
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 1

Predictive Ensemble Pruning by Expectation
Propagation

Huanhuan Chen, Member, IEEE, Peter Tiňo and Xin Yao, Fellow, IEEE

Abstract—An ensemble is a group of learners that work together as a committee to solve a problem. The existing ensemble

learning algorithms often generate unnecessarily large ensembles, which consume extra computational resource and may degrade

the generalization performance. Ensemble pruning algorithms aim to find a good subset of ensemble members to constitute a small

ensemble, which saves the computational resource and performs as well as, or better than, the unpruned ensemble. This paper

introduces a probabilistic ensemble pruning algorithm by choosing a set of “sparse” combination weights, most of which are zeros,

to prune the ensemble. In order to obtain the set of sparse combination weights and satisfy the non-negative constraint of the

combination weights, a left-truncated, non-negative, Gaussian prior is adopted over every combination weight. Expectation propagation

(EP) algorithm is employed to approximate the posterior estimation of the weight vector. The leave-one-out (LOO) error can be obtained

as a byproduct in the training of EP without extra computation and is a good indication for the generalization error. Therefore, the LOO

error is used together with the Bayesian evidence for model selection in this algorithm. An empirical study on several regression and

classification benchmark data sets shows that our algorithm utilizes far less component learners but performs as well as, or better than,

the unpruned ensemble. Our results are very competitive compared with other ensemble pruning algorithms.

Index Terms—Machine learning, Probabilistic algorithms.

✦

1 INTRODUCTION

Ensemble of multiple learning machines, i.e. a group of
learners that work together as a committee, has attracted
a lot of research interests because it is a good approach
to improve the generalization ability [1]. Because of their
simplicity and effectiveness, ensembles have become a
hot topic in machine learning. This technique originates
from Hansen and Salamon’s work [1], which shows that
the generalization ability of a neural network can be
significantly improved through ensembling a number of
neural networks. Ensembles have already been success-
fully applied to many areas and there have been many
ensemble learning algorithms in the literature, such as
Bagging [2], Boosting [3], Arcing [4], random forests [5],
rotation forests [6], COPEN (pairwise COnstraints Pro-
jection based ENsemble) [7], negative correlation learn-
ing and evolutionary computation based algorithms [8],
[9].

However, the existing ensemble learning algorithms
often generate unnecessarily large ensembles. These
large ensembles are memory demanding. Obtaining a
prediction for a fresh data point can be done expensively
in large ensembles. Although these extra costs may seem
to be negligible when dealing with small data sets,
they may become serious when the ensemble method
is applied to a large scale data set.

• The authors are with The Centre of Excellence for Research in Computa-
tional Intelligence and Applications (CERCIA), School of Computer Sci-
ence, University of Birmingham, Birmingham B15 2TT, United Kingdom
(email: {H.Chen, P.Tino, X.Yao}@cs.bham.ac.uk).

Manuscript received August 21, 2008; revised October 27, 2009; accepted
February 13, 2009.

In addition, it is not always true that the larger the
size of an ensemble, the better it is. Some theoretical and
empirical evidences have shown that small ensembles
can be better than large ensembles [10], [11], [2]. For
example, the boosting ensembles, Adaboosting [3] and
Arcing [4], pay more attention to those training samples
that are misclassified by former learning machines in the
training of next machines and finally reduce the training
error to zero. In this way, Boosting ensembles are prone
to overfitting the noise in the training set [12]. In these
circumstances, it is necessary to prune some overfitting
individuals to achieve good generalization.

In the last decades, several ensemble pruning algo-
rithms have been proposed, such as Kappa pruning [13],
concurrency pruning [14]. However, these algorithms all
resort to greedy search, which is without either theoret-
ical or empirical quality guarantees.

Yao et al. [10] first adopted a global optimization
approach, genetic algorithm (GA), to weigh the ensemble
members by constraining the weighs to be positive. Zhou
et al. [11] later also proved that small ensembles can be
better than large ensembles. A similar genetic algorithm
approach can be found in [15]. However, these GA
based algorithms try to obtain the optimal combination
weights by minimizing the training error and in this way
these algorithms become sensitive to noise.

Motivated by the above reasons, we modeled the
ensemble pruning as a probabilistic model with trun-
cated Gaussian prior for both regression and classifica-
tion problems [16]. The Expectation-Maximization (EM)
algorithm is used to infer the combination weights and
our algorithm shows good performance in both gener-
alization error and pruned ensemble size. However, the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 2

EM algorithm is sensitive to the initialization and it does
not guarantee to obtain the optimal solutions due to
converging to local maxima.

In order to resolve the unstable issue of EM, this paper
extends our previous work and proposes a probabilis-
tic ensemble pruning algorithm based on expectation
propagation (EP). The algorithm treats ensemble pruning
as a weight-based optimization, aiming to improve the
generalization performance of the ensemble by tuning
the weight of each ensemble member. By introducing a
sparseness-inducing prior for each combination weight,
many of the posteriors of weights are sharply distributed
around zero, leading to pruning unimportant learning
machines. As negative combination weights are unre-
liable and not intuitive [17], [18], [19], we follow this
constraint and employ a left-truncated prior to prevent
negative values in the combination weights.

By incorporating the truncated prior, the normaliza-
tion integral in Bayesian inference becomes intractable.
This paper uses expectation propagation to approximate
the posterior of weights. EP [20] is a deterministic algo-
rithm for approximating Bayesian inference that extends
assumed-density filtering (ADF) to incorporate iterative
refinement of the approximations. As the leave-one-
out (LOO) error can be obtained as a byproduct in
the training of EP without extra computation, the LOO
error is used together with Bayesian evidence for model
selection.

An empirical study on several regression and classi-
fication benchmark data sets shows that our algorithm
utilizes far less component learners yet performs as well
as, or better than, the unpruned ensemble. The results are
very competitive compared with other existing ensemble
pruning algorithms.

The original contribution of this paper over the pre-
vious paper [16] is the use of Expectation Propagation
instead of Expectation-Maximization to overcome sta-
bility problem of EM (sensitivity to initialization and
convergence to local maxima), and a comprehensive
empirical study. The benefit of obtaining a LOO estimate
in the training of EP is an additional advantage of this
approach.

Ensemble pruning algorithms can improve accuracy
significantly as shown by the theoretical and empirical
studies in this paper. A smaller ensemble will also reduce
test (application) time after the ensemble is trained and
pruned. However, such benefits come with the cost of a
longer training time. There is a trade-off between train-
ing and application times when considering ensemble
pruning. When an application has a very large training
set, ensemble pruning can be computationally expensive,
or even prohibitive. For applications that are charac-
terized by relatively small training sets but large test
ones, e.g., in the field of transductive learning, ensemble
pruning algorithms are highly appropriate as smaller
ensembles pruned by an ensemble pruning algorithm
can improve the accuracy and reduce the application
time in the test stage. In this paper, we provide our

approach on a poker hand problem characterized by a
relatively small training set and a large test set.

The rest of this paper is organized as follows. After
the background introduction in Section 2, Section 3
presents the EP pruning algorithm for regression and
classification problems, respectively, followed by experi-
mental results and analysis in Section 4. Finally, Section
5 concludes the paper and presents some future work.

There are many symbols used in this paper. Figure 1
reports the meaning of these notations. We use lowercase
letters for vectors and uppercase for matrices. Scalar
quantities will be typed in normal.

fi (·) – the i-th individual learner in an ensemble

fens (·) – the function of an ensemble

wi – the combination weight of the learner fi(·).

w – the weight vector of an ensemble w = (w1, · · · , wM)T
.

F(x) – the vector of individual learners F(x) = (f1(x), · · · , fM (x))T .

x – input vector from a d-dimensional space, usually R
d.

y – the output corresponding to a given input x.

D = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} – the training data set.

p(x) – the distribution of x

C – correlation matrix with elements indexed as Cij =
∫

p(x)(fi(x) − y)(fj(x) −
y)dx

N – the number of samples.

M – the number of individual models in the ensemble, i.e. the size of ensemble.

αi – the inverse variance of weight wi

α =(α1, · · · , αM)T – the inverse variance of weight vector w.

Nt(wi|0, α−1

i) – a left-truncated Gaussian distribution with mean 0 and variance

α−1

i .

N(wi|0, α−1

i) – a Gaussian distribution with mean 0 and variance α−1

i .

ǫn – Gaussian noise ǫn = N(0, σ2) with mean zero and variance σ2.

Θ(wi) – the step function Θ(wi) =

{

1 if wi > 0
0 if wi ≤ 0

.

ti(w) – the exact term ti(w) = Θ(wi) in EP.

t̃i(w) – the term to approximate the step function ti(w) = Θ(wi) in EP.

gn – the exact likelihood term gn = p(yn|xn,w) in EP.

g̃n – the term to approximate the likelihood term gn = p(yn|xn,w).
mi – the mean of the approximating term t̃i(w).
vi – the variance of the approximating term t̃i(w).
si – the normalization factor of the approximating term t̃i(w).
q(w) – the approximated posterior of w.

q\n(w) – the approximated leave-one-out posterior, i.e. remove the approximation

term g̃n from the posterior q(w).
Φ(x) =

∫ x

−∞ N(t|0, 1)dt – Gaussian cumulative distribution function.

Fig. 1. Notations used in this paper.

2 BACKGROUND

The goal of ensemble pruning is to reduce the size of
ensemble without compromising its performance. The
pruning algorithms can be classified into two categories,
selection-based and weight-based pruning algorithms. In
the following, we review the two kinds of strategies,
respectively.

2.1 Selection based Ensemble Pruning

The selection-based ensemble pruning algorithms do not
weigh each leaner by a weighting coefficient, and they
either select or reject the learner.

A straightforward method is to rank the learners ac-
cording to their individual performance on a validation
set and pick the best ones [21]. This simple approach
may sometimes work well but is theoretically unsound

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 3

since this strategy is greedy and not guaranteed to be
globe optimum.

Margineantu et al. [13] proposed four heuristic ap-
proaches to prune ensembles generated by Adaboost. Of
them, KL-divergence pruning [13] and Kappa pruning
[13] aim at maximizing the pair-wise difference between
the selected ensemble members. Kappa-error convex hull
pruning [13] is a diagram-based heuristic targeting at a
good accuracy-divergence trade-off among the selected
subsets. Back-fitting pruning [13] essentially enumerates
all the possible subsets, which is computationally too
costly for large ensembles. Then, Prodromidis et al.
invented several pruning algorithms for their distributed
data mining system [22]. One of the two algorithms
they implemented is based on a diversity measure they
defined, and the other is based on the class speciality
metrics. The major problem with the above algorithms
is that they all resort to greedy search, which is usually
without either theoretical or empirical quality guaran-
tees.

