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Predictive Functional Control Based on Fuzzy Model
for Heat-Exchanger Pilot Plant

Igor Škrjanc and Drago Matko

Abstract—In this paper, a new method of predictive control is
presented. In this approach, a well-known method of predictive
functional control is combined with fuzzy model of the process.
The prediction is based on fuzzy model given in the form of
Takagi–Sugeno (T–S) type. The proposed fuzzy predictive control
has been evaluated by implementation on heat-exchanger plant,
which exhibits a strong nonlinear behavior. It has been shown
that in the case of nonlinear processes, the approach using fuzzy
predictive control gives very promising results. The proposed
approach is potentially interesting in the case of batch reactors,
heat-exchangers, furnaces, and all the processes that are difficult
to model.

Index Terms—Fuzzy identification, predictive control, real-time
control.

I. INTRODUCTION

I N recent years, the predictive control has become a very
important area of research. It is based on the prediction of

the output signal at each sampling instant. The prediction
is obtained implicitly or explicitly according to the model
of the controlled process. Using the actual predictive control
law, the control signal is calculated which forces the predicted
process output signal to follow to the reference signal in way to
minimize the difference between the reference and the output
signal in the area between certain time horizons. The funda-
mental methods that are essentially based on the principle of
predictive control are Clarke’s method, (generalized predictive
control [1]), Richalet’s method (model algorithmic control and
predictive functional control [2]), Cutler’s method (dynamic
matrix control [3]), De Keyser’s method (extended prediction
self-adaptive control [4]), and Ydstie’s method (extended
horizon adaptive control [5]).

In this paper, we are discussing a new method of predic-
tive control. This approach combines a well-known method
of predictive functional control together with fuzzy model
of the process. The prediction is based on a global linear
model, which is obtained by fuzzy model given in the form of
Takagi–Sugeno (T–S) type. The predictive control based on a
fuzzy model is capable to control also very difficult processes
such as strongly nonlinear processes, processes with long
time delay and nonminimum phase processes. The controllers
based on prediction strategy also exhibit remarkable robustness
with respect to model mismatch and unmodeled dynamics.
The proposed fuzzy predictive control has been evaluated by
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implementation on heat-exchanger plant, which exhibits a
strong nonlinear behavior. It has been shown that in the case of
nonlinear processes the approach is potentially interesting in
the case of batch reactors, heat-exchangers, furnaces, and all
the processes that are difficult to model.

The paper is organized in the following way. In Section II, the
heat-exchanger pilot plant is presented, Section III deals with
the fuzzy identification. In Section IV, the concept of predictive
control and predictive control based on fuzzy model is given and
finally, the implementation of the proposed control algorithm on
a real temperature plant is discussed in Section V.

II. HEAT-EXCHANGER PILOT PLANT

The problem of heat-exchanger control with sensors and ac-
tuators limitation represents a serious problem from the point
of optimal energy consumption. The problem lies in the non-
linearity of the system behavior. The objective of our investiga-
tion, a real temperature plant, consists of a plate heat-exchanger,
a reservoir with heated water, two thermocouples, and a motor
driven valve. The plate heat exchanger, through which hot water
from an electrically heated reservoir is continuously circulated
in the counter-current flow to cold process fluid (cold water).
The thermocouples are located in the inlet and outlet flows of
the exchanger; both flow rates can be visually monitored. Power
to the heater may be controlled by time proportioning control
using the external control loop. The flow of the heating fluid
can be controlled by the proportional motor driven valve. A
schematic diagram of the plant is shown in Fig. 1. The tem-
perature of heated water is measured on the temperature
sensor TC4, which is on the outlet of the secondary circuit, the
temperature of cold water in the inlet of secondary circuit
is measured on the temperature sensor TC3 and repre-
sents the temperature of hot water in the inlet of the primary
circuit which is measured on the temperature sensor TC1. The
primary circuit flow is measured on optical flow sensor
F2 and is defined by motor driven valve and the secondary flow

is measured on the optical flow sensor F1.
The controlled variable of our problem is the temperature in

the secondary circuit , which is manipulated with the flow
, which is a function of motor driven valve current .

