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Abstract

In this paper, a real-time predictive filter is derived for nonlinear systems.  The major

advantage of this new filter over conventional filters is that it provides a method of determining

optimal state estimates in the presence of significant error in the assumed (nominal) model.  The

new real-time nonlinear filter determines (“predicts”) the optimal model error trajectory so that

the measurement-minus-estimate covariance statistically matches the known measurement-

minus-truth covariance.  The optimal model error is found by using a one-time step ahead control

approach.  Also, since the continuous model is used to determine state estimates, the filter avoids

discrete state jumps.  The predictive filter is used to estimate the position and velocity of

nonlinear mass-damper-spring system.  Results using this new algorithm indicate that the real-

time predictive filter provides accurate estimates in the presence of highly nonlinear dynamics

and significant errors in the model parameters.

Introduction

Conventional filter methods, such as the Kalman filter,1 have proven to be extremely useful

in a wide range of applications, including: noise reduction of signals, trajectory tracking of

moving objects, and in the control of linear or nonlinear systems.  The essential feature of the

Kalman filter is the utilization of state-space formulations for the system model.  Error in the

dynamics system can be separated into “process noise” errors or modeling errors.  Process noise

errors are usually represented by a zero-mean Gaussian error process with known covariance

(e.g., a gyro-error model can be represented by a random walk process).  Modeling errors are

usually not known explicitly, since system models are not usually improved or updated during

the estimation process.  The theoretical derivation of the expression for the estimate error
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covariance in the Kalman filter is only available if one makes assumptions about the model error.

The most common assumptions about the model error are that it is also a zero-mean Gaussian

noise process.  Therefore, in the filter-type literature, most often process noise and model error

are treated equally.

The Kalman filter satisfies an optimality criterion which minimizes the trace of the

covariance of the estimate error between the system model responses and actual measurements.

Statistical properties of the process noise and measurement error are used to determine an

“optimal” filter design.  Therefore, model characteristics are combined with sequential

measurements in order to obtain state estimates which are more accurate than both the

measurements and model responses.

As stated previously, errors in the system model of the Kalman filter are usually assumed to

be represented by a zero-mean Gaussian noise process with known covariance.  In  actual

practice the noise covariance is usually determined by an ad hoc and/or heuristic estimation

approach which may result in sub-optimal filter designs.  Other applications also determine a

steady-state gain directly, which may even produce unstable filter designs.2  Also, in many cases

such as nonlinearities in the actual system responses or non-stationary processes, the assumption

of a Gaussian model error process can lead to severely degraded state estimates.

In addition to nonlinear model errors, the actual assumed model may be nonlinear (e.g., three-

dimensional kinematic and dynamic equations3).  The filtering problem for nonlinear systems is

considerably more difficult  and admits a wider variety of solutions than does the linear

problem.4  The extended Kalman filter is a widely used algorithm for nonlinear estimation and

filtering.5 The essential feature of this algorithm is the utilization of a first-order Taylor series

expansion of the model and output system equations.  The extended Kalman filter retains the

linear calculation of the covariance and gain matrices, and it updates the state estimate using a

linear function of  the measurement residual; however, it uses the original nonlinear equations for

state propagation and in the output system equation.5  But, the model error statistics are still

assumed to be represented by a zero-mean Gaussian noise process.

A new approach for performing optimal state estimation in the presence of significant model

error has been developed by Mook and Junkins.6  This algorithm, called the Minimum Model
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Error (MME) estimator, unlike most filter and smoother algorithms, does not assume that the

model error is represented by a Gaussian process.  Instead, the model error is determined during

the MME estimation process.  The algorithm determines the corrections added to the assumed

model such that the model and corrections yield an accurate representation of the system

behavior.  This is accomplished by solving system optimality conditions and an output error

covariance constraint.  Therefore, accurate state estimates can be determined without the use of

precise system representations in the assumed model.  Also, the MME estimator can be applied

to systems with nonlinear models.  The MME estimates are determined from a solution of a two-

point-boundary-value-problem (see Ref. [6-7]).  Therefore, the MME estimator is a batch (off-

line) estimator which must utilize post-experiment measurements.