Zhang et al. [23] formulated ensemble pruning as a
quadratic integer programming problem. By applying
semi-definite programming (SDP) as a solution tech-
nique, their SDP-based pruning algorithm outperformed
other heuristics. However, the algorithm did not achieve
better performance than the unpruned ensemble due to
the following limitations: 1) some parameters need to
be specified in the algorithm and 2) a better objective
function is needed for more accurate solutions.

2.2 Weight based Ensemble Pruning

The more general weight-based ensemble optimization
aims at improving the generalization performance of
the ensemble by tuning the weight on each ensemble
member.

For regression ensembles, the optimal combination
weights can be calculated analytically [11], [18]. The
study has been covered in other research areas as well,
such as operational research [24]. According to [11], the
optimal weights can be obtained as:

wi =

∑M
j=1

(C−1)ij
∑M

k=1

∑M
j=1

(C−1)kj

,

where C is the correlation matrix with elements indexed
as Cij =

∫

p(x)(fi(x) − y)(fj(x) − y)dx that is the cor-
relation between the ith and the jth component learner,
wherein p(x) is the distribution of x. The correlation ma-
trix C cannot be computed analytically without knowing
the distribution p(x) but can be approximated with a
training set, as follows:

Cij ≈
1

N

N
∑

n=1

[(yn − fi(xn))(yn − fj(xn))] .

However, this approach rarely works well in real-
world applications. This is because when a number of
estimators are available, there are often some estimators

that are quite similar in performance, which makes the
correlation matrix C ill-conditioned, hampering the least
square estimation. Other issues of this formulation in-
clude (1) the optimal combination weights are computed
from the training set, which often overfits the noise and
(2) in most cases the optimal solution does not reduce
the ensemble size.

In this paper, a numerically stable algorithm, which is
applicable to rank deficient cases (lscov in MATLAB), is
used to calculate the least square solution for ensemble
pruning. The algorithm, called least square (LS) pruning
in our experiments, acts as a baseline. The LS pruning is
applicable to binary classification problems by modeling
the classification problem as a regression problem with
its target set to -1 or +1. However, the LS pruning
often produces negative combination weights. Strategies
allowing negative combination weights were shown to
be unreliable [25], [26].

Demiriz et al. [27] employed mathematical program-
ming to look for good weighting schemes. Those op-
timization approaches are effective in performance en-
hancement according to empirical results and are some-
times able to significantly reduce the ensemble size [27].
However, ensemble size reduction is not explicitly built
into those programs and the final size of the ensemble
can still be very large in some cases.

In fact, the weight based ensemble pruning can be
viewed as a sparse Bayesian learning problem by ap-
plying Tipping’s relevance vector machine (RVM) [28].
RVM is an application of Bayesian automatic relevance
determination (ARD) and it prunes most of the ensemble
members by employing a Gaussian prior and updating
the hyperparameters in an iterative way. However, ARD
pruning allows negative combination weights and the
solution is not optimal according to the current research
[25], [26].

To address the problem of ARD pruning, Chen et
al. [16] modeled the ensemble pruning as a proba-
bilistic model with truncated Gaussian prior for both
regression and classification problems. The Expectation-
Maximization (EM) algorithm is used to infer the com-
bination weights and our algorithm shows good perfor-
mance in both generalization error and pruned ensemble
size. However, EM algorithm is sensitive to the initial-
ization and it does not guarantee to obtain the optimal
solutions due to converging to local maxima.

The paper extends the previous work and employs
the deterministic expectation propagation (EP) [20] to
approximate the posterior of weights. Conveniently, an
estimate of the leave-one-out (LOO) error can be ob-
tained in the training of EP. The LOO error is used
together with the Bayesian evidence for model selection
in this algorithm.

3 ENSEMBLE PRUNING ALGORITHMS BY EX-
PECTATION PROPAGATION

In this section, we describe our ensemble pruning algo-
rithm and present the detailed expectation propagation

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 4

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

w
i

p
(w

i|α
 i)

Non−negative Gaussian Prior

Fig. 2. The left-truncated Gaussian Prior

procedures.

3.1 Sparseness-introduction and Truncated Prior

In the weight-based ensemble pruning algorithm, the
ensemble is formulated as a linear combination of the
individual learners:

fens(x;w) =

M
∑

i=1

wifi(x) = wT F(x),

where w = (w1, · · · , wM)
T is the weight vector of the

ensemble, and F(x) = (f1(x), · · · , fM (x))T is the vector
of individual learners. The pruning algorithm is to adjust
the parameters w, setting many wi to zeros, but not
degrade the generalization performance of the ensemble.
As negative weight vectors are neither intuitive nor
reliable [17], [18], [19], this paper constraints the weight
vector to be non-negative.

To encourage the sparsity of weight vector w and
to satisfy the non-negative restriction, a left-truncated
Gaussian prior is introduced for each weight wi:

p(w|α) =

M
∏

i=1

p(wi|αi) =

M
∏

i=1

Nt(wi|0, α−1

i), (1)

where α =(α1, · · · , αM)T is the inverse variance of
weight w and Nt(wi|0, α−1

i) is a left-truncated Gaussian
distribution. This is formalized in equation (2) and illus-
trated in Figure 2.

p(wi|αi) =

{

2N(wi|0, α−1

i) if wi ≥ 0
0 if wi < 0

. (2)

3.2 Expectation Propagation

Expectation propagation (EP) [20] is a deterministic algo-
rithm for approximating Bayesian inference that extends
assumed-density filtering (ADF) to incorporate iterative
refinement of the approximations. Expectation propaga-
tion assumes that the joint distribution p(D,w), where
the data D = {xn, yn}

N
n=1

has been observed and w is

a parameter vector, can be factored into some simple
terms:

p(D,w) =

M
∏

i=1

p(wi)

N
∏

n=1

p(yn|w, xn) =

M
∏

i=1

ti

N
∏

n=1

gn,

where p(wi) is the prior distribution of wi, M is the

number of weights and
N
∏

n=1

p(yn|w, xn) is the likelihood.

The intuitive meaning of the equation is that the prior

p(w) and the likelihood
N
∏

n=1

p(yn|w, xn) can be factored

into a number of terms ti and gn, which can then be
approximated by corresponding t̃i and g̃n in EP.

EP adopts a family of exponential functions (t̃i, g̃n)
to approximate each term (ti, gn) by minimizing the
KL-divergence between the exact term and the approx-
imation term, and then combines these approximations
analytically to obtain a Gaussian posterior q(w) on w.

3.3 Expectation Propagation for Regression Ensem-
bles

In the regression ensemble model, we train M individual
estimators using the training set {xn, yn}

N
n=1

, where yn

is a scalar. We assume the ensemble output is corrupted
by an i.i.d. additive Gaussian noise ǫn ∼ N(0, σ2) with
mean zero and variance σ2:

yn = wT F(xn) + ǫn. (3)

According to equation (3), the true value yn is dis-
tributed as a Gaussian distribution with mean wT F(xn)
and variance σ2. Based on the assumption of indepen-
dence of training points, the likelihood can be expressed
as:

p(y|w,xn, σ2) = (2πσ2)−N/2 exp{−
1

2σ2
‖yT − wT F‖2}.

(4)
where y = (y1, · · · , yN)T , w = (w1, · · · , wM)T and F =
(F(x1), · · · ,F(xN)) is a M × N matrix, where F(xn) =
(f1(xn), · · · , fM (xn))T .

The posterior of the weight vector w is denoted by

p(w | x,y, α) ∝

M
∏

i=1

p(wi|αi)

N
∏

n=1

p(yn|xn,w). (5)

According to equation (2), the prior p(wi|αi) can be
written as:

p(wi|αi) = 2N(wi|0, α−1

i)Θ(wi), (6)

where Θ(wi) = Θ(wT ei) =

{

1 if wi > 0
0 if wi ≤ 0

pre-

vents the weights from negative values and ei =
(0, · · · , 1, 0, · · · , 0)T is used to obtain the weight wi (wi =
wT ei and Θ(wi) = Θ(wT ei)).

Based on equation (6), equation (5) can be written as

p(w | x,y, α) ∝

M
∏

i=1

2N(wi|0, α−1

i)

M
∏

i=1

Θ(wi)

N
∏

n=1

p(yn|xn,w).

(7)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 5

Input: the training set D = {(x1, y1) , . . . , (xN , yN)}, the ensemble function F(x) =
(f1(x), · · · , fM (x))T , the number of sample N , the size of ensemble M and the inverse

variance of weight vector α =(α1, · · · , αM)T .

1. Initialize the prior term: q(w) = N(w|0, α−1) and the approximating terms to 1,

t̃i = 1: mi = 0, vi = ∞ and si = 1.

2. Until both g̃n and t̃i converge: Loop n = 1, . . . , N , and i = 1, . . . , M ;

(a) Remove the approximation term g̃n from the posterior q(w) to obtain the

leave-one-out posterior q\n(w): N(m
\n
w , V

\n
w). Since q\n(w) ∝ q(w)/g̃n:

V \n
w

= Vw +
(VwFn)(VwFn)T

vn − FT
n VwFn

,

m\n
w

= mw + (V \n
w

Fn)v−1
n (FT

n mw − mn).

(b) Combine q\n(w) and the exact term gn(w) to get the new posterior q(w).

Vw = (σ2FT
n Fn + V \n

w
)−1, mw = Vw(σ2FT

n yn + V \n
w

m\n
w

).

(c) Update the approximation term g̃n = Zn
q(w)

q\n(w)
:

vn = σ2, mn = yn.

(d) Remove the approximation term t̃i from the posterior q(w) to obtain the

leave-one-out posterior q\i(w): N(m
\i
w , V

\i
w). Refer to the equations in step

(a).

(e) Combine q\i(w) and the exact term ti(w) to get p̂(w) ∝ q\i(w)ti(w) and

minimize the KL-divergence between p̂(w) and new posterior q(w).

mw = m\i
w

+ V \i
w

eiρi, Vw = V \i
w

+ (V \i
w

ei)(
αie

T
i mw

eT
i V

\i
w ei

)(V \i
w

ei)
T ,

Zi =

∫

w

q\i(w)gi(w) = Φ(zi),

where

zi =
(m

\i
w)T ei

√

eT
i V

\i
w ei

, αi =
1

√

eT
i V

\i
w ei

N(zi; 0, 1)

Φ(zi)
.

(f) Update the approximation term t̃i = Zi
q(w)

q\i(w)
:

vi = eT
i V \i

w
ei(

1

αieT
i mw

− 1), mi = (m\i
w

)T ei + (vi + eT
i V \i

w
ei)αi,

si = Φ(zi)

√

eT
i V

\i
w eiv

−1
i + 1 exp(

1

2

eT
i V

\i
w ei

eT
i mw

αi).

Output: The approximated posterior of the weight vector w

p(w|x,y, α) ≈ q(w) = N(mw, Vw).