The current on motor driven valve is actual manipulated
variable of the process. Furthermore, the heat-exchanger is just
one part of the plant, so the sensors and the actuators should
also be modeled. The predictive functional control requires
an internal model of the process. For nonlinear systems with
well-understood physical phenomena fundamental modeling
is preferable. Although the physical phenomena in the case
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Fig. 1. The heat-exchanger pilot plant.

of heat-exchanger are well investigated, there are still some
physical parameters that should be estimated assuming a certain
structure of the process dynamics. The simplified first-principle
model of heat-exchanger is described by the following differen-
tial equations:

(1)

where the generalized formula foris given in the literature [6]
and can be written as

(2)

where and are unknown constants and is an unknown
function of operating point. All those parameters should be
estimated using classical optimization methods on real-time
data.

During the operation of the heat-exchanger, some of the
system variables (the flow of the secondary circuit and
the temperature at the inlet of the primary circuit of the
heat-exchanger) are approximately constant. Our main goal
is to control the temperature by changing the position of
the motor driven valve. The position of the valve is driven
with the current signal . To fulfill this goal, we
should first model the relation between the position of the
motor driven valve and the temperature in the secondary circuit

. Instead of gray-box model, black-box fuzzy model of
the process is obtained by experimental modeling. Although
the process is very complex, it could be presented as a model
with approximately first order dynamics with small time delay
which could be neglected and changeable parameters of the
model according to the operating point.

III. FUZZY IDENTIFICATION

The fuzzy model represents a static nonlinear mapping be-
tween input and output variables. Dynamic systems are usually
modeled by feeding back delayed input and output signals. The

Fig. 2. The generalized output error identification model.

common nonlinear model structure is nonlinear autoregressive
with exogenous (NARX) input model, which gives the mapping
between the past input–output data and the predicted output of
the model

(3)

where , and
denote the delayed model output and input

signals, respectively. The fuzzy model therefore approximates
the function . The model is calledgeneralized output error
model.

Fuzzy modeling or identification aims at finding a set of fuzzy
IF-THEN rules with well defined parameters that can describe
the given input–output behavior of the process.

The approach of T–S fuzzy modeling [7]–[9], which was used
in our case to model the plant dynamic can be treated as uni-
versal approximator (UA) which can approximate continuous
functions to an arbitrary precision [10]–[12].

The T–S fuzzy model is based on the type of rule which can
be written as

(4)

where are the inputs, is a subset of the input space,
is the output, and is a function that can be in general non-

linear, but it is usually linear.
The fuzzy logic model which is treated in this paper belongs

to the class of NARX variable [13] models and will be de-
noted by fuzzy logic/neural net autoregresive with exogenous
(FNARX) variable. The models for the identification and con-
trol of nonlinear dynamic systems are given and detailed de-
scribed in literature [14], [15]. Fig. 2 represents the fuzzy model
structure used in our case.

The identification procedure involves the structure identifi-
cation of the plant and the estimation of the unknown parame-
ters. In the case of the FNARX models, the structure is usually
chosenad hocand then improved by some optimization pro-
cedure. The estimation of the unknown parameters is divided
into the estimation of the parameters of antecedent membership
function and the estimation of the consequence parameters. In
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the case of T–S type models with center of singletons defuzzifi-
cation, respectively, the generalized error models and assuming
properly tuned antecedent parameters, the estimation of conse-
quent parameters is especially simple since the problem is linear
in unknown parameters and the least squares technique can be
used.

A. Global Linear Model Based on T–S Fuzzy Model

In the case of the heat-exchanger pilot plant, the rule of T–S
fuzzy model can be written as follows:

(5)

The input variables of the fuzzy model are and , is the
output variable, , are membership functions of
variable . The parts or the antecedents of the rules describe
fuzzy regions in the space of one or more input variables and
the parts or the consequents are linear functions of the
inputs.

