,i + β0, (20)

with β2 ≥ 0, β1 > 0.
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If moreover we assume that these functions are non-
decreasing as suggested in [25], the following hold: Pem,i ≥
−κ1,i/2κ2,i, Pdrv,i ≥ −κ1,i/2κ2,i, Pgen,i ≥ −ν1/2ν2, Pgt,i ≥
−β1/2β2 for all i, which requires new lower bounds on power.
In the parallel configuration, the new bounds are given by

P em,i = max

{
P em,−

κ1,i
2κ2,i

}
, (21)

P gt = max

{
P gt,−

β1
2β2

}
, (22)

whereas in the series configuration only the gas turbine bound
should be updated, as follows

P gt = max

{
P gt,−

β1
2β2

, hgen,i

(
− ν1

2ν2

)}
, (23)

since we can enforce the monotonicity condition on the drive
power a priori when prescribing the drive power profile.

In order to estimate the shaft speed ωdrv,i, and hence
determine the coefficients in (18)-(20), we use a pre-computed
look-up table relating the drive power to rotational speed of
the fan, for a given altitude, Mach number, and air conditions
(temperature and specific heat at constant pressure). This
enables the shaft speed to be determined as a function of the
fan power output at each discrete-time step along the flight
path. Although Pdrv,i depends on the aircraft mass mi, which is
itself an optimisation variable, a prior estimate of the required
power output can be obtained by assuming a constant mass
mi = m0 for all i. It was shown in [6] that this assumption
has a negligible effect on solution accuracy.

Note that since the rotation speeds are prescribed, all
constraints on shaft rotation speeds can be removed from the
optimisation (and checked a priori). The same remark holds
for the constraints on the drive power.

B. Reformulation of the dynamics

To express the dynamics in a form suitable for convex pro-
gramming, we simplify the dynamical equations and combine
the equations that constrain the aircraft motion as follows.
First we express the drag and lift coefficients, CD and CL, as
functions of the angle of attack α. Over a restricted domain
and for given Reynolds and Mach numbers, the drag and lift
coefficients can be expressed respectively as a quadratic non-
decreasing function and a linear non-decreasing function [26]

CD(αi) = a2α
2
i + a1αi + a0, a2 > 0, (24)

CL(αi) = b1αi + b0, b1 > 0, (25)

for α ≤ αi ≤ α. Secondly, assuming that the contribution
of the thrust in the vertical direction is negligible1, the term
T sin (α) can be neglected from (11). Finally, combining (11),
(12), (24) and (25), the angle of attack can be eliminated from
the expression for Pdrv,i, which can be expressed as a quadratic
function of the aircraft mass, mi, as follows

Pdrv,i = η2,im
2
i + η1,imi + η0,i, (26)

1This assumption was checked in simulations, where it was found that the
solution satisfies α < 2◦, which supports this assumption.

where

η2,i =
2a2(vi∆iγ + g cos γi)

2

b21ρSvi
,

η1,i = 1
2∆iv

2 + g sin γivi −
2a2b0(vi∆iγ + g cos γi)vi

b21

+
a1
b1

(vi∆iγ + g cos γi)vi,

η0,i = 1
2ρSv

3
i

(a2b20
b21
− a1b0

b1
+ a0

)
.

Since the flight path angle γi and speed vi are determined
a priori, the coefficients η0,i, η1,i, η2,i are fixed. Moreover
η2,i > 0 for all i, so the drive power is a convex function of
mi. Note that there is no guarantee that satisfaction of (26)
enforces (11) and (12) individually. In practice, assuming that
we have full control over the eliminated variable α (via the
elevator and fans), both individual dynamical equations can
be satisfied a posteriori. The existence of a faster inner flight
control loop on angle of attack and thrust ensures that the
correct trajectory is followed. The bounds α ≤ αi ≤ α need
to be checked a posteriori.

C. Reformulation of power balance

Let the rate of change of fuel mass be ϕi := fi(Pgt,i). Using
this new variable, the power balance can be enforced by

ϕi = fϕ,i(mi, Pb,i),

where the function fϕ,i is defined

fϕ,i =

{
fi
(
Pdrv,i(mi)− h−1i

(
g−1i (Pb,i)

))
if T = P

fi
(
hgen,i

(
hi (Pdrv,i(mi))− g−1i (Pb,i)

))
if T = S

where Pdrv,i is given by equation (26). This formulation unifies
the treatment of series and parallel configurations and elim-
inates the variables Pel, Pgen and Pem from the optimisation
problem. Moreover, since the functions fi(·), hi(·), hgen,i(·),
gi(·), Pdrv,i(·) are convex, twice differentiable, non-decreasing,
one-to-one functions, the function fϕ,i(·) is also convex.