Fig. 3. Expectation Propagation for Regression Ensem-

bles

In equation (7), the likelihood p(yn|xn,w) and the
terms N(wi|0, α−1

i) are both Gaussians, i.e. p(yn|xn,w) =
(2πσ2)−1/2 exp(− 1

2σ2 (wT F(xn)−yn)2). Since EP approx-
imates each non-Gaussian term by a Gaussian, only
the terms Θ(wi) are non-Gaussions in Equation (7).
In this case, we only need to approximate the terms
Θ(wi) in calculating the posterior. Denote the exact
terms Θ(wi) by ti(w), and the approximate terms by
t̃i(w) = si exp(− 1

2vi

(wT ei − mi)
2) which are parameter-

ized by (mi, vi, si). Since the likelihood terms p(yn|xn,w)
are Gaussians, we represent these terms p(yn|xn,w) by
g̃n(w) = sn exp(− 1

2vn

(wT F(xn) − yn)2) to facilitate EP
training, where vn = σ2 and mn = yn. After approximat-
ing every term as an exponential family distribution, the
resulting distribution will be Gaussian: p(w|x,y, α) ≈
q(w) = N(mw,Vw). The EP algorithm for regression
ensembles is described Figure 3 (to simplify notations,
Fn stands for F(xn)).

Input: the training set D = {(x1, y1) , . . . , (xN , yN)}, the ensemble function F(x) =
(f1(x), · · · , fM (x))T , the number of sample N , the size of ensemble M and the inverse

variance of weight vector α =(α1, · · · , αM)T .

1. Initialization the prior term: q(w) = p(w|α). Also initialize the approximating

terms to 1: g̃n = 1 and t̃i = 1: m = 0, v = ∞ and s = 1.

2. Until both g̃n and t̃i converge: Loop n = 1, . . . , N , and i = 1, . . . , M ;

(a) Remove the approximation term g̃n from the posterior q(w) to obtain the

leave-one-out posterior q\n(w): N(m
\n
w , V

\n
w). The Equation is exactly the

same as the regression EP. (Please refer to the equations in step (a) in Figure

2)

(b) Combine q\n(w) and the exact term gn(w) to get p̂(w) ∝ q\n(w)gn(w)
and minimize the KL-divergence between p̂(w) and new posterior q(w).

mw = m\n
w

+ V \n
w

Fnρn, Vw = V \n
w

+ (V \n
w

Fn)
ρn(FT

n mw + ρn)

FT
n V

\n
w Fn + 1

(V \n
w

Fn)T ,

Zi =

∫

w

q\n(w)gn(w) = Φ(zn),

where

zn =
(m

\n
w)T Fn

√

FT
n V

\n
w Fn + 1

, ρn =
1

√

FT
n V

\n
w Fn + 1

N(zn; 0, 1)

Φ(zn)
.

(c) Update the approximation term g̃n = Zn
q(w)

q\n(w)
:

vn = FT
n V \n

w
Fn(

1

ρn(FT
n mw + ρn)

− 1) +
1

ρn(FT
n mw + ρn)

,

mn = (m\n
w

)T Fn + (vn + FT
n V \n

w
Fn)ρn,

sn = Φ(zn)

√

FT
n V

\n
w Fnv−1

n + 1 exp(
1

2

FT
n V

\n
w Fn + 1

FT
n mw + ρn

ρn).

(d) The remaining steps are the same as the regression ensemble. Please refer to

EP pruning for regression ensemble steps 2(d)-(f) in Figure 3.

Output: The approximated posterior of the weight vector w

p(w|x,y, α) ≈ q(w) = N(mw, Vw).

Fig. 4. Expectation Propagation for Classification Ensem-

bles

Leave-one-out Estimation: A nice property of EP is that
it can easily obtain an estimate of the leave-one-out error
without any extra computation. In each iteration, EP
computes the parameters of the approximate leave-one-
out posterior q\n(w) (step 2(a) in Figure 3) that does not
depend on the nth data point. So we can use the mean

m
\n
w to approximate an estimator trained on the other

(N − 1) data points, thus an estimate of the leave-one-
out MSE error can be computed as

errloo =
1

N

N
∑

n=1

((m\n
w

)T F(xn) − yn)2. (8)

3.4 Expectation Propagation for Classifier Ensem-
bles

For classifier ensembles, the ensemble output is a linear
combination of individual classifiers passed through a
link function

fens(xn) = Φ

(

M
∑

i=1

wifi(xn)

)

,

where Φ(x) =
∫ x

−∞
N(t|0, 1)dt is the Gaussian cumula-

tive distribution function.

Given the data set D = {xn, y}N
n=1

, the likelihood for

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 6

the combination weight w can be written as

p(y | x,w) =

N
∏

n=1

p(yn|xn,w) =

N
∏

n=1

Φ

(

yn

M
∑

i=1

wifi(xn)

)

.

By incorporating the prior with likelihood, the posterior
of weight vectors w is denoted by

p(w|x,y, α) ∝ p(w|α)

N
∏

n=1

p(yn|xn,w)

=

M
∏

i=1

2N(wi|0, α−1

i)Θ(wi)

N
∏

n=1

p(yn|xn,w).

In EP algorithm, we need to approximate both the like-

lihood term p(yn|xn,w) = Φ
(

yn

∑M
i=1

wifi(xn)
)

and the

Θ(wi) term. Denote the exact terms gn(w) = p(yn|xn,w)
and ti(w) = Θ(wi) = Θ(wT ei), and the approximate
terms by g̃n(w) = sn exp(− 1

2vn

(ynwT Fn − mn)2) and

t̃i(w) = si exp(− 1

2vi

(wT ei − mi)
2). The EP algorithm

for classification ensembles is described in Figure 4 (to
simplify notations, ynF(xn) is written as Fn).

An estimate of the leave-one-out error can be obtained
by

errloo =
1

N

N
∑

n=1

Θ(−yn(m\n
w

)T F(xn)), (9)

where Θ(·) is a step function.

3.5 Hyperparameters Optimization for Expectation
Propagation

The previous sections present the training algorithm
of EP with fixed hyperparameter α. In this subsection,
we update the hyperparameter α based on the type-II
marginal likelihood, also known as the evidence [29].
According to the updated value of α, we choose to
add one learner to the ensemble, delete one ensemble
member or re-estimate the hyperparameter α.

As described in previous sections, expectation propa-
gation approximates each term as a Gaussian distribu-
tion, leading to the situation that the likelihood of every
point in a classification ensemble has similar forms as a
regression likelihood term. The likelihood of each data
point in classifier ensemble can be obtained as

p(m|w,x) =
exp(− 1

2
(wT F − m)T Λ−1(wT F − m))

(2π)N |Λ|1/2
,

where m = (m1, . . . , mN) denotes the target point vector,
Λ = diag(v1, . . . , vN), vn represents the variance of
the noise for the training point n. EP actually maps a
classification problem into a regression problem where
(mn,vn) defines the virtual observation data point with
mean mn and variance vn.

Note that we can compute analytically the posterior
distribution of the weights. The posterior distribution of

the weight vector is thus given by:

p(w|x,m, α) =
p(m|w,x)p(w|α)

p(m|α,x)
(10)

=
exp(− 1

2
(w − µ)T Σ−1(w − µ))

(2π)N |Σ|1/2
,

where the posterior covariance and mean are:

Σ = (A + FΛ−1FT)−1, (11)

µ = ΣFΛ−1m. (12)

where A = diag(α1, · · · , αM).
For regression ensembles, the posterior of weights can

be easily obtained by replacing classification likelihood
terms with regression likelihood terms. The posterior of
weights has the similar equations as (10), (11) and (12)
but with different m (i.e. y) and Λ (i.e. σ).

In order to sequentially update α, we can maximize
the type-II marginal likelihood p(D|α). The fast algo-
rithm to optimize the type-II marginal likelihood is to
decompose p(D|α) into two parts, one part denoted by
p(D|α\i), that does not depend on αi and another that
does, i.e.,

p(D|α) = p(D|α\i) + l(αi), (13)

where l(αi) is a function that depends on αi.
The updating rule for αi can be obtained with the

derivation of marginal likelihood [29]. The details have
been presented in appendix A.

3.6 Algorithm Description

Based on the above subsections, the predictive ensemble
pruning algorithm by expectation propagation is sum-
marized as follows:

1) Include a number of learning machines in the
ensemble and initialize the hyperparameters α.

2) Train EP algorithm with the current hyperparam-
eters α and sequentially update α by maximizing
the type-II marginal likelihood p(D|α). Based on
the updated values of α, we choose to add one
learner to the ensemble, delete one existing ensem-
ble member or re-estimate the hyperparameter α.
Repeat this process until the algorithm converges.

3) Choose the ensemble from the sequential updates
with the minimum leave-one-out error estimation.
As the leave-one-out error is discrete, so in case of
a tie, choose the first ensemble in the tie, i.e., the
one with the smaller marginal likelihood1.

3.7 Comparison of Expectation Propagation with
Markov Chain Monte Carlo

Expectation Propagation is a kind of integral approx-
imation technique. It is better to know the difference
between the approximation and the exact distribution.

1. Qi et al. [30] pointed out that optimization of marginal likelihood
can lead to over-fitting and leave-one-out error with smaller marginal
likelihood is a better choice for model selection.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 7

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

first component

s
e

c
o

n
d

 c
o

m
p

o
n

e
n

t
PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean

Gaussian Ellipse Contour by EP

(a) Sinc

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

first component

s
e
c
o
n
d
 c

o
m

p
o
n
e
n
t

PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean

Gaussian Ellipse Contour by EP

(b) Boston House

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

first component

s
e

c
o

n
d

 c
o

m
p

o
n

e
n

t

PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean

Gaussian Ellipse Contour by EP

(c) Breast Cancer

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

first component

s
e
c
o
n
d
 c

o
m

p
o
n
e
n
t

PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean

Gaussian Ellipse Contour by EP

(d) Diabetics

Fig. 5. The posteriors of combination weights calculated

by MCMC (30000 sampling points) and EP. The color bar

indicates the density (the number of overlapping points)

in each place.

As the truncated Gaussian prior is used in this paper,
the exact posterior distribution is unknown. In this sec-
tion, we employ Markov Chain Monte Carlo (MCMC)
method to simulate the exact posterior distribution for
the comparison with EP.

MCMC methods [31] are a class of algorithms for sam-
pling from probability distributions based on construct-
ing a Markov chain that has the desired distribution as
its equilibrium distribution. MCMC may be too slow for
many practical applications, but has the advantage that
it becomes exact in the limit of long runs. Thus, MCMC
can provide a standard way to measure the accuracy
of integral approximation methods, such as expectation
propagation in this paper.