The filter algorithm developed in this paper can be implemented in real-time (as can the

Kalman filter).  However, the algorithm is not limited to Gaussian noise characteristics for the

model error.  Essentially, this new algorithm combines the good qualities of both the Kalman

filter (i.e., a real-time estimator) and the MME estimator (i.e., determines actual model error

trajectories).  The new algorithm is based on a predictive tracking scheme first introduced by Lu.8

Although the problem shown in Ref. [8] is solved from a control standpoint, the algorithm

developed in this paper is reformulated as a filter and estimator with a stochastic measurement

process.  Therefore, the new algorithm is known as a predictive filter.  The advantages of the new

algorithm include: (i) the model error is assumed unknown and is estimated as part of the

solution, (ii) the model error may take any form (even nonlinear), and (iii) the algorithm can be

implemented on-line to both filter noisy measurements and estimate state trajectories.

The organization of this paper proceeds as follows.  First, the basic equations and concepts

used for the filter development are reviewed.  Then, a predictive filter is derived for nonlinear

systems.  This approach determines optimal state estimates in real-time by minimizing a

quadratic cost function consisting of a measurement residual term and a model error term.  Then,

the concept of the covariance constraint is introduced for determining the optimal model error

weighting matrix.  Finally, an example involving the estimation of the position and velocity in a

nonlinear mass-damper-spring system is shown.
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Nonlinear Predictive Filter
Preliminaries

In this section, the nonlinear predictive filter algorithm is derived.  This development is based

upon the duality which exists between the predictive controller for nonlinear systems by Lu8 and

a general estimation problem.  In the nonlinear predictive filter it is assumed that the state and

output estimates are given by a preliminary model and a to-be-determined model error vector,

given by

�� � �x t f x t G x t d t� � � �� � � �� � � �= + (1a)

� �y t c x t� � � �� �= (1b)

where f n n∈ →R R  is sufficiently differentiable, �x t n� � ∈R  is the state estimate vector,

d t q� � ∈R  represents the model error vector, G x t n n q� :� �� � R R→ ×  is the model-error distribution

matrix, c x t n m�� �� � ∈ →R R  is the measurement vector, and �y t m� � ∈R  is the estimated output

vector.  State-observable discrete measurements are assumed for Equation (1b) in the following

form

~y c x t v
k k k= +� �� � (2)

where ~y
k

m∈R  is the measurement vector at time tk , x tk� �  is the true state vector, and

vk
m∈R  represents the measurement noise vector which is assumed to be a zero-mean, Gaussian

white-noise distributed process  with

E vk� � = 0 (3a)

E v v Rk l
T

kl� � = δ (3b)

where R m m∈ ×R  is a positive-definite measurement covariance matrix.

A Taylor series expansion of the output estimate in Equation (1b) is given by

� � � , �y t t y t z x t t t S x t d t+ ≈ + +∆ ∆ Λ ∆� � � � � �� � � � � �� � � � (4)
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where the i th  element of z x t t� ,� �� �∆  is given by

z x t t
t

k
L ci

k

f
k

i

k

pi

� ,
!

� �� � � �∆ ∆=
=

∑
1

(5)

where pi , i m= 1 2, , ,� , is the lowest order of the derivative of c x ti �� �� �  in which any component

of d t� �  first appears due to successive differentiation and substitution for ��x ti � �  on the right side.

L cf
k

i� �  is a k th  order Lie derivative, defined by (see Ref. [9])

L c c k

L c
L c

x
f k

f
k

i i

f
k

i
f
k

i

� �

� � � �
= =

= ≥
−

for

for

0

1
1∂

∂ �

(6)

Λ ∆t m m� � ∈ ×R  is a diagonal matrix with elements given by

λ ii

p

i

t

p
i m

i

= =∆
!

, , , ,1 2� (7)

S x t m q�� �� � ∈ ×R  is a matrix with each i th  row given by

s L L c L L c i mi g f
p

i g f
p

i
i

q
i= =− −

1

1 1 1 2� � � �� �, , , , , ,� � (8)

where the Lie derivative with respect to Lgj
 in Equation (8) is defined by

L L c
L c

x
g j qg f

p
i

f
p

i
jj

i

i
−

−

≡ =1
1

1 2� �
� �∂

∂ �
, , , ,� (9)

Equation (8) is in essence a generalized sensitivity matrix for nonlinear systems.