We can construct a convex program by relaxing the power
balance equality to the inequality

ϕi ≥ fϕ,i(mi, Pb,i), (27)

which is necessarily satisfied with equality at the optimum
since the form of the objective in (15) and (16) ensures that
any feasible solution that does not satisfy this constraint with
equality is suboptimal.

The constraints on gas turbine power and electric motor
power are replaced by constraints on rate of change of fuel
mass and on battery power, respectively,

ϕ
i
≤ ϕi ≤ ϕi, (28)

P b,i ≤ Pb,i ≤ P b,i, (29)

with ϕ
i

= fi(P gt), ϕi = fi(P gt). Here

P b,i =

{
gi(hi(P em,i)) if T = P
f̃i(P em, P gt) if T = S



6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, XXXX 2022

where f̃i(x, y) := gi(hi(x)−h−1gen,i(y)). Furthermore, to ensure
that gi(·) is real-valued we require Pc,i ≤ U2/4R, and hence

P b,i =

{
gi(hi(P em,i)) if T = P
min

{
f̃i(P em, P gt),

U2

2R

}
if T = S

where P em,i is defined for the parallel configuration by

P em,i = min {P em, rmax,i}

with rmax,i = max {x : 1− 4R/U2hi(x) = 0}.

D. Convex program
A unified convex program can thus be formulated as follows

min
ϕ, Pb,m,E

N−1∑
i=0

ϕiδ (30)

s.t. ϕi ≥ fϕ,i (mi, Pb,i)

mi = m(kδ)−
i−1∑
l=0

ϕl δ

Ei = E(kδ)−
i−1∑
l=0

Pb,l δ

E ≤ Ei ≤ E
ϕ
i
≤ ϕi ≤ ϕi

P b,i ≤ Pb,i ≤ P b,i

where the bounds ϕ
i
, ϕi, P b,i, P b,i are given by

ϕi = fi(P gt),

and, for T = P:

ϕ
i

= max
{
fi(P gt), fi(−

β1

2β2
)
}

P b,i = max
{
gi
(
hi(P em)

)
, gi
(
hi(− κ1,i

2κ2,i
)
)}

P b,i = min
{
gi
(
hi(P em)

)
, gi
(
hi(rmax,i)

)}
,

and, for T = S:

ϕ
i

= max
{
fi(P gt), fi(−

β1

2β2
), fi

(
hgen,i(− ν1

2ν2
)
)}

P b,i = f̃i(P em, P gt)

P b,i = min
{
f̃i(P em, P gt),f̃i(P em,− β1

2β2
),

f̃i
(
P em, hgen,i(− ν1

2ν2
)
)
, U

2

2R

}
.

V. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

If E ≤ Ei−P b,i δ ≤ E ∀i, so that at each time step there is
enough energy in the battery to operate the electric motor at its
maximum capacity, then the solution of (30) is given trivially
by P ∗b,i = P b,i, ∀i, for both architectures. If this condition is
not satisfied, then an optimisation scheme is needed to solve
problem (30). To make real-time implementation possible we
propose a specialised ADMM algorithm [27]. Problem (30)
can be equivalently stated with inequality constraints appended
to the objective function using indicator functions Λx(x),

min
ϕ, Pb,m,
E, χ, ξ, ζ

N−1∑
i=0

ξiδ + Λχ(χi) + ΛE(Ei) + Λϕ(ϕi) + ΛPb(Pb,i)

(31)

s.t. χi = ξi − fϕ,i(mi, Pb,i)

mi = m(kδ)−
i−1∑
l=0

ξlδ

Ei = E(kδ)−
i−1∑
l=0

ζlδ

ξi = ϕi

ζi = Pb,i

with χ = 0, χ =∞, and

Λx(x) =

{
0 if x ≤ x ≤ x,
∞ otherwise.

Note that we have introduced dummy variables ξ and ζ in
order to simplify the solver iterations by separating variables.