This paper uses one of the most well-known MCMC
algorithms, Metropolis-Hastings algorithm [31] to inves-
tigate regression and classification ensembles, respec-
tively. In our experiments, a Bagging ensemble with 100
Classification And Regression Trees (CARTs) is gener-
ated. MCMC and EP with the hyperparameters opti-
mization algorithm are employed for ensemble pruning.

In most of the cases, the pruned ensemble size is larger
than 2 or 3 which makes it inconvenient to directly visu-
alize the resulting distribution. To facilitate the visualiza-
tion, principal components analysis (PCA) is performed
and the first two components are used for visualization.
Figure 5 illustrates the first two components, calculated
by PCA, of the posterior of weighs calculated by MCMC
and EP for regression and classification ensembles.

Figure 5 illustrates the posteriors of combination
weights calculated by MCMC (30000 sampling points)
and EP. We use sinc (with 0.1 Gaussian noise), Boston

TABLE 1

The pruned ensemble size, error rate and computational

time of MCMC, EP and unpruned ensembles.

Regression Sinc House
Size MSE Time size MSE Time

MCMC 7 0.0082 343.1s 11 11.4892 398.5s
EP 8 0.0087 8.7s 11 11.5725 11.6s

Unpruned 100 0.0103 - 100 11.8464 -

Classification Cancer Diabetics
Size %error Time size error Time

MCMC 10 26.34 676.2s 19 24.58 986.3s
EP 11 26.93 19.1s 18 24.73 62.6s

Unpruned 100 27.64 - 100 24.65 -

house, breast cancer and diabetics data sets in this
figure. Note that the hyperparameters and noise terms
are estimated in the hyperparameters optimization step
by maximizing the marginal likelihood in both EP and
MCMC methods. The posteriors of weights calculated
by MCMC have irregular boundaries for these problems
and EP approximates the posteriors well by picking
a Gaussian to cover the densest area, although the
distribution are not Gaussians, for both regression and
classification problems.

The pruned ensemble sizes and the error for both
regression and classification problems are shown in Ta-
ble 1. From the table, EP and MCMC achieves similar
performance in terms of both accuracy and ensemble
size. EP uses much less time than MCMC.

Both figures and table indicate that EP approximates
the posterior well in this ensemble pruning model with
truncated Gaussian priors for regression and classifica-
tion problems.

4 EXPERIMENTAL RESULTS

This section presents the experimental results of ex-
pectation propagation pruning algorithm for regression
problems and classification problems, respectively.

4.1 Synthetic Data Sets

As the first experiment, we compare EP-pruned ensem-
bles with original ensembles on some synthetic data
sets, including one regression data set, sinc, and two
classification data sets: synth and banana.

Figure 6 shows the output of EP pruning and orig-
inal Bagging ensembles, which consists of 100 neural
networks. We notice that EP pruning is a little better
than the original ensemble in the left tail of sinc function.
With respect to ensemble size, EP pruning only picks 9
neural networks vs. 100 neural networks in the original
ensemble.

In the following synthetic classification data sets, we
select the Adaboost of neural networks as the ensemble
algorithm because large Adaboost is prone to overfitting
the noise in the training set. Figure 7 illustrates the de-
cision boundaries of EP pruning and original Adaboost
for both problems. Not surprisingly, Adaboost with 100

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 8

−8 −6 −4 −2 0 2 4 6 8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
SinC Function 100 Sampling Points with 0.1 Gaussian Noise

Points

EP Pruning

Original Ensemble

True Function

Fig. 6. Comparison of EP-pruned ensembles and original

Bagging ensembles on sinc data set. The sinc data set is

generated by sampling 100 data points with 0.1 Gaussian

noise from the sinc function. The Bagging ensemble

consists of 100 three-layered neural networks (MLP) with

random selected hidden nodes (3-6 nodes). The weights

in these MLPs are randomly initialized.

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Decision Boundaries of Original Ensemble and EP Pruning Ensemble

class 1

class 2

EP Pruning

Original Ensemble

(a) Synth

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Decision Boundaries of Original Ensemble and EP Pruning Ensemble

class 1

class 2

EP Pruning

Original Ensemble

(b) Banana

Fig. 7. Comparison of EP-pruned ensembles and un-

pruned Adaboost ensembles on Synth and banana data

sets. The Adaboost ensemble consists of 100 neural net-

works with random selected hidden nodes (3-6 nodes).

neural networks over-fits the noise and generates the
twisty boundaries. With small ensemble size (16 for
synth and 12 for banana), EP pruning removes those
overfitting individuals and generates better (smoother)
decision boundaries for both classification problems.

According to these initial experiments with synthetic
data, we observe that EP pruning performs better than
the original ensembles by utilizing a small amount of
individuals.

4.2 Results for Regression Problems

The experiments in this section will investigate EP prun-
ing for benchmark problems. We utilize decision trees,
i.e. classification and regression trees (CART), as base
learners to generate different kinds of ensembles, i.e.
Bagging, Adaboost and Random Forest (Adaboost is
used for classification ensembles only). Each ensemble
consists of 100 CARTs.

In section 2, we reviewed a number of ensemble
pruning algorithms, such as least-square (LS) prun-

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Percentage of Pruning

M
e

a
n

 P
e

rf
o

rm
a

n
c
e

 R
e

la
ti
v
e

 t
o

 u
n

p
ru

n
e

d
 E

n
s
e

m
b

le

EP

ARD

EM

LS
Random Pruning

(a) Bagging

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Percentage of Pruning

M
e

a
n

 P
e

rf
o

rm
a

n
c
e

 R
e

la
ti
v
e

 t
o

 u
n

p
ru

n
e

d
 E

n
s
e

m
b

le

EP

ARD

EM

LS

Random Pruning

(b) Random Forests

Fig. 8. Relative performance of each pruning method av-

eraged across the 7 problems as a function of the amount

of pruning. Note that the EP, ARD, EM and LS pruning

appear as single points, since the amount of pruning will

be determined by these methods. A performance greater

than 1.0 indicates that the pruned ensemble actually

performed better than unpruned ensemble.

ing, Bayesian automatic relevance determination (ARD)
pruning, EM pruning an so on. These algorithms are
employed to compared with our EP pruning algorithm
in this section.

The information on the data sets used for regression is
tabulated in Table 2. The Friedman was used by Breiman
[2] in testing the performance of Bagging. Gabor, Multi
and Sinc were used by Hansen [32] in comparing several
ensemble approaches. Plane was used by Ridgeway et
al. [33] in evaluating the performance of boosted naive
Bayesian regressors. The constraints of the variables are
also shown in Table 2, where U [x, y] means a uniform
distribution over the interval determined by x and y.
Note that in our experiments additive zero-mean Gaus-
sian noise, whose variance is one-third of the standard
deviation of the target y(x), is generated. The Boston
House data set is obtained from UCI machine learning

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 9

TABLE 2

Summary of Regression Data Sets

Data Sets Function Variable Training Points Test Points

Sinc y = sincx = sin x

x
x ∼ U [−2π, 2π] 250 1000

Friedman y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 xi ∼ U [0, 1] 250 1000

Gabor y = 1

2
π exp[−2(x2

1
+ x2

2
)] cos[2π(x1 + x2)] xi ∼ U [0, 1] 250 1000

Multi y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5 xi ∼ U [0, 1] 250 1000
Plane y = 0.6x1 + 0.3x2 xi ∼ U [0, 1] 250 1000

Polynomial y = 1 + 2x + 3x2 + 4x3 + 5x4 x ∼ U [0, 1] 250 1000
Boston House — - 400 106

TABLE 3

Average Test MSE, Standard Deviation for seven regression Benchmark Data sets based on 100 runs for Bagging

and random forests. EP, ARD, EM, LS, Random stand for EP pruning, ARD pruning, EM pruning, least square

pruning and random pruning (when it has 25 ensemble members), respectively.

Bagging EP ARD EM LS Random Unpruned
Sinc 0.0087±0.0019 0.0158±0.0026 0.0098±0.0041 0.0254±0.0036 0.0138±0.0018 0.0102±0.0017

Friedman 4.4765±0.4287 4.6327±0.4079 4.5816±0.5436 4.9594±0.4355 4.7711±0.4107 4.6094±0.4196
Gabor 0.0272±0.0094 0.0289±0.0080 0.0294±0.0130 0.0311±0.0087 0.0518±0.0118 0.0497±0.0010
Multi 0.1472±0.0206 0.1606±0.0198 0.1569±0.0315 0.1994±0.0236 0.1753±0.0206 0.1537±0.0190
Plane 0.0011±0.0002 0.0014±0.0003 0.0014±0.0003 0.0026±0.0004 0.0016±0.0002 0.0010±0.0002

Polynomial 0.3261±0.0522 0.3614±0.0499 0.3276±0.0531 0.4813±0.0664 0.3765±0.0515 0.3349±0.0487
House 11.5725±4.0741 11.5803±4.3361 11.7561±4.6472 12.3202±4.8322 12.2844±4.8322 11.8464±4.4938
W-L-T - 0-7-0 0-7-0 0-7-0 0-7-0 1-6-0

Significant - 0-4-3 0-3-4 0-6-1 0-6-1 0-2-5

Random Forests EP ARD EM LS Random Unpruned
Sinc 0.0094±0.0020 0.0141±0.0022 0.0113±0.0038 0.0164±0.0028 0.0141±0.0034 0.0133±0.0022

Friedman 4.3263±0.4998 4.7465±0.4927 4.5816±0.5436 4.8629±0.5867 5.6519±0.7071 5.0567±0.5756
Gabor 0.0298±0.0096 0.0313±0.0086 0.0304±0.0104 0.0397±0.0109 0.0504±0.0123 0.0434±0.0010
Multi 0.1452±0.0213 0.1672±0.0198 0.1509±0.0237 0.2179±0.0365 0.1762±0.0318 0.1493±0.0210
Plane 0.0010±0.0003 0.0015±0.0003 0.0013±0.0003 0.0024±0.0004 0.0020±0.0002 0.0013±0.0002

Polynomial 0.3287±0.0521 0.3714±0.0493 0.3276±0.0606 0.4969±0.0805 0.4032±0.2586 0.3452±0.0510
House 11.3569±4.2070 12.2112±4.6749 11.7561±4.6472 12.6589±4.7024 13.3276±5.1642 11.5672±4.3652
W-L-T - 0-7-0 1-6-0 0-7-0 0-7-0 0-7-0

Significant - 0-4-3 0-3-4 0-6-1 0-7-0 0-2-5

repository [34]. In the 100 runs, we randomly select 400
data points for the training set and the rest 106 points
are used for testing.

For every data set, we run independently 100 times
and record the average mean squared error (MSE) and
the standard deviation on the test set for different al-
gorithms. Table 3 reports the performance of EP and
other four algorithms for Bagging and random forests,
respectively. A win-loss-tie summary based on mean
values and t-test (95% significance level) is attached at
the bottom of the table.