Nonlinear Filtering

A cost functional consisting of the weighted sum square of the measurement-minus-estimate

residuals plus the weighted sum square of the model correction term is minimized, given by

J d t y t t y t t R y t t y t t d t W d t
T T� �� � � � � �	 
 � � � �	 
 � � � �= + − + + − + +−1

2

1

2
1~ � ~ �∆ ∆ ∆ ∆ (10)
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where W q q∈ ×R  is positive semidefinite.  Also, a constant sampling rate is assumed so that

~ ~y t t y
k

+ ≡ +∆� � 1
.  Substituting Equation (4), and minimizing Equation (10) with respect to d t� �

leads to the following model error solution

  d t t S x R t S x W t S x R z x t y t t y t
T T� � � � � � � � � �� � � � � � � � � � � �= − + − + +−

−
−Λ ∆ Λ ∆ Λ ∆ ∆ ∆� � � �, ~ �1

1
1 (11)

By using the matrix inversion lemma,10 the model error in Equation (11) can be re-written as

d t M t z x t y t t y t� � � � � � � � � �= − − + +�, ~ �∆ ∆  (12)

where

M t W I t S x t S x W t S x R t S x W

t S x R

T T

T

� � � � � � � � � � � � � �� � � � � �

� � � �

= −�
� + 

�
×

− −
−

−

−

1 1
1

1

1

Λ ∆ Λ ∆ Λ ∆ Λ ∆

Λ ∆

� � � �

�

(13)

This form will later be used to show the relationship of the predictive filter to a linear estimator

for linear systems.  Equation (12) is used in Equation (1a) to perform a nonlinear propagation of

the state estimates to time tk , then the measurement is processed at time tk+1 to find the new

d t� �  in t tk k, +1 , and then the state estimates are propagated to time tk+1.  The matrix W

serves to weight the amount of model error added to correct the assumed model in Equation (1).

As W  decreases, more model error is added to correct the model, so that the estimates more

closely follow the measurements.  As W  increases, less model error is added, so that the

estimates more closely follow the propagated model.

Covariance Constraint

The weighting matrix W� �  in Equation (11) can be determined on the basis that the

measurement-minus-estimate error covariance matrix must match the measurement-minus-truth

error covariance matrix (see Ref. [6]).  This condition is referred to as the “covariance

constraint,” shown as

1

0
N

e e e e Rk k
T

k

N

− − ≈
=

∑� �� � (14)
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where e y yk k k
≡ −~ � , e  is the sample mean of ~ �y y− , and N  is a large number.  A test for

whiteness can be based upon the autocorrelation function matrix of the measurement residual.5

The maximum likelihood estimate of the m m×  autocorrelation function matrix  for N  samples

is given by

C
N

e ek i i k
T

i k

N

= −
=
∑1

(15)

A 95% confidence interval for whiteness using a finite sample length is given by5

ρii k N≤ 196 1 2. / / (16)

where ρii  corresponds to the diagonal elements resulting by normalizing the autocorrelation

matrix by the zero-lag elements, given by

ρii k
ii

ii

c

c
k=
0

(17)

If the confidence interval in Equation (16) and the covariance constraint in Equation (14) are met,

then the weighting matrix is optimal.  Therefore, the proper balance between model error and

measurement residual has been achieved.  If the measurement residual covariance is higher than

the known measurement error covariance R� � , then W  should be decreased to less penalize the

model error.  Conversely, if the residual covariance is lower than the known covariance, then W

should be increased so that less unmodeled dynamics are added to the assumed system model.

The sample measurement covariance can be determined from a recursive relationship given

by (see Ref. [11])

� � �R R
k

k

k
e e e e Rk k k k k k

T
k+ + += +

+ +
− − −�

��
�
��1 1 1

1

1 1
� �� � (18a)

e e
k

e ek k k k+ += +
+

−1 1
1

1
� � (18b)

The covariance constraint is met when �R Rk → , after the filter has converged (i.e., the estimate

reaches a stochastic steady-state so that the effects of transients become negligible).
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Even though the model error is determined by Equation (11) or (12), it still involves

stochastic processes.  Therefore, a covariance of the model error can be derived.  First, the

covariance constraint is re-written as

E y y y y R
k k k k

T~ � ~ �− −���
���

=� �� � (19)