We define an augmented Lagrangian function as

L(χ, ξ, ζ, E, Pb, ϕ,m, λ1, λ2, λ3, λ4, λ5) =
N−1∑
i=0

(
ξiδ + Λχ(χi) + ΛE(Ei) + Λϕ(ϕi) + ΛPb(Pb,i)

)
+
σ1
2

N−1∑
i=0

(
χi − ξi + fϕ,i(mi, Pb,i) + λ1,i

)2
+
σ2
2
‖m−m(kδ)Φ + Ψξ + λ2‖2

+
σ3
2
‖E − E(kδ)Φ + Ψζ + λ3‖2

+
σ4
2
‖ξ − ϕ+ λ4‖2

+
σ5
2
‖ζ − Pb + λ5‖2,

where λi is a Lagrange multiplier and σi is a penalty parameter
associated with the ith constraint, Φ is a vector of ones, and Ψ
is the lower triangular matrix with lower triangular elements
equal to δ.

Problem (31) can be rearranged in the canonical form

min
x, z

f̂(x) + ĝ(z) (32)

s.t. b(z) +Bx = c

with

x =
[
χ> ξ> ζ> E> ϕ>

]>
, z =

[
m> P>b

]>
,

λ =
[
λ>1 λ>2 λ>3 λ>4 λ>5

]>
,

f̂(x) =

N−1∑
i=0

ξiδ + Λχ(χi) + ΛE(Ei) + Λϕ(ϕi),

ĝ(z) =

N−1∑
i=0

ΛPb(Pb,i),

B =


I −I 0 0 0
0 Ψ 0 0 0
0 0 I 0 0
0 0 Ψ I 0
0 I 0 0 −I

 , b(z) =


fϕ(m,Pb)

m
−Pb

0
0

 ,
c =

[
0 Φ>m(kδ) 0 Φ>E(kδ) 0

]>
.
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We define the primal and dual residuals rj+1 = b(zj+1) +
Bxj+1− c and sj+1 = [∇zb(zj+1)]>RjB(xj −xj+1), where
Rj = diag(σj1I, σ

j
2I, σ

j
3I, σ

j
4I, σ

j
5I). Note that 0 and I are

compatible zero and identity matrices. By comparison with
[27], the present algorithm deals with a nonlinear b(z) function
in the equality constraint, which requires that the dual residual
is defined in terms of the Jacobian ∇zb.

The ADMM iteration update is given by

χj+1 = πχ(ξj − f jϕ − λ
j
1),

ξj+1 =
(
(σj1+σj4)I + σj2Ψ>Ψ

)−1[−Φδ + σj1(χj+1 + f jϕ + λj1)

− σj2Ψ>(mj −m(kδ)Φ + λj2) + σj4
(
ϕj − λj4

)]
,

ζj+1 = (σj5I + σj3Ψ>Ψ)−1
[
− σj3Ψ>

(
Ej − E(kδ)Φ + λj3

)
+ σj5(P jb − λ

j
5)
]
,

Ej+1 = πE
(
E(kδ)Φ−Ψζj+1 − λj3

)
,

P j+1
b,i = πPb

(
arg min

Pb,i

{σj1
2

[
χj+1
i − ξj+1

i + fϕ,i(m
j
i , Pb,i)

+ λj1,i
]2

+
σj5
2

[
ζj+1
i − Pb,i + λj5,i

]2})
,

ϕj+1 = πϕ
(
ξj+1 + λj4

)
,

mj+1
i = arg min

mi

{σj1
2

[
χj+1
i − ξj+1

i + fϕ,i(mi, P
j+1
b,i ) + λj1,i

]2
+
σj2
2

[
mi −m(kδ)Φ + [Ψξj+1]i + λj2

]2}
,

λj+1
1 = λj1 + χj+1 − ξj+1 + f j+1

ϕ ,

λj+1
2 = λj2 +mj+1 −m(kδ)Φ + Ψξj+1,

λj+1
3 = λj3 + Ej+1 − E(kδ)Φ + Ψζj+1,

λj+1
4 = λj4 + ξj+1 − ϕj+1,

λj+1
5 = λj5 + ζj+1 − P j+1

b ,

where f jϕ = [f jϕ,0 · · · f
j
ϕ,N−1]> and πx(y) denotes the pro-

jection max{min{y, x}, x}. The penalty parameters σjn, n =
1, 2, 3, 4, 5 are updated at intervals of Fσ iterations (provided
10 < max