For the random pruning algorithm, we report the
performance in table when the pruned ensemble has
25 members since previous empirical research suggests
that, in most cases, most or all of the generalization
gain in a well-constructed ensemble comes from the first
25 learners added [2], [35]. The performance of random
pruning algorithm with different pruning levels is also
reported in Figure 8.

We also illustrate the mean normalized performance
of each pruning method averaged over the seven data
sets in Figure 8. A performance greater than 1.0 indicates
that the pruned ensemble actually performed better than
unpruned ensemble.

TABLE 4

Size of Pruned Ensemble with standard deviation for

Different Algorithms for Bagging and random forests. The

results are based on 100 runs. Bag and RF stand for

Bagging and random forests, respectively.

Bagging EP ARD EM LS
Sinc 7.9±1.7 21.4±5.3 10.2±3.3 100

Friedman 12.2±1.9 36.3±5.3 16.9±3.9 100
Gabor 9.6±2.0 44.3±4.6 20.4±4.2 100
Multi 13.6±1.7 34.9±5.0 21.6±5.0 100
Plane 9.3±1.5 24.4±6.3 21.8±3.3 100

Polynomial 11.2±2.1 31.3±5.3 20.5±4.9 100
House 10.5±1.5 44.0±4.4 23.8±5.0 100

Random Forest EP ARD EM LS
Sinc 8.8±1.9 18.8±4.7 12.1±3.6 51.7±4.8

Friedman 13.4±0.9 45.2±8.3 20.3±4.7 98.1±1.7
Gabor 9.3±2.1 43.9±8.6 22.1±6.4 75.8±4.0
Multi 9.7±0.9 41.3±8.0 23.0±7.2 97.9±1.8
Plane 8.6±1.2 28.4±9.3 17.3±5.8 75.2±4.2

Polynomial 10.4±0.7 35.6±10.5 19.6±7.0 94.5±2.3
House 9.3±1.4 47.9±4.9 24.9±7.3 100

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 10

TABLE 5

Summary of Classification Data Sets.

Data Banana Cancer Diabetics Solar German Heart Image Ringnorm Splice Thyroid Titanic Twonorm Waveform
Train 400 200 468 666 700 170 1300 400 1000 140 150 400 400
Test 4900 77 300 400 300 100 1010 7000 2175 75 2051 7000 4600

Input Dim 2 9 8 9 20 13 18 20 60 5 3 20 21

From tables and Figure 8, it is observed that EP prun-
ing outperforms all the other methods in six out of seven
data sets, comes second in other one case. Although ARD
pruning uses Bayesian inference for ensemble pruning
as well, it seems that adopting the negative combination
weights leads to inferior results. The baseline algorithm,
random pruning, fails to compete with EP and ARD
pruning. In most situations, least square algorithm is
worse than other algorithm, which gives the empirical
evidence that least square algorithm often over-fits the
noise and does not work well in practice.

Another interesting point is that EP pruning achieves
better performance by employing only a few of the
ensemble members, as shown by Table 4 and Figure
8. From these tables and Figure 8, EP pruning consis-
tently uses much fewer ensemble members than other
algorithms, including ARD pruning. This observation
goes in accordance with the algorithm of EP pruning. In
EP pruning, we employ a sparse prior and sequentially
add or delete individuals in the ensemble based on the
estimation of type II marginal likelihood. The sparse
prior and the implementation lead to spare ensembles.

In general, the performance of EP pruning on these
benchmark problems is better than unpruned ensembles
in terms of generalization ability and sparsity.

4.3 Results for Classification Problems

For classifier ensembles, we use the data sets, which
have been preprocessed and organized by Rätsch et al.2

to do binary classification tests. These data sets include
one synthetic set (banana) along with 12 other real-
world data sets from the UCI [34] and DELVE3. The
characteristics of the data set are summarized in Table 5.

The main difference between the original and Rätsch’s
data is that Rätsch converted every problem into binary
classes and randomly partitioned every data set into
100 training and test instances (Splice and Image have
only 20 splits in the Rätsch’s implementation and we
generate additional 80 splits by random sampling to
make our experiments consistent.) In addition, every
instance was input-normalized dimension-wise to have
zero mean and unit standard deviation.

In order to compare our algorithm with others, we
have implemented ARD pruning, EM pruning, kappa
pruning, concurrency pruning, least square pruning and
random pruning.

Table 6 reports the performance of these algorithms on
the 13 benchmark data sets with Bagging, Adaboosting

2. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
3. http://www.cs.toronto.edu/˜delve/data/datasets.html

and Random forests. The size of the ensembles also has
been recorded in Tables 7. Figure 9 shows the mean nor-
malized performance of each pruning method averaged
over the thirteen datasets as a function of the amount
of pruning. A performance greater than 1.0 indicates
that the pruned ensemble actually performed better than
unpruned ensemble.

According to these tables and Figure 9, EP pruning
compares quite favorably against these different ensem-
ble algorithms. For example, for Bagging EP pruning
outperforms all the other methods, including the un-
pruned ensemble on eight out of thirteen data sets,
comes second in two cases and third in the remain-
ing three. Comparing with the original ensemble, EP
pruning employs much fewer ensemble members but
performs better. Take the Adaboost as an example, EP
pruning performs better than unpruned ensemble in
eight out of thirteen cases, in which four wins are sta-
tistically significant; EP pruning loses five times, where
two losses are statistically significant.

EM pruning always loses when comparing with EP
pruning, though they have similar models. The unstable
problems of EM (sensitiveness to initialization and con-
vergence to local maxima) do degrade the performance.
EP pruning is more stable than EM pruning based on
the results.

Least square (LS) pruning, which minimizes the train-
ing error, performs well only on data set with little
noise, for example Image. In most situations, LS prun-
ing does not reduce the size of an ensemble. Random
pruning, which serves as the baseline algorithm, is not
comparable to the original ensemble and other pruning
algorithms.

According to these tables, the previous finding that
Adaboost is prune to overfitting the noise in the training
set is also confirmed as Adaboost performs well on data
sets with little noise, such as Image, Twonorm, but worse
on noise-corrupted data sets.

In these tables, we only report the performance of
Kappa, CP, random pruning with 25 ensemble members.
In order to illustrate the relative performance of these
algorithms with different pruning levels, we have re-
ported the relative performance of each pruning method
averaged across all the problems as a function of the
amount of pruning. The experiment was repeated 100
times and the results were averaged.

Based on these tables and Figure 9, EP pruning
achieves significant sparseness in ensembles and per-
forms better or as well as the original ensemble. It
provides a way to reduce the computational complexity

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 11

TABLE 6

Average Test error, Standard Deviation for 13 classification Benchmark Data sets based on 100 runs for Bagging,

Adaboosting and random forests algorithm. EP, ARD, EM, Kappa, CP, LS, Random stand for EP pruning, ARD

pruning, EM pruning, kappa pruning, concurrency pruning, lease square pruning and random pruning.

Bagging EP ARD EM Kappa CP LS Random Unpruned
Banana 12.74±0.78 13.14±0.67 12.88±0.83 13.74±0.73 13.32±0.87 14.54±0.94 13.93±0.85 12.75±0.79
Cancer 26.81±4.74 30.96±4.73 27.68±7.31 28.81±4.54 30.30±4.54 34.51±5.03 29.35±4.33 27.42±4.54

Diabetics 24.88±1.93 25.76±1.90 24.83±2.26 26.30±1.79 25.08±1.97 26.15±1.89 26.89±1.95 24.62±1.81

Solar 35.18±1.80 36.33±1.93 36.11±2.04 36.80±1.98 36.15±1.77 37.15±1.93 37.88±1.82 35.96±1.82
German 22.15±2.21 24.19±2.23 22.94±2.68 24.12±2.21 24.67±2.30 25.01±2.27 25.80±2.05 23.63±2.17

Heart 19.13±3.64 22.17±3.56 19.26±3.71 20.01±3.99 20.71±4.11 26.42±3.98 21.08±3.75 19.09±3.89

Image 2.04±0.48 2.20±0.47 2.31±0.58 2.40±0.54 2.31±0.48 2.35±0.46 2.40±0.53 2.32±0.50
Ringnorm 8.68±1.16 10.44±1.53 8.95±1.56 8.88±1.16 9.26±1.42 8.00±1.20 9.14±1.36 8.08±1.37

Splice 5.03±0.67 5.18±0.69 5.04±0.69 5.13±0.75 5.15±0.69 5.04±0.70 5.41±0.79 5.02±0.77

Thyroid 6.27±3.04 7.03±5.14 6.37±3.89 6.87±3.04 7.35±2.95 9.19±3.25 7.49±3.21 6.83±3.20
Titanic 22.36±1.31 23.72±1.61 22.60±1.52 22.56±1.67 24.00±1.64 22.49±1.21 24.50±0.96 22.57±1.01

Twonorm 7.24±1.04 12.55±6.48 7.34±1.96 7.98±0.88 8.47±1.60 7.18±0.98 8.52±1.04 6.55±1.34

Waveform 13.12±0.57 14.35±0.48 13.89±0.91 14.10±0.65 13.52±0.63 13.84±0.89 14.24±0.68 13.67±0.71
W-L-T - 0-13-0 0-13-0 0-13-0 0-13-0 2-11-0 0-13-0 5-8-0

Significant - 0-7-6 0-5-8 0-5-8 0-7-6 0-8-5 0-11-2 1-3-9

Adaboosting EP ARD EM Kappa CP LS Random Unpruned
Banana 13.49±0.65 14.19±0.76 13.81±0.82 16.35±1.48 13.40±0.72 14.23±0.67 16.13±0.69 13.51±0.60
Cancer 31.88±4.15 31.64±6.21 32.41±5.32 37.40±6.58 34.86±5.87 32.70±4.97 36.94±6.42 31.16±4.47

Diabetics 25.72±2.42 28.78±2.33 26.47±2.71 28.21±2.52 28.13±2.07 26.25±1.92 29.15±2.12 26.06±1.99
Solar 34.28±1.87 36.37±1.98 36.28±2.01 39.46±2.38 39.95±2.38 38.59±1.97 40.25±5.43 36.26±1.78

German 24.37±2.55 27.39±2.43 25.55±2.89 26.73±2.35 25.21±2.57 24.21±2.05 28.05±2.44 24.06±2.19

Heart 18.40±4.25 23.33±3.41 20.62±5.13 28.33±4.68 22.65±4.00 21.74±3.76 22.79±3.98 20.82±3.97
Image 1.23±0.54 1.78±0.72 1.83±0.71 1.46±0.55 1.23±0.37 1.15±0.35 1.40±0.42 1.12±0.35

Ringnorm 3.82±0.53 4.65±0.61 4.27±0.81 5.14±1.08 4.43±0.78 4.37±0.49 6.39±0.75 4.09±0.47
Splice 4.17±0.85 4.40±0.62 4.22±0.92 6.4±0.68 4.10±0.58 3.94±0.49 6.12±0.77 3.55±0.54