Substituting Equation (2) into Equation (19), and using

E y v E v y E y v E v y
k k

T
k k

T
k k

T
k k

T� � � � � � � �= = = =� � 0 (20)

leads to

E y y y y R
k k

T
k k

T~ ~ � �� �− = (21)

If Equation (14) is satisfied at steady-state, then the following equation is also true

E y y y y R
k k

T
k k

T~ ~ � �
+ + + +− =

1 1 1 1� � (22)

For a constant sampling interval, Equation (22) is equivalent to

E y t t y t t y t t y t t RT T~ ~ � �+ + = + + +∆ ∆ ∆ ∆� � � �� � � � � � (23)

As long as the process remains stationary, Equation (23) is valid even if the covariance constraint

is not satisfied.  Also, since the optimal model error solution in Equation (11) is a function of the

stochastic measurement noise process,  a test for the whiteness of the “determined” model error

can be found by using the correlation function in Equations (15)-(17), replacing e with d .  If the

model error is sufficiently white, then the covariance of the model error can also be determined

using a recursive formula shown in Equation (18), again replacing e with d .  Another form for

the model error covariance can be determined by using Equation (11), and assuming that

E y t v t t E v t t y tT T� �� � � �� � � � � �� �+ = + =∆ ∆ 0 (24a)

E z x t v t t E v t t z x tT T�, �,∆ ∆ ∆ ∆� � � �� � � � � �� �+ = + = 0 (24b)

which leads to
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E d t d t M t y t y t t z x t R M tT T� � � �� � � � � � � � � �� � � �= − + + +� � �,∆ ∆ (25)

where

a a a aT≡ for any (26)

Therefore, the relative magnitude of the model error can now be determined.  In fact, if the

determined model error process is truly white, then the inverse of the weighting matrix W� �  can

be shown to be the maximum likelihood estimate of the model error.  This can be used to

determine an adaptive scheme for determining W  to satisfy the covariance constraint (which will

be reported at a later time).

Stability

Filter Stability

The effect of W  on filter stability and bandwidth can be determined by applying a discrete

error analysis.  The filter residual is given by

e t t y t t y t t+ = + − +∆ ∆ ∆� � � � � �~ � (27)

Substituting Equation (4) into Equation (27) leads to

e t t I t S x M t e t t+ = − +∆ Λ ∆ ∆� � � � � � � � � �� � (28)

where

� ~ � �,e t t y t t y t z x t+ ≡ + − −∆ ∆ ∆� � � � � � � � (29)

which is the predicted measurement residual at t t+ ∆  assuming d = 0 .

If S is square and full rank, then Λ S M is also full rank.  As W → 0, then Λ S M I→ , and

I S M− →Λ� � 0.  This approaches a deadbeat response for the filter dynamics.  As W → ∞ ,

then M → 0 , and I S M I− →Λ� � .  This yields a filter response with eigenvalues approaching

the unit circle. As long as the covariance matrix is positive, the eigenvalues of the filter will lie

within the unit circle. Therefore, the filter remains contractive.12
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Robustness

In the previous section, the filter stability was shown for the linearized system.  In this

section, filter robustness and stability is shown for the nonlinear system with unmodeled

dynamics.  This situation may arise when W  is not chosen properly.  Lu13 has shown that the

dual control problem achieves input/output linearization, and asymptotic tracking of any given

trajectory if pi ≤ 4 .  An analysis of  the robustness properties in the face of unmodeled dynamics

for pi = 1, W = 0 , and square and nonsingular S x�� �  has also been shown in Ref. [13].  In this

paper, the case of pi = 1, W ≠ 0 , and S x m�� � ∈ ×R 3, where m≤ 3 is considered.  The continuous

output estimate for pi = 1 is given by

�� �y L c S x df= +� � � � (30)

where

L c

L c

L c
f

f

f m

� �
� �

� �
≡

�

�

�
�
�

�

�

�
�
�

1

� (31)

Suppose that the unmodeled errors are introduced into the output estimate by

�� � �y L c L c S x S x df f= + + +� � � � � � � �∆ ∆ (32)

and suppose that L cf � �  and ∆ L cf � �  are bounded by

L c n L c n x Xf f� � � �≤ ≤ ∈1 2, ,∆ for all (33)