{
||rj+1||

max {||b(zj+1)||,||Bxj+1||,||c||} ,
||sj+1||

||∇zb(zj+1)>λj+1||

}
)

according to the rule

τ j+1 =


Γ if 1 ≤ Γ < τmax,

Γ−1 if τ−1max < Γ < 1,

τmax otherwise,

σj+1
n =


σjnτ

j+1 if
∥∥rj+1
n

∥∥ > µ
∥∥sj+1

∥∥,
σjn/τ

j+1 if
∥∥sj+1

∥∥ > µ
∥∥rj+1
n

∥∥,
σjn otherwise,

Rj+1 = diag(σj+1
1 I, σj+1

2 I, σj+1
3 I, σj+1

4 I, σj+1
5 I),

where Γ =
√
‖rj+1‖ / ‖sj+1‖ and rj+1

n denotes the rows of
rj+1 associated with the nth constraint, 1 ≤ n ≤ 5.

The updates for χ, E and the multipliers λ1, λ2, λ3, λ4,
λ5 involve only vector additions, summations and projections.
The equations

(
(σj1 + σj4)I + σj3Ψ>Ψ

)
ξ = c1 and (σj5I +

σj3Ψ>Ψ)ζ = c2 can be solved for ξ and ζ (for given c1 and c2)
in O(N) operations using appropriate Cholesky factorisations

(for details see [28], Prop. 3). The Cholesky factors can be
reused until the penalty parameters σjn are updated, otherwise
the updates for ξ and ζ require only scalar multiplications
and vector summations. The updates for Pb and m require
minimisation of scalar convex functions and can be performed
using Newton’s method.

The algorithm is initialised with

P 0
b = ΦP b, ζ0 = P 0

b , ξ0 = ϕ, ϕ0 = ξ0,

E0 = πE
(
ΦE(kδ)−Ψζ0

)
, m0 = Φm(kδ)−Ψξ0

χ0 = πχ(ξ0 − f0ϕ), λ01 = λ02 = λ03 = λ04 = λ05 = 0Φ

R0 = diag(50I, 3.69× 10−7I, 6.96× 10−7I, 20.29I, 0.83I),

and stopped when
∥∥rj+1

∥∥ ≤ εP and
∥∥sj+1

∥∥ ≤ εD or j > 105,
where, following [27],

εP =
√

5Nεabs + εrel max {||b(zj+1)||, ||Bxj+1||, ||c||},
εD =

√
2Nεabs + εrel||[∇zb(zj+1)]>λj+1||.

The penalty parameters σjn are initialised so that all terms of
the Lagrangian are initially of the same order of magnitude.

VI. NUMERICAL RESULTS

In this section we introduce an energy management case
study involving a representative hybrid-electric passenger air-
craft and solve optimisation problem (30) within this context
using the ADMM algorithm as presented in section V. The
simulation results are analysed and the performance of the
algorithm is discussed in terms of its computational require-
ments and robustness to variations in model parameters.

A. Simulation scenario

The parameters of the model used in simulations are shown
in Table I. These are based on published data for the BAe 146
aircraft. The conventional BAe 146 propulsion system is re-
placed by hybrid-electric propulsion systems2 in either parallel
or series configuration (as illustrated in Figs. 2 and 3), both of
which were equipped with the same battery size. The aircraft
is powered by a combination of 4 such systems.

For the purposes of this study it is assumed that velocity and
height profiles are known a priori as a result of a fixed flight
plan determined prior to take-off. We consider an exemplary
1-hour flight at a true airspeed (TAS) of 190 m/s for a typical
100-seat passenger aircraft. The flight path (height and velocity
profile) is shown in Figure 4.

The electric loss map coefficients κ2,i, κ1,i, κ0,i can be
estimated ∀i from these profiles. First, the drive power Pdrv
is approximated a priori, e.g. by assuming a conventional
gas-turbine-powered flight. Then, the fan shaft rotation speed,
ωdrv,i (equal to the electric motor shaft rotation speed in both
configurations), is interpolated from a precomputed look-up
table relating measured shaft rotation speed, altitude and drive
power at a given Mach number. For example, a Mach number
of 0.55 (190 m/s TAS) gives the relationship shown in Fig. 5,

2In order to maintain a constant MTOW, the excess mass from the
batteries, electric motors, generators and electrical distribution systems can
be compensated by cuts in passenger count and fuel mass.
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TABLE I
MODEL PARAMETERS