Thyroid 5.09±2.70 7.24±2.90 6.51±3.15 8.39±8.04 5.58±2.57 7.41±3.24 7.00±3.38 4.69±2.40

Titanic 21.40±0.79 23.76±0.82 22.05±0.93 28.98±0.84 26.12±0.79 23.22±0.96 27.36±1.01 21.98±0.70
Twonorm 3.52±0.41 5.49±0.52 4.01±0.72 6.08±0.52 5.01±0.83 4.14±0.44 5.85±0.39 3.79±0.30
Waveform 10.47±0.52 11.88±0.62 11.29±0.90 14.12±0.64 12.43±0.70 11.58±0.59 14.48±0.47 11.42±0.50

W-L-T - 1-12-0 0-13-0 0-13-0 1-12-0 3-10-0 0-13-0 5-8-0
Significant - 0-7-5 0-5-9 0-10-3 0-9-4 0-5-7 0-12-1 2-4-7

Random Forest EP ARD EM Kappa CP LS Random Unpruned
Banana 12.76±0.44 13.83±0.42 13.12±0.76 13.70±0.49 13.19±0.57 15.86±0.86 16.24±0.79 12.72±0.48

Cancer 24.86±4.66 26.66±4.65 26.58±6.42 26.86±4.69 26.18±4.47 34.79±4.69 28.43±4.21 24.92±4.10
Diabetics 24.67±1.98 24.35±2.14 25.17±2.59 30.79±2.38 25.12±1.76 29.81±2.21 29.45±2.18 25.20±1.74

Solar 34.90±1.79 36.31±1.90 35.76±2.84 36.78±2.76 39.70±4.60 37.37±2.06 38.85±2.31 34.59±1.91

German 23.64±2.37 24.96±2.38 23.96±2.81 27.23±2.48 24.51±2.29 29.72±2.29 28.18±2.24 24.32±2.33
Heart 18.08±4.16 18.31±4.27 18.21±4.79 19.34±4.20 19.63±4.06 26.32±4.11 19.71±3.87 17.43±3.72

Image 1.81±0.40 1.83±0.58 1.83±0.71 2.37±0.81 1.98±0.48 1.67±0.42 2.43±0.34 1.84±0.44
Ringnorm 3.71±0.63 4.07±0.76 4.19±0.96 5.50±0.65 6.07±0.98 5.19±0.68 6.00±0.85 4.63±0.68

Splice 3.63±0.51 3.70±0.68 3.66±0.74 3.64±1.42 3.99±0.48 3.42±0.39 3.84±0.48 2.91±0.35

Thyroid 5.25±2.84 6.13±2.83 6.07±3.10 8.36±2.87 5.78±2.54 8.49±3.92 8.42±3.14 5.71±2.78
Titanic 22.44±1.31 22.76±2.97 23.11±2.42 24.19±2.20 24.23±2.11 22.41±1.17 23.96±2.73 23.55±2.15

Twonorm 3.89±0.51 4.21±0.81 4.14±0.88 5.93±0.56 5.34±0.75 5.39±0.53 6.06±0.60 4.31±0.40
Waveform 11.98±0.75 12.06±0.85 12.14±1.24 13.06±0.85 12.65±0.76 13.88±0.76 12.59±0.72 11.57±0.63

W-L-T - 1-12-0 0-12-1 0-13-0 0-13-0 3-10-0 0-13-0 5-8-0
Significant - 0-5-8 0-7-6 0-9-4 0-7-6 0-9-4 0-7-6 1-2-10

at the test stage and make the ensemble more compact.
There are two possible reasons to explain the success of
EP pruning.

1) EP pruning benefits from the truncated Gaussian
priors. As negative combination weights are nei-
ther intuitive nor reliable [17], [18], [19], the trun-
cated Gaussian prior not only satisfies the con-
straint but also leads to a sparse ensemble. This
prior controls the complexity by generating appro-
priate sparseness, and thus improves the general-
ization.

2) EP pruning employs the leave-one-out error to-

gether with the Bayesian evidence as the criterion
for model selection, which is more effective than
the other algorithms.

4.4 Statistical Comparisons over Multiple Data Sets

In the previous subsection, we have conducted the
statistical tests on single data sets. Statistical tests on
multiple data sets for multiple algorithms are preferred
for comparing different algorithms over multiple data
sets [36]. In this section, we will conduct statistical tests
over multiple data sets by using the Friedman test [37]
with the corresponding post-hoc tests.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 12

TABLE 7

Size of Pruned Ensemble with standard deviation with Different Algorithms for Bagging, Adaboosting and random

forests The results are based on 100 runs. Bag, Ada and RF stand for Bagging, Adaboosting and random forests,

respectively.

Bag EP Bag ARD Bag EM Bag LS Ada EP Ada ARD Ada EM Ada LS RF EP RF ARD RF EM RF LS
Banana 10.2±2.7 12.7±1.7 16.3±4.6 100 10.9±1.9 10.6±1.8 16.8±4.3 100 14.1±2.4 15.1±4.7 20.3±4.1 76.0±4.5
Cancer 9.8±2.7 17.5±2.0 14.5±3.8 100 11.4±2.3 13.2±1.7 17.3±5.8 65.0±19.2 6.7±1.6 19.3±3.1 13.1±4.0 98.5±1.4

Diabetics 17.5±2.3 18.6±1.8 20.4±3.6 100 12.5±1.9 12.4±2.1 21.8±4.0 100 16.8±4.2 20.3±2.0 24.6±5.6 99.9±0.1
Solar 5.7±1.8 7.0±1.0 11.3±4.1 69.4±4.3 8.3±2.8 11.8±1.7 16.2±5.1 49.8±17.1 7.1±2.6 11.9±2.0 10.2±4.0 84.5±3.6

German 17.9±3.7 25.0±2.5 26.7±5.1 100 12.4±1.8 12.3±1.2 18.8±4.3 100 16.0±4.8 27.1±2.2 23.4±5.3 100
Heart 10.1±1.7 10.1±1.5 12.9±2.2 100 10.9±1.6 11.0±2.1 17.0±4.1 100 11.1±1.6 11.2±1.6 18.6±3.1 100
Image 9.4±1.4 9.5±1.5 16.3±3.9 100 8.8±2.3 6.2±2.7 14.2±4.4 100 10.1±1.5 8.9±2.9 19.3±3.3 100

Ringnorm 10.1±1.6 8.0±2.4 22.3±5.1 100 10.4±2.7 8.7±2.5 21.7±5.3 100 10.7±1.4 6.4±2.6 21.6±5.2 100
Splice 11.4±2.4 12.2±1.7 15.7±3.7 100 8.9±1.2 8.3±2.2 14.3±3.9 87.3±12.6 12.8±1.9 12.1±2.3 18.4±4.2 100

Thyroid 5.1±1.2 4.9±2.2 10.2±4.2 43±6.2 5.9±0.9 5.1±2.9 11.3±3.9 87.3±18.3 5.6±1.2 4.9±2.0 11.3±5.1 82.5±5.9
Titanic 3.3±1.1 25.9±22.5 8.7±3.5 74.8±1.4 4.9±0.9 5.6±0.7 9.6±2.4 10.7±1.8 3.7±1.5 22.3±18.1 10.2±4.5 96.8±1.4

Twonorm 10.6±1.5 5.3±3.5 17.2±4.9 100 11.3±1.6 8.6±1.4 16.3±3.1 100 10.8±1.4 4.8±2.9 17.3±3.2 100
Waveform 10.3±1.8 10.8±1.2 14.6±3.7 100 10.5±2.0 9.1±2.9 14.7±3.0 100 11.1±1.4 10.4±2.2 21.7±4.4 100

0 10 20 30 40 50 60 70 80 90 100
0.9

0.92

0.94

0.96

0.98

1

1.02

Percentage of Pruning

M
e
a
n
 P

e
rf

o
rm

a
n
c
e
 R

e
la

ti
v
e
 t
o
 u

n
p
ru

n
e
d
 E

n
s
e
m

b
le

Kappa

Concurrency

Random

EM

EP

RVM

LS

(a) Bagging

0 10 20 30 40 50 60 70 80 90 100

0.75

0.8

0.85

0.9

0.95

1

1.05

Percentage of Pruning

M
e

a
n

 P
e

rf
o

rm
a

n
c
e

 R
e

la
ti
v
e

 t
o

 u
n

p
ru

n
e

d
 E

n
s
e

m
b

le

Kappa

Concurrency

Random

EP

RVM

EM

LS

(b) Adaboosting

0 10 20 30 40 50 60 70 80 90 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Percentage of Pruning

M
e

a
n

 P
e

rf
o

rm
a

n
c
e

 R
e

la
ti
v
e

 t
o

 u
n

p
ru

n
e

d
 E

n
s
e

m
b

le

Kappa

Concurrency

Random

EP
EM

RVM

LS

(c) Random Forests

Fig. 9. Relative performance of each pruning method averaged across the 13 problems as a function of the amount

of pruning. Note that the EP, ARD, EM and LS pruning appear as single points, since the amount of pruning will be

determined by these methods.

TABLE 8

The mean rank of these algorithms with different

ensemble algorithms and unpruned ensemble.

Mean Rank EP ARD EM Unpruned
(Regression) Bagging 1.1429 3.3571 2.6429 2.8571

(Regression) RF 1.1429 3.7143 2.2429 2.9286

Bagging 1.4615 3.8462 2.7692 1.9231
Adaboosting 1.4615 3.7692 3.0000 1.7692

Random Forest 1.4615 3.1923 2.8846 2.4615

The Friedman test is a non-parametric equivalence of
the repeated-measures analysis of variance (ANOVA)
under the null hypothesis that all the algorithms are
equivalent and so their ranks should be equal. This paper
uses an improved Friedman test proposed by Iman and
Davenport [38].

The Friedman test [37] is carried out to test whether all
the algorithms are equivalent. If the test result rejects the
null hypothesis, i.e. these algorithms are equivalent, we
can proceed to a post-hoc test. The power of the post-
hoc test is much greater when all classifiers are compared
with a control classifier and not among themselves. We
do not need to make pairwise comparisons when we in

fact only test whether a newly proposed method is better
than the existing ones.

Based on this point, we would like to choose the EP
pruning algorithm as the control classifier to be com-
pared with. Since the baseline classification algorithms
are not comparable to EP, ARD and EM, this section will
analyze only three algorithms: ARD, EM and unpruned
ensembles against the control algorithm EP.