Furthermore, assume that ∆S x�� �  is represented by

∆S x x S x� � �� � � � � �= δ (34)

where δ �x� �  is a scalar, continuous function with bound given by − < <1 3δ �x n� � .  Assuming that

the model errors and measurement errors are isotropic leads to W w I= , and R r I= .  Then, the

matrix inverse in Equation (11) can be written as (suppressing arguments)
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Λ ΛS R S W v I CT − − −+ = − +1
1 1� � � �� �σ (35)

where

C
t

r
S ST≡ ∆ 2

(36a)

σ = ∆t

r
S ST

2

2
tr� � (36b)

v w= +σ (36c)

By the Cayley-Hamilton theorem, any meromorphic function of C  can be expressed as a

quadratic in C  (see Ref. [14]), yielding

v I C I C C− + = + +−σ
γ

α β� �� � � �1 21
(37)

where

α σ= − +v k2 2 (38a)

β σ= − +v� � (38b)

γ σ α α= − + = +v w� � ∆ ∆ (38c)

k C
t

r
S ST= =tr adj tr adj� � � �∆ 4

2
(38d)

∆ ∆= t

r
S ST

6

3
det� � (38e)

Therefore, the error dynamics become

� �
~

�
~

e
t

r
Qe y L L

t

r
Q L yf f f= − + + − − + + −∆ ∆ ∆

γ
δ

γ
δ1 1

2

� � � � (39)

where
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Q S S
t

r
S S

t

r
S ST T T≡ + +

�
�
�
�

�
�
�
�

α β β� � � � � �∆ ∆2 2 4

2

3
(40)

Now, define a Lyapunov function V e= 2 2 .  Using the norm inequality,15 and the fact that (see

Appendix)

e Qe
Q

e eT T≥
−
1

1
(41)

leads to

� �
~

�
~

V
t

r Q
V e y L L

t

r
e Q L yT

f f
T

f≤ −
+

+ − − +
+

−
−

2 1 1
1

2∆
∆

∆δ

γ

δ
γ

� � � �
(42)

Next, using the well known inequality ab z a b z≤ +2 2 4� �  for any a , b , and z> 0 , and defining

ξ δ γ≡ +∆t r1� � � �  yields

�
�
~

�
~

V
Q

z V
y L L t Q L y

z

f f f≤ − +
�

�
�
�



�
 
 +

− − + −
−

2
4

41

2 2 2 2 2
ξ ξ∆ ∆

(43)

Substituting 4 1z Q= −ξ  leads to

�V
Q

V b≤ − +
−
ξ

1
(44)

where

b Q y L L t Q L yf f f≡ − − + −
�
��

�
��

−1 2 2 2 21

ξ
ξ�

~
�
~∆ ∆ (45)

Therefore, Equation (44) can be solved to yield

V V
b Q

e
b Qt Q

≤ −
�

�
�
�



�
 
 +

−
−

−
−

0

1 1
1

ξ ξ
ξ

(46)
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where V b Q0
1≥ − ξ  is required to maintain the inequality.  Defining the bounds

θ δ= + >inf 1 0� � (47a)

�
~

max �
~

,
y y

t t f
i

i

m

∞
=

=
∈

∑
0

1

(47b)

and using the matrix norm inequality again leads to

e
r Q

t
t Q Q≤ +

−
−2 2

1

1
2 1

2
2

γ

θ
µ µ

∆
∆ (48)

where

µ1 1 2= − −
∞

�
~
y n n (49a)

µ θ2 1= −�
��

�
��∞

n y�
~� � (49b)

Assuming that S S sT ≤ 1 for all S ST  leads to the following bound on Q

Q s
t

r
s

t

r
s≤ + +α β1

2

1
2

4

2 1
3∆ ∆

(50)

Also, tr S S sT� � ≤ 3 1 and detS S sT� � ≤ 1
3, which leads to

σ ≤ 3

2

2

1
∆t

r
s (51a)

k
t

r
s≤ 9 4

2 1
2∆

(51b)

∆ ∆≤ t

r
s

6

3 1
3 (51c)

Substituting Equation (51) into Equations (38) and (50) leads to the following bounds on Q

and γ
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Q w s
w t s

r

t s

r
≤ + +2

1

2
1
2 4

1
3

2
4 13∆ ∆

(52a)

γ ≤ + + +w
w t s

r

t s

r

t s

r

3
2 2

1
4

1
2

2

6
1
3

3
3 9∆ ∆ ∆

(52b)

A bound on Q−1  is found by writing it as

Q S
t

r
S S wI S

S S
t

r
S S wI

S S
t

r
S S w

T T

T T

T T

−
− −

−

−

= +
�
�
�
�

�
�
�
�

�
�!