Parameter Symbol Value Units
Mass (MTOW) m 42000 kg
Gravity acceleration g 9.81 m s−2

Wing area S 77.3 m2

Lift coefficients b0 0.43 −
b1 0.11 deg−1

Drag coefficients
a0 0.029 −
a1 0.004 deg−1

a2 5.3e−4 deg−2

Angle of attack range [α;α] [−3.9; 10] deg
# of propulsion systems n 4 −
Total fuel mass mfuel 1000× n kg
Total battery mass mb 2000× n kg
Battery energy density eb 0.875 MJkg−1

Fuel map coefficients β0 0.0327 kg s−1

β1 0.0821 kgMJ−1

Generator coefficients ν0 0.08 MW
ν1 1 −

Total battery SOC range
[
E;E

]
× n [350; 1487]× n MJ

Gas turbine power range
[
P gt;P gt

]
[0; 5] MW

Motor power range
[
P em;P em

]
[0; 5] MW

Battery o.c. voltage U 1500 V
Battery resistance R 0.035 ohm
Flight time T 3600 s
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0

5000

10000

0 500 1000 1500 2000 2500 3000 3500
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160
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Fig. 4. Height and velocity profiles for the mission.

which was obtained by scaling a proprietary fan design for
the thrust range of the BAe 146 aircraft. The non-dimensional
rotation speed Ω is thus estimated at a given altitude, Mach
number and drive power using the map in Fig. 5, and the shaft
rotation speed is inferred from

ωdrv =
156.7

100

π

30
Ω
√
Tin,

where Tin = T0(h) + v2/2cp is the temperature at inlet of
the fan, cp = 1005 JK−1kg−1 is the specific heat of air at
constant pressure and T0(h) is the temperature of air at altitude
h. Finally, the coefficients are interpolated from a precomputed
record of losses in the electric motor as a function of ωdrv.

The gas turbine fuel map and generator loss map used in
this study are approximately linear (β2 ≈ 0 and ν2 ≈ 0) for
the range of power conditions considered, and the coefficients
are constant as discussed in Section IV.

Fig. 5. Contour plot relating drive power, altitude and non-dimensional
rotation speed for a Mach number of 0.55.

B. Results

The mission is simulated in both configurations with sam-
pling interval δ = 60 s over a one-hour shrinking horizon
by solving the optimisation problem (30) at each time step
and implementing the first element of the optimal power split
sequence as an MPC law. The tolerance is set to εrel = 5e−6,
εabs = 0 and the penalty parameters are updated at intervals
of Fσ = 500 iterations.

The closed-loop ADMM solution to the energy management
control strategy is shown in Fig. 6 for both parallel and
series configurations. The solutions are for a single propulsion
system (so all quantities should be multiplied by n = 4 to
obtain the results for the whole aircraft). The plots represent
the evolution of the relevant power terms in the power bal-
ance equations (13) and (14): Pdrv, Pem, Pgt for the parallel
configuration and Pel, Pc, Pgen for the corresponding terms in
the series configuration. It should be noted that the solution
is similar in both configurations. A striking feature of the
solutions is the tendency to allocate more electrical power
at the end of the flight. An intuitive explanation for this
phenomenon is that the fuel burnt by using the gas turbine
at the beginning of the flight reduces the mass of the aircraft,
consequently reducing the power required to be produced by
the fan later in the flight. This effect is amplified if the rate
of fuel consumption is increased, as seen in Fig. 7 comparing
the electrical power profiles with different fuel consumption
coefficients (β).

It should be noted that a concurrent effect arises from the
losses in the battery electric bus. The nonlinear loss map g
between the battery chemical power Pb and effective power
Pc tends to penalise large electrical power peaks thus flattening
the electrical power distribution. This is seen in Fig. 8 which
shows the electrical power profiles with different values for the
battery equivalent circuit resistance: for smaller resistances the
electrical losses at high power outputs is reduced so the power
profile shows greater variation over time.

Fig. 9 compares the evolution of battery SOC and fuel
consumption for both configurations. As illustrated, the series
propulsion architecture consumes slightly more fuel because it
implements one more electric machine with associated losses,
and so the electrical power is larger for a given flight profile.
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Fig. 6. Closed-loop ADMM solution to the energy management problem
in the parallel and series configurations, shown for 1 system (4 overall).
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Fig. 7. Effect of changing fuel map coefficient β0 (single system).