The Bonferroni-Dunn test [39] is used as post-hoc tests
when all classifiers are compared to the control classifier.
The performance of pairwise classifiers is significantly
different if the corresponding average ranks4 differ by
at least the critical difference

CD = qα

√

j(j + 1)

6T
, (14)

where j is the number of algorithms, T is the number of
data sets and critical values qα can be found in [36]. For

4. We rank these algorithms based on the metric on each data set
and record the ranking of each algorithm as 1, 2 and so on. Average
ranks are assigned in case of ties. The average rank of one algorithm
is obtained by averaging over all of data sets. Please refer to Table 8
for the mean rank of these algorithms under different metrics.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 13

TABLE 9

Friedman tests with the corresponding post-hoc tests,

Bonferroni-Dunn, to compare estimators and classifiers

for multiple data sets. The threshold is 0.10, and

q0.10 = 2.128.

Algo. Frie.test CD0.10 ARD EM Unpruned
Reg.BAG 0.000 1.47 2.2142 1.5000 1.7142
Reg.RF 0.000 1.47 2.5714 1.1000 1.7857

BAG 0.000 1.08 2.3847 1.3077 0.4616
ADA 0.000 1.08 2.3077 1.5385 0.3077

RF 0.002 1.08 1.7308 1.4231 1.0000

TABLE 10

Running Time of EP pruning, ARD pruning abd EM

pruning on Regression Data Sets in seconds. Results

are averaged over 100 runs.

Time Sinc Fried. Gabor Multi Plane Poly. House
EP 8.7s 9.3s 8.6s 7.6s 7.2s 9.2 11.6s
EM 0.6s 0.5s 0.7s 0.6s 0.3s 0.6s 1.1s

ARD 0.3s 0.2s 0.3s 0.3s 0.1 0.3s 0.4s

example, when j = 4, q0.10 = 2.128, where the subscript
0.10 is the threshold value.

Table 8 lists the mean rank of these algorithms using
different ensemble training algorithms. Table 9 gives
the Friedman test results. Since we employ the same
threshold 0.10 for these ensemble training algorithms,
the critical differences are CD = 1.47 (where j = 4 and
T = 7) and CD = 1.08 (where j = 4 and T = 13)
for regression and classification, respectively. Several
observations can be made from our results.

Firstly, the null hypothesis that all the algorithms are
equivalent is rejected for each algorithms in Table 8.

Secondly, for the Bagging regression problems, the
differences between EP and other algorithms including
ARD, unpruned ensemble are greater than the criti-
cal difference, so the differences are significant, which
means the EP is significantly better than EP and Un-
pruned ensemble in this current experimental setting.
The difference (1.1000) between EP and EM for random
forests is below the critical difference. We could not
detect any significant difference between EM and EP. The
correct statistical statement would be that the experimental
data are not sufficient to reach any conclusion regarding the
difference between EP and EM for random forests in regression
problems.

Thirdly, for classification problems, EP significantly
outperforms ARD and EM. Since the differences between
EP and unpruned ensemble are smaller than the crit-
ical difference, we cannot draw any conclusion about
the difference between EP vs. unpruned ensemble for
classification problems in our experimental settings.

4.5 Computational Complexity and Running Time

The improved performance of our algorithm comes with
a price: more computation time during the training stage.
Tables 10 and 11 show the average running time of EP

pruning and other pruning algorithms over 100 runs for
regression and classification problems, respectively. The
computational environment is Windows XP with Intel
Core 2 Duo 1.66G CPU and 2G RAM. These algorithms
are implemented in MATLAB.

According to the algorithm in section 3, EP pruning is
an iterative algorithm and it consists of two major parts:
EP training and sequential update of hyperparameters
α.

In the first part, EP processes each data point in O(M2)
time, where M is the size of current ensemble. Assuming
the number of iterations is constant, which seems to
be true in practice, the computational complexity of EP
training in the first part is O(NM2), where N is the
number of training points. In the second step, the major
running time is consumed in calculating vector products,
which can be done quickly. Most of the computation time
is consumed in the first part.

Although we cannot prove the convergence of EP,
in our experiments it always converges for ensemble
pruning with Gaussian (for regression) or probit (for
classification) likelihood. In practice, 200 iterations have
been adopted in our ensemble pruning algorithm. There-
fore, the total estimated computational complexity of
EP pruning is around O(iter ∗ NM2), where iter is the
number of iterations.

As indicated in the introduction, ensemble pruning al-
gorithms can improve accuracy and reduce the test time,
but will lead to a longer training time. Ensemble pruning
algorithms are particularly suited to the applications that
are characterized by small training but large test sets.
In this subsection, we will provide an example with a
relatively small training set and a large test set, namely
the poker hand data set from the UCI machine learning
repository [34].

The data set consists of 25010 training examples and
1 million test examples. Each example represents a hand
holding five playing cards drawn from a standard deck
of 52. Each card is described by two attributes (suit
and rank), for a total of 10 predictive attributes (corre-
sponding to the 5 cards). There are ten classes in the
data set and we merge the ten classes into 2 classes.
One class means nothing5 in hand and another class
means that there is something (one pair, two pairs, flush,
royal flush, etc.) in hand. The percentages of the two
classes are nearly balanced in both training and test data
sets. Although a manually-specified rule can successfully
classify the data set, this task is not easy for a machine
learning algorithm operating on the provided vectorial
feature representation.

We use 100 CART trees to generate a Bagging ensem-
ble and we use different ensemble pruning algorithms

5. In the five cards, there is no one pair, two pairs, three of a kind,
straight (five cards, sequentially ranked with no gaps), flush (five cards
with the same suit), full house (pair plus different rank three of a
kind), four of a kind (four equal ranks within five cards), straight flush
(straight plus flush) or royal flush (Ace, King, Queen, Jack, Ten plus
flush).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 14

TABLE 11

Running Time of EP pruning, ARD pruning, EM pruning, Kappa pruning and concurrency pruning on Classification

Data Sets in seconds. Results are averaged over 100 runs.

Time Banana Cancer Diabetics Solar German Heart Image Ringnorm Splice Thyroid Titanic Twonorm Waveform
EP 56.3s 19.1s 62.6s 42.2s 88.4s 21.4s 184.4s 83.5s 136.2s 21.7s 3.1s 84.6s 82.5s
EM 1.6s 1.1s 3.4s 2.6s 4.9s 1.7s 6.3s 4.9s 3.8s 1.3s 0.9s 4.7s 5.3s

ARD 0.7s 0.3s 1.3s 0.7s 2.0s 0.4s 2.5s 1.8s 1.6s 0.4s 0.2s 1.8s 1.8s
Kappa 0.8s 0.7s 0.9s 1.0s 1.0s 0.7s 1.5s 0.9s 1.3s 0.7s 0.6s 0.8s 0.8s

CP 1.2s 0.6s 1.3s 2.1s 2.7s 0.6s 7.2s 1.2s 4.1s 0.5s 0.5s 1.2s 1.2s

to prune the ensemble. The experimental results are
summarized in Table 12. According to Table 12, the
EP pruning algorithm has improved both accuracy and
efficiency. For example, the pruned ensemble outper-
formed the unpruned ensemble in terms of accuracy
(error rate 25.68% vs. 27.94%). The total time (2806.1
seconds) including the EP training time and the applica-
tion time for the pruned ensemble is much smaller than
the application time for the unpruned ensemble (6154.9
seconds).

TABLE 12

Summary of EP, EM, ARD, LS, Kappa, CP, random and

other unpruned ensembles with poker hand problem

(Train points 25010 and Test points 1 mil.). The results

are averaged over ten runs.

Summary Error % Size Train Time Test Time Total Time
Unpruned 27.94 100 - 6154.9s 6154.9s

EP 25.68 11.6 2129.4s 677.4s 2806.8s
EM 27.84 19.2 2463.7s 1181.7s 3645.4s

ARD 28.42 29.6 2236.2s 1829.6s 4065.8s
LS 29.13 100 6.8s 6189.2s 6196.0s

Kappa 31.15 25 195.7s 1455.6s 1651.3s
CP 28.73 25 458.6s 1479.3s 1937.9s

Random 31.92 25 1.1s 1464.3s 1465.4s

Figure 10 illustrates the total time as a function of the
number of test examples. According to the figure, though
EP needed more time in training, the pruned ensemble
is much smaller and thus consumed considerably less
time in testing than the unpruned ensemble. When the
number of test examples increased, EP used less time
than the unpruned ensemble.

5 CONCLUSION

Given that large ensemble may not always be better than
small ensemble [10], [11] and large ensemble consumes
much more computational resources, this paper propose
a probabilistic ensemble pruning algorithm in order to
get a set of sparse combination weights to prune an
ensemble.

As the previous research implies that negative com-
bination weights in the ensemble may degrade the per-
formance, we introduce a left-truncated, non-negative,
Gaussian prior over every combination weight in this
probabilistic model to prevent negative weights. How-
ever, after incorporating the truncated Gaussian prior,

0 2 4 6 8 10

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

number of testing points
E

v
a
lu

a
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

Original Ensemble Evaluation Time

EP Training Time + Evaluation Time

Fig. 10. Comparison of evaluation time of each pruning

method averaged.

the normalization integral becomes intractable and ex-
pectation propagation has been used to approximate the
posterior calculation. As the leave-one-out (LOO) error
can be obtained as a byproduct in EP training without
extra computation, the LOO error is used together with
Bayesian evidence for ensemble pruning.

An empirical study on several regres-
sion/classification benchmark data sets shows that
our algorithm utilizes far less component learners but
performs as well as, or better than, the unpruned
ensemble. The results are very competitive compared
with ARD pruning and some other heuristic algorithms.

EP pruning offers a way to estimate the combination
weights and prune the ensemble with the following
compelling advantages: a) Good generalization ability.
Although our algorithm employs only a few of the en-
semble members, they perform as well as, or better than,
the unpruned ensemble; b) The highly spare model is
obtained by the sparseness-inducing prior and behaves
optimally compact; c) No parameters to tune.

Currently, most of the ensemble pruning algorithms,
including the proposed algorithm in this paper, carry
out post-pruning, i.e., pruning after all learners are gen-
erated, which is off-line pruning. Since the EP pruning
algorithm operates sequentially by adding one learner,
deleting one learner or re-estimating the hyperparameter
α, which acts like an “online” pruning algorithm, it is
possible to generalize the EP pruning algorithm to a pre-
pruning scenario to reduce the computational complex-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 15

ity. This will be our future work. Other further work
for this study is to generalize the pruning algorithm to
multi-class problems.

APPENDIX

.1 Further Details of Hyperparameters Optimization

The following analysis is based on the sequential analy-
sis of sparse Bayesian learning [29]. Please refer to [29]
for more details.