�!

�
�!

�!

≤ +
�
�
�
�

�
�
�
�

≤ +
�
�!
�!

�
�!
�!

1
2 1 1

1 2

1 2

γ

γ

γ

∆

∆

∆

� �

� �

(53)

Assuming that S S sT� �
−

≤
1

2 for all S ST  leads to

Q s
t

r
s w− ≤ +

�
�
�
�

�
�
�
�

1
2

2

1γ ∆
(54)

Therefore Equations (48), (52), and (54) define the bound for the error dynamics under

unmodeled uncertainty.  Similar results can be obtained for 1 4< ≤pi .  The case where q > 3

can also be determined using a Cayley-Hamilton expansion, but becomes increasingly more

complicated.

Numerical Stability

If the system is unobservable then S ST  is not full rank.  However, the filter can compensate

for this by adding more model correction.  It can be shown that the filter remains for bounded

model uncertainties as long as

v − + >σ α� � ∆ 0 (55)

If S ST  is not full rank, then ∆ = 0 , which leads to the following condition
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v
t

r
S ST> ∆ 2

2
tr� � (56)

Therefore, the filter remains contractive as long as w > 0 .  This condition is always met, but

Equation (56) can be used to help determine any numerical difficulties (i.e., large values of σ

may produce numerical difficulties).  One possible solution is to make r  as large as possible.

However, then w  will be adjusted to meet the covariance constraint, so that the numerical

difficulties remain.  Another solution to this problem is to use smaller sampling interval, but this

may not be possible.  A more practical solution is to utilize a “U D− ” factorization of Equation

(13) (see  Ref. [16]).

Cases

Case 1.  Let pi = 1 for both the state and output systems.  Equations (5), (7) and (8) reduce to

z t H x f x= ∆ � �� � � � (57a)

H x
y

x
�

�

�
� � ≡

∂
∂

(57b)

Λ ∆= t I (57c)

S H x G x= � �� � � � (57d)

Therefore, the model error trajectory in Equation (12) is given by

d t I W G H H GW G H t R H G

W G H R y t y t t t H f

T T T T

T T

= − − +���
���

× − + +

− − − −

− −

∆ ∆

∆ ∆

1 1 2 1

1 1
� ~� � � �	 


(58)

Equations (57-58) can be used to develop a predictive filter for a linear system, given by

�� �x F x G d= + (59a)

� �y H x= (59b)

For the linear case Equation (58) is similar to a linear estimator.  This can be shown be

converting Equation (59) into discrete form
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� �x x dk k k+ = +1 Φ Γ (60)

If the sampling interval in the discrete conversion in Equation (60) is equal to the measurement

sampling interval (∆t ), and if the first-order approximations of Φ ∆≈ +I t A , and Γ ∆≈ t G  are

made, then the following equation for dk  is given

d I W H H W H R H W H R y H xk
T T T T T T

k k= − +���
���

+− − − − −
+

1 1 1 1 1
1

Γ Γ Γ Γ Γ Φ~ �� � (61)

Case 2.  Consider the following system

�� � , �x f x x1 1 1 2= � � (62a)

�� � �x f x G x d2 2 2 2 2= +� � � � (62b)

� �y c x= 1� � (62c)

with pi = 2 .  Equation (62a) usually defines the kinematics, and Equation (62b) usually defines

the dynamics of a system.  Equations (5), (7) and (8) now become

z t L
t L

x
f x x

L

x
f xf

f f= + +
�

�
�
�

�

�
�
�∆ ∆1

2 1

1
1 1 2

1

2
2 22

∂
∂

∂
∂�

� , �
�

�� � � � (63a)

L
c

x
f x x

c

x
f xf

1

1
1 1 2

2
2 2≡ +∂

∂
∂

∂�
� , �

�
�� � � � (63b)

Λ ∆= t
I

2

2
(63c)

S
L

x
G x

f=
∂
∂

1

2
2 2

�
�� � (63d)