The selection of a particular configuration is thus motivated
by a trade-off between efficiency and complexity of aero-
mechanical integration.

The distribution of the electrical power over time is also
illustrated in Fig. 10 in comparison with other energy man-
agement strategies. The charge-depleting-charge-sustaining
(CDCS) strategy is a heuristic that uses all the electrical
energy at the beginning of the flight until the battery is
depleted and then relies solely on the gas turbine for the
remainder of the flight. Interestingly, the proposed ADMM-
based approach is the antithesis of this strategy, allocating a
non-negligible part of the electrical power at the end of the
flight. The third strategy illustrated in Fig. 10 uses the ADMM
algorithm but ignores the aircraft mass variation. Interestingly,
this (necessarily suboptimal) solution distributes the electrical
power uniformly over the duration of the flight. In this case the
strategy is dominated by the need to reduce electrical losses;
neglecting the aircraft mass variation means that the potential
savings due to fuel burn early in the flight are not exploited.

The superiority of the presented variable mass ADMM
solver over other strategies is shown in Table II. The heuristic
CDCS strategy is used as a benchmark case. It is shown that
the fuel savings with the mass-varying ADMM solver are
superior to other strategies, in both parallel and series con-
figuration. In the parallel configuration, the proposed energy
management strategy achieves a fuel consumption of 2115 kg,
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Fig. 8. Effect of changing battery resistance R (single system).
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Fig. 9. Comparison of battery and fuel consumption in the parallel and
series configurations, shown for 1 system.

namely 1.7% less than with CDCS. Likewise, in the series
configuration, a fuel consumption of 2188 kg is reported,
which corresponds to a 1.9% decrease over CDCS.

As expected, the series architecture consumes more fuel
than the parallel architecture. This is because series propulsion
architectures employ an additional electrical machine and
thus consume more electrical power due to inherent losses.
Despite being less efficient, the series architecture has poten-
tial advantages in multi-propulsor configurations and is less
mechanically complex than the parallel configuration.

It should be noted that the same aircraft equipped with
a conventional gas turbine propulsion system would burn
Fgt = 2403 kg over the same scenario flight using the same
models of powertrain components. However, in practice the
conventional powertrain would be lighter since aviation fuels
have a much higher energy density than batteries, so a direct
comparison of fuel consumption is not possible.

Finally, we consider extensions of this case study to demon-
strate the full potential of the proposed solver. We consider
the same flight scenario but now assume that 1) the maximum
gas turbine power is P gt = 3 MW, and 2) the propulsion unit
is capable of converting negative drive power during descent
into electricity to recharge the battery (i.e. “windmilling”).
This operation mode can be enforced by assuming a recovery
efficiency ηw and setting P b = P b = g

(
h(ηwPdrv,i)

)
for all

time steps i such that Pdrv,i < 0.
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Fig. 10. Comparison of ADMM, CDCS and ADMM with constant mass
(parallel and series architectures, single system).

TABLE II
FUEL COMPARISON

Configuration
Parallel Series

Method Fuel (kg) Saving (%) Fuel (kg) Saving (%)
CDCS 2152 − 2231 −
Constant mass 2123 1.3 2192 1.7
Variable mass 2115 1.7 2188 1.9

Figure 11 shows the impact of these modifications. Gas
turbine saturation causes more electrical energy to be allocated
to the point at which the gas turbine saturates. The potential
for energy recovery via a windmilling mode is apparent at the
end of the flight, where the drive power is negative, and the
battery SOC increases during this part of the descent. It has
been assumed for simplicity that the recovery process is ideal,
that the electric motor can be operated as a generator and that
the fan can be operated in reverse (requiring e.g. a variable
pitch fan). In practice, we would expect recovery efficiencies
between 10%− 20% with current technology.

C. Solver performance
We next consider the convergence and robustness properties

of the proposed ADMM solver. Instead of solving the optimi-
sation problem at successive time steps to derive the MPC law
(as in Section VI-B), we consider solving only one instance
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Fig. 11. Effect of windmilling and gas turbine saturation (single system).

of the optimisation problem in order to simplify the analysis.
We show that the proposed solver is robust to changes in
the flight profile, aircraft parameters and problem dimension.
The parallel configuration is considered here, all results being
qualitatively equivalent for the series configuration.