To have a sequential update on αi, we explicitly
decompose p(D|α) into two parts, one part denoted by
p(D|α\i), that does not depend on αi and another that
does, i.e.,

p(D|α) = p(D|α\i) +
1

2
(log αi − log(αi + ri) +

u2

i

αi + ri
),

where ri = FiC
−1

\i FT
i , ui = FiC

−1

\i m, and C\i = Λ−1 +
∑

m 6=i FT
mFm. Here Fi and Fm are the ith and the mth

rows of the ensemble matrix F respectively. Using the
above equation, p(D|α) has a maximum with respect to
αi:

αi =
r2

i

u2

i − ri
, if ηi > 0, (15)

αi = ∞, if ηi ≤ 0, (16)

where ηi = u2

i − ri. Thus, in order to maximize the
evidence, we introduce the ith learner when αi = ∞ and
ηi > 0, exclude the ith learner when αi < ∞ and ηi ≤ 0,
and re-estimate αi according to (15) when αi < ∞ and
ηi > 0.

REFERENCES

[1] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 10, pp. 993–1001, 1990.

[2] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[3] R. E. Schapire, “A brief introduction to boosting,” in Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence,
1999, pp. 1401–1406.

[4] L. Breiman, “Arcing classifier,” Annals of Statistics, vol. 26, no. 3,
pp. 801–849, 1998.

[5] ——, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[6] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest:
A new classifier ensemble method,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1619–1630,
2006.

[7] D. Zhang, S. Chen, Z. Zhou, and Q. Yang, “Constraint projections
for ensemble learning,” in Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI’08), 2008, pp. 758–763.

[8] Y. Liu and X. Yao, “Ensemble learning via negative correlation,”
Neural Networks, vol. 12, no. 10, pp. 1399–1404, 1999.

[9] M. M. Islam, X. Yao, and K. Murase, “A constructive algorithm for
training cooperative neural network ensembles,” IEEE Transaction
on Neural Networks, vol. 14, no. 4, pp. 820–834, 2003.

[10] X. Yao and Y. Liu, “Making use of population information in evo-
lutionary artificial neural networks,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 28, no. 3, pp. 417–425, 1998.

[11] Z. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many
could be better than all,” Artificial Intelligence, vol. 137, no. 1-2, pp.
239–263, 2002.

[12] T. G. Dietterich, “An experimental comparison of three methods
for constructing ensembles of decision trees: Bagging, boosting,
and randomization,” Machine Learning, vol. 40, no. 2, pp. 139–157,
2000.

[13] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boost-
ing,” in Proceedings of the Fourteenth International Conference on
Machine Learning, 1997, pp. 211–218.

[14] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer,
“Ensemble diversity measures and their application to thinning,”
Information Fusion, vol. 6, no. 1, pp. 49–62, 2005.

[15] Y. Kim, W. N. Street, and F. Menczer, “Meta-evolutionary ensem-
bles,” in Proceedings of the 2002 International Joint Conference on
Neural Networks, vol. 3, 2002, pp. 2791–2796.

[16] H. Chen, P. Tino, and X. Yao, “A probabilistic ensemble pruning
algorithm,” in Workshops on Optimization-based Data Mining Tech-
niques with Applications in Sixth IEEE International Conference on
Data Mining, 2006, pp. 878–882.

[17] L. Breiman, “Stacked regressions,” Machine Learning, vol. 24, no. 1,
pp. 49–64, 1996.

[18] S. Hashem, “Optimal linear combinations of neural networks,”
Ph.D. dissertation, Purdue University, 1993.

[19] M. LeBlanc and R. Tibshirani, “Combining estimates in regression
and classification,” Journal of the American Statistical Association,
vol. 91, no. 436, pp. 1641–1650, 1996.

[20] T. P. Minka, “Expectation propagation for approximate bayesian
inference,” in UAI ’01: Proceedings of the 17th Conference in Uncer-
tainty in Artificial Intelligence, 2001, pp. 362–369.

[21] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer,
“Learning ensembles from bites: A scalable and accurate ap-
proach,” Journal of Machine Learning Research, vol. 5, pp. 421–451,
2004.

[22] A. Prodromidis and P. Chan, “Meta-learning in a distributed
data mining system: Issues and approaches,” in Proceedings of the
Fourteenth International Conference on Machine Learning, 1998, pp.
211–218.

[23] Y. Zhang, S. Burer, and W. N. Street, “Ensemble pruning via
semi-definite programming,” Journal of Machine Learning Research,
vol. 7, pp. 1315–1338, 2006.

[24] J. M. Bates and C. W. J. Granger, “The combination of forecasts,”
Operations Research, vol. 20, pp. 451–468, 1969.

[25] J. A. Benediktsson, J. R. Sveinsson, O. K. Ersoy, and P. H. Swain,
“Parallel consensual neural networks,” IEEE Transaction on Neural
Networks, vol. 8, no. 1, pp. 54–64, 1997.

[26] N. Ueda, “Optimal linear combination of neural networks for im-
proving classification performance,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 2, pp. 207–215, 2000.

[27] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, “Linear program-
ming boosting via column generation,” Machine Learning, vol. 46,
no. 1–3, pp. 225–254, 2002.

[28] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1, pp. 211–244,
2001.

[29] A. Faul and M. Tipping, “Analysis of sparse bayesian learning,”
in Advances in Neural Information Processing Systems 14, 2002, pp.
383–389.

[30] Y. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani, “Predictive
automatic relevance determination by expectation propagation,”
in ICML ’04: Proceedings of the Twenty-first International Conference
on Machine Learning, 2004, p. 85.

[31] C. Andrieu, N. d. Freitas, A. Doucet, and M. I. Jordan, “An
introduction to mcmc for machine learning,” Machine Learning,
vol. 50, no. 1–2, pp. 5–43, 2003.

[32] J. V. Hansen, “Combining predictors: Meta machine learning
methods and bias/variance and ambiguity decompositions,”
Ph.D. Dissertation, Department of Computer Science, University
of Aarhus, Denmark, 2000.

[33] G. Ridgeway, D. Madigan, and T. Richardson, “Boosting method-
ology for regression problems,” in Proceedings of Artificial Intelli-
gence and Statistics, 1999, pp. 152–161.

[34] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://mlearn.ics.uci.edu/MLRepository.html

[35] D. Opitz and R. Maclin, “Popular ensemble methods: An empir-
ical study,” Journal of Artificial Intelligence Research, vol. 11, pp.
169–198, 1999.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 16

[36] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine learning research, vol. 7, pp. 1–30,
2006.

[37] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, pp. 675–701, 1937.

[38] R. L. Iman and J. M. Davenport, “Approximations of the critical
region of the friedman statistic,” Communications in Statistics, pp.
571–595, 1980.

[39] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, pp. 52–64, 1961.

Huanhuan Chen received the B.Sc. degree
from the University of Science and Technology
of China, Hefei, China, in 2004, and Ph.D. de-
gree, sponsored by Dorothy Hodgkin Postgradu-
ate Award (DHPA), in computer science at the
University of Birmingham, Birmingham, UK, in
2008.

He is a Research Fellow with the Centre of
Excellence for Research in Computational In-
telligence and Applications (CERCIA) in School
of Computer Science, University of Birmingham.

His research interests include statistical machine learning, data mining
and evolutionary computation.

Dr. Chen is the recipient of the Value in People (VIP) award from The
Wellcome Trust (2009), Dorothy Hodgkin Postgraduate Award (DHPA)
from EPSRC (2004) and the Student Travel Grant for the 2006 Congress
on Evolutionary Computation (CEC06).

Peter Tiño received the M.Sc. degree from the
Slovak University of Technology, Bratislava, Slo-
vakia, in 1988 and the Ph.D. degree from the
Slovak Academy of Sciences, Slovakia, in 1997.

He was a Fullbright Fellow at the NEC Re-
search Institute in Princeton, NJ, USA, from
1994 to 1995. He was a Postdoctoral Fellow at
the Austrian Research Institute for AI in Vienna,
Austria, from 1997 to 2000, and a Research
Associate at the Aston University, UK, from 2000
to 2003. He is with the School of Computer

Science, the University of Birmingham, UK, since 2003 and is currently
a a senior lecturer. He is on the editorial board of several journals. His
main research interests include probabilistic modeling and visualization
of structured data, statistical pattern recognition, dynamical systems,
evolutionary computation, and fractal analysis.

Dr. Tiño is a recipient of the Fullbright Fellowship in 1994. He was
awarded the Outstanding Paper of the Year for IEEE Transactions on
Neural Networks with T. Lin, B.G. Horne, and C.L. Giles in 1998 for
the work on recurrent neural networks. He won the 2002 Best Paper
Award at the International Conference on Artificial Neural Networks with
B. Hammer.

Xin Yao (M’91-SM’96-F’03)received the B.Sc.
degree from the University of Science and Tech-
nology of China (USTC), Hefei, Anhui, in 1982,
the M.Sc. degree from the North China Institute
of Computing Technology, Beijing, in 1985, and
the Ph.D. degree from USTC in 1990.

He was an Associate Lecturer and Lecturer
from 1985 to 1990 at USTC, while working to-
wards his Ph.D on simulated annealing and evo-
lutionary algorithms. He took up a Postdoctoral
Fellowship in the Computer Sciences Labora-

tory, Australian National University (ANU), Canberra, in 1990, and con-
tinued his work on simulated annealing and evolutionary algorithms. He
joined the Knowledge-Based Systems Group, CSIRO (Commonwealth
Scientific and Industrial Research Organisation) Division of Building,
Construction and Engineering, Melbourne, in 1991, working primarily
on an industrial project on automatic inspection of sewage pipes. He
returned to Canberra in 1992 to take up a lectureship in the School of
Computer Science, University College, University of New South Wales
(UNSW), Australian Defence Force Academy (ADFA), where he was
later promoted to a Senior Lecturer and Associate Professor. Attracted
by the English weather, he moved to the University of Birmingham,
U.K., as a Professor (Chair) of Computer Science on the April Fool’s
Day in 1999. Currently, he is the Director of the Centre of Excellence
for Research in Computational Intelligence and Applications (CERCIA)
and a Changjiang (Visiting) Chair Professor (Cheung Kong Scholar) at
the University of Science and Technology of China, Hefei. He was the
Editor-in-Chief of the IEEE Transactions on Evolutionary Computation
(2003-08), an associate editor or editorial board member of twelve
other journals, and the Editor of the World Scientific Book Series on
Advances in Natural Computation. He has given more than 50 invited
keynote and plenary speeches at conferences and workshops world-
wide. His major research interests include evolutionary artificial neural
networks, automatic modularization of machine learning systems, evolu-
tionary optimization, constraint handling techniques, computational time
complexity of evolutionary algorithms, coevolution, iterated prisoner’s
dilemma, data mining, and real-world applications. He has more than
300 refereed publications. He was awarded the President’s Award for
Outstanding Thesis by the Chinese Academy of Sciences for his Ph.D.
work on simulated annealing and evolutionary algorithms in 1989. He
won the 2001 IEEE Donald G. Fink Prize Paper Award for his work on
evolutionary artificial neural networks.