Example

In this section, a simple example which illustrates the application of the predictive filter to a

nonlinear mass-damper-spring system is shown.  Consider the following system17
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m x b x x k x k x�� � �+ + + =1 2
3 0 (64)

where b x x� �  represents the nonlinear damping, and k x k x1 2
3+  represents a linear spring with a

nonlinear hardening effect.  This system can be shown to be asymptotically stable by choosing

the following Lyapunov function17

V x m x k x k x� � = + +1

2

1

2

1

4
2

1
2

2
4

� (65)

which leads to

� �V x b x� � = − 3 (66)

Therefore, the mechanical energy of the system converges to zero for any initial condition.  Using

the predictive filter approach, the system model is modified by the addition of a to-be-determined

unmodeled effect.  The state-space representation is given by

��

��

�

� � � �

x

x

x

c x x c x c x
d t1

2

2

1 2 2 2 1 3 1
3

0

1

�
�
�

�
�
� =

− − −
�
��

�
��

+
�
��

�
��

� � (67)

where c b m1 ≡ , c k m2 1≡ , c k m3 2≡ , and x1and x2  represent position (x ) and velocity (�x ),

respectively.  For this system, the model error is represented as an input to the mass-damper-

spring system.  The measurements are given by

~y x t vk k k= +1� � (68)

where the variance of vk  is defined as r .  The lowest order time-derivative of Equation (68) in

which the model error first appears is two.  Therefore, the predictive filter equations are given by

Equations (62-63), which is Case 2.  For this example, the determined model error is given by

d
t

t r w
x

t
c x x c x c x

t
y x= −

+
− + + − −�

��
�
��

2

4 2

13

4 2 1 2 2 2 1 3 1
3

1
∆

∆
∆

∆
∆� � � � � ~ �� � � � (69)

where ~ ~y yk
∆ ≡ +1.  The case where w = 0  corresponds to the feedback linearization case,

yielding
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��

��

�

�

~x

x t t

x

x t
y1

2
2

1

2
2

0 1

2 2

0

2

�
�
�

�
�
� =

− −
�
��

�
��
�
��

�
��

+
�
��

�
��∆ ∆ ∆

∆ (70)

The eigenvalues of the state matrix are given by

s
t

j1 2
1

1, = − ±
∆

� � (71)

Therefore, the filter’s dynamics are dependent only on the sampling interval.  Also, this case

represents a linear filter on the measurements only, so that no model error correction is added.

The true state history for this example is given using Equation (67) with d t� � = 0  for all t ,

c1 10= , c2 01= . , and c3 3= , and initial conditions of x t1 0 01� � = − . , and x t2 0 01� � = . .  A plot of

the true states with these parameters is shown in Figure 1.  Measurements are obtained by using a

sampling interval of 0.1 seconds, and the standard deviation of vk  in Equation (68) is 0.0005.

Model error is introduced into the system by perturbing c2  and c3, which are chosen to be

c2 100= − , and c3 40= .  Also, a weighting factor of w = 0 09.  was determined by satisfying the

covariance constraint once the filter reached steady-state.  Even though a significant amount of

error is present in the assumed model,  the predictive filter is able to accurately estimate for the

states, as shown by Figure 2.  A plot of the actual and determined model error histories is shown

in Figure 3.  This example shows that the model error for this example cannot be represented by

a zero-mean Gaussian process, as is assumed in the Kalman filter.  However, the predictive filter

is clearly able to correctly determine the actual model error in the system.  Finally, the predictive

filter is tested for initial conditions errors.  For this test, the assumed initial conditions in the

filter are set to zero.  Figure 4 depicts the filter convergence for this case.  The predictive filter is

able to converge very quickly (within 0.06 seconds).  This example clearly shows that the

predictive filter scheme provides robust performance in a nonlinear system for both significant

errors in the assumed model and in the initial conditions.

Conclusions

In this paper, a predictive filter was presented for nonlinear systems.  Advantages of the new

algorithm over the extended Kalman filter include: (i) the model error is assumed unknown and
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is estimated as part of the solution, (ii) the model error may take any form (even nonlinear), and

(iii)  the model error is used to propagate a continuous model which avoids discrete jumps in the

state estimate.  An example of this algorithm was shown which estimated the position and

velocity of nonlinear mass-damper-spring system.  Results using this new algorithm indicated

that the real-time predictive filter provides accurate estimates in the presence of highly nonlinear

dynamics and significant errors in the model parameters.