Section VI-B assumed fixed values for parameters that
influence convergence rate (tolerances, sample rate and penalty
parameter update frequency). To investigate the effect of
changing tolerances, Fig. 12 shows accuracy relative to the
optimal solution (obtained by solving the problem with op-
timisation package CVX and solver SDPT3 and comparing
total fuel consumption), number of iterations to completion,
and computation time as a function of relative tolerance εrel.
The latter was varied while keeping other parameters constant
(with εabs = 0, Fσ = 105, δ = 10s). As expected, as tolerance
decreases, accuracy increases at the expense of a larger number
of iterations and a consequent increase in computation.

It is possible to reduce the tolerance without incurring
additional computational cost if the ADMM algorithm is aug-
mented with a penalty parameter update scheme as introduced
in section V. This is illustrated in Fig. 13, which was obtained
by varying the update frequency 1/Fσ while keeping other
parameters constant (with εabs = 0, εrel = 5 × 10−5, δ =
10s). The number of iterations required (and consequently the
computation time) decreases as the update frequency increases.
However, this tends to decrease accuracy with respect to the
CVX solution. The frequency update should thus be selected
with care so as not to affect accuracy.

The influence of the sampling interval δ on computation
time is shown in Fig. 14 by varying the problem dimension
(N = T/δ), with all other parameters kept constant (εabs = 0,
εrel = 5 × 10−5, Fσ = 50). Computation time increases
as problem dimension increases, however, the empirically
observed dependence is O(N2) for CVX and O(

√
N) for

ADMM. Therefore the proposed solver provides significant
computation time reduction relative to CVX, allowing longer
prediction horizons and better real-time convergence.

Experiments were performed to compare the proposed
ADMM algorithm for the convex problem (30) with direct
solution of the nonconvex problem (15). Retaining only as-
sumption 1) from section IV, the nonconvex problem was
solved using a general purpose nonlinear programming solver
(fmincon [29]) with δ = 60 s, which converged within 82 s.
Under the same conditions ADMM (implemented in Matlab)
converged within 0.5 s. To compare fmincon and ADMM solu-
tions, a Monte Carlo simulation was conducted by solving 100
problem instances with battery size randomly sampled from a
uniform distribution. For each scenario the mean absolute error
between the solutions (Pb) of both solvers was computed. The
variance of the error distribution is 9.3×10−5 MW2, showing
good agreement between fmincon and ADMM.

Finally, robustness to changes in the mission parameters
is investigated in Figures 15-17 where CVX and ADMM
solutions are compared for modified simulation scenarios and
fixed convergence parameters (εabs = 0, εrel = 5×10−5, Fσ =
50, δ = 10s). These results show that the ADMM solution
matches the solution obtained using CVX, thus demonstrating
robustness to changes in problem-specific parameters.
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Fig. 12. Effect of varying the relative tolerance on ADMM convergence.
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Fig. 13. Effect of varying the penalty parameters update frequency on
ADMM convergence.

VII. CONCLUSIONS

This paper presents a fast and robust ADMM algorithm to
solve the energy management problem for a hybrid electric
aircraft in parallel and series configurations. A convex program
is derived from the associated optimisation problem and the
high degree of separability in the optimisation variables is
exploited in the design of the solver. The ADMM solver was
shown to produce similar results to the general purpose convex
optimisation package CVX (with solver SDPT3) for a wide
range of scenarios, while significantly outperforming CVX
in terms of computation times. Significant fuel savings were
achieved by comparison to heuristic strategies.

An extension of the proposed approach could optimise gas
turbine speed given an estimate of its power output (possibly
within an iterative scheme), removing the need for the assump-
tion on gas turbine speed for the series configuration. Another
extension would be to investigate robustness of the proposed
approach to power demand disturbances. Although the flight
path is fixed and the aircraft flight dynamics are prescribed in
the MPC optimisation, the predicted power demand is likely
to be inexact and this would introduce disturbance terms into
the dynamics of battery SOC and fuel mass. Future work
will also investigate the application of the proposed algorithm
to solve the energy management problem for other types of
hybrid vehicles (e.g. hybrid VTOL aircraft with applications
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Fig. 14. Effect of problem dimension on computation time.
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Fig. 15. ADMM and CVX solutions for various battery masses.

to urban air mobility). Finally, the principles developed here
for energy management could be applied to the problem of
optimal design and sizing of powertrain components.
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