Appendix

In this section, the inequality given by Equation (41) is proved.  The vector e is first

represented by

e ui

i

m

i=
=
∑α

1

(A1)

where ui  are the eigenvectors of Q, and α i  are some scalar coefficients.  Therefore, the product

Qe is given by

Qe ui i

i

m

i=
=
∑α λ

1

(A2)

where λ i  are the eigenvalues of Q.  Using the fact that

e i

i

m
2 2

1

=
=
∑α (A3)

leads to the following inequality

λ α λ αmin maxi

i

m
T

i

i

m

e Qe2

1

2

1= =
∑ ∑≤ ≤ (A4)

Therefore, using the following identity

λ
λ

min
max

Q
Q Q

� �
� �

= =
− −

1 1
1 1

(A5)
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then the following inequality must hold true

e Qe
Q

e eT T≥
−
1

1
(A6)

Acknowledgments

The first author’s work was supported by a National Research Council Postdoctoral

Fellowship tenured at NASA-Goddard Space Flight Center.  The author greatly appreciates this

support.  Also, the author wishes to thank Dr. D. Joseph Mook of the State University of New

York at Buffalo, and Dr. Ping Lu of Iowa State University for many interesting and helpful

discussions.

References

1Kalman, R.E., “A New Approach to Linear Filtering and Prediction Problems,” Transactions of

the ASME, Journal of Basic Engineering, Vol. 82, March 1960, pp. 34-45.

2Mason, P.A.C., and Mook, D.J., “Scalar Gain Interpretation of Large Order Filters,”

Proceedings of the Flight Mechanics/Estimation Theory Symposium, NASA-Goddard Space

Flight Center, Greenbelt, MD, 1992, pp. 425-439.

3Kane, T.R., Likins, P.W., and Levinson, D.A., Spacecraft Dynamics, McGraw-Hill, NY, 1983.

4Gelb, A., Applied Optimal Estimation, MIT Press, MA, 1974.

5Stengel, R.F., Optimal Control and Estimation, Dover Publications, NY, 1994.

6Mook, D.J., and Junkins, J.L., “Minimum Model Error Estimation for Poorly Modeled Dynamic

Systems,” Journal of Guidance, Control and Dynamics, Vol. 11, No. 3, May-June 1988, pp. 256-

261.

7Crassidis, J.L., Mason, P.A.C., and Mook, D.J., “Riccati Solution for the Minimum Model Error

Algorithm,” Journal of Guidance, Control and Dynamics, Vol. 16, No. 6, Nov.-Dec. 1993, pp.

1181-1183.



21

8Lu, P., “Nonlinear Predictive Controllers for Continuous Systems,” Journal of Guidance,

Control and Dynamics, Vol. 17, No. 3, May-June 1994, pp. 553-560.

9Hunt, L.R., Luksic, M., Su, R., “Exact Linearizations of Input-Output Systems,” International

Journal of Control, Vol. 43, No. 1, 1986, pp. 247-255.

10Bierman, G.J., Factorization Methods for Discrete Sequential Estimation, Academic Press, FL,

1977.

11Lewis, F.L., Optimal Estimation, John Wiley & Sons, NY, 1986.

12Vidyasagar, M., Nonlinear Systems Analysis, Prentice Hall, NJ, 1993.

13Lu, P., “Optimal Predictive Control of Continuous Nonlinear Systems,” International Journal

of Control, Vol. 62, No. 3, Sept. 1995, pp. 633-649.

14Shuster, M.D., and Oh, S.D., “Attitude Determination from Vector Observations,” Journal of

Guidance and Control, Vol. 4, No. 1, Jan.-Feb. 1981, pp. 70-77.

15Horn, R.A., and Johnson, C.R., Matrix Analysis, Cambridge University Press, Cambridge,

1991.

16Thornton, C.L., and Jacobson, R.A., “Linear Stochastic Control Using the U DU T  Matrix

Factorization,” Journal of Guidance and  Control, Vol. 1, No. 4, July-Aug. 1978, pp. 232-236.

17Slotine, J.J.E, and Li, W., Applied Nonlinear Control, Prentice Hall, NJ, 1991.



Figure 1  True States

Figure 2  Estimated States

Figure 3  Actual and Determined Model Error Histories

Figure 4  Sensitivity to Initial Condition Errors
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