Defining the output temperature of the heat-exchanger
as the output or controlled variable and defining the current
signal to the motor driven valve as the input or manipu-
lated variable the fuzzy model in (5) is rewritten in the fol-
lowing form:

(6)

where and are input variables of the fuzzy system,
is an output variable and are membership functions

where . The number of membership functions of
the input variable defines the number of rules .
The membership functions have to cover the whole operating
area of the closed-loop system. The output of T–S model is than
given by the following equation:

(7)

where represents the regressor which consists of input and
output signals. The normalized degree of fulfillment
is given in the following equation:

(8)

The normalized degrees of fulfillment for the whole set of rules
can are written in vector form as

(9)

Due to (7) and (9) the process can be modeled in fuzzy form as

(10)

where , and stand for fuzzified parameters of the process
that have constant elements

(11)

The parameters of the fuzzy model are obtained on measured
input–output data using least square optimization method.
The optimization approach in this case is different from the
approaches that are reported in literature [7], [9], [15], [16].
This novel approach results in a fuzzy model, which gives a
more accurate fuzzy model in the sense of the parameters.
This approach is based on decomposition of the data matrix

into submatrices , . This means that the
parameters of each rule are calculated separately. This leads
to a better estimate of the fuzzy parameters or the variance
of the estimated parameters are smaller than in the classical
approach. The reason for this fact lies in a better conditioning
of submatrices , .

The algorithm of calculating the fuzzy model parameters,
, and for will be given next. The algorithm is

based on (10), which describes the fuzzy model of the observed
process. Assuming the normalized degrees of fulfillment, which
are also time dependent, this leads to

(12)

where stands for unity vector. According to the normalized
degrees of fulfillment (10) can be written in the following form:

(13)

This leads to the form of the fuzzy model described in the fol-
lowing equation:

(14)

Equation (14) can be separated intoequations which repre-
sent the participation of a certain rule to the whole output vari-
able of the fuzzy model. This results in the following:

(15)

(16)
... (17)

(18)
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To obtain the fuzzy model parameters, , and for
the following form of regressor will be used for each

rule:

(19)

Composing the regressors of a certain rule for the whole
group of input–output data pairs the regression matrixis
obtained

...
...

...
(20)

where stands for the number of data pairs. The regressor is
added to the regression matrix when the following criteria is
fulfilled:

(21)

where is equal to the estimated variance of the noise. Ac-
cording to the criterion in (21) and assuming a sufficient input
excitation of the process the matrix will be properly condi-
tioned. This is important for matrix inversion which is necessary
to get the fuzzy model parameters.

The output variable which corresponds to the rule is
written in the following form:

(22)

and will combine an output data vector

...
(23)

The fuzzy model for the rule in the matrix form is written
as follows:

(24)

where vector contains the fuzzy model parameters for the rule
.
The fuzzy model parameters for the rule are obtained

using least-square optimization method

(25)

where consists of parameters, and

(26)

By calculating the fuzzy model parameters for the whole
group of rules, the fuzzified model parameters are obtained as
it is given in (11).

The model in (10) represents a linear model with changeable
parameters that are called the global linear parameters and are
given in the following:

(27)

This procedure can be viewed as an instantaneous linearization
of the process dynamics. The described instantaneous lineariza-
tion gives the parameters of a global linear model that depend
on the input regressor vector. In other words, the model param-
eters are spanned on input regressor vector that depends on the
model structure. The global linear parameters of the process can
be used directly in the case of adaptive and predictive control
where the controllers adapt to the dynamic changes on line.

IV. PREDICTIVE FUNCTIONAL CONTROL BASED ON FUZZY

MODEL

Model-based predictive control (MBPC) is a control strategy
based on the explicit use of a dynamic model of the process to
predict the future behavior of the process output signal over a
certain (finite) horizon and to evaluate control actions to min-
imize a certain cost function. The predictive control law is in
general obtained by minimization of the following criterion:

(28)

where , and stand for -step
ahead prediction of process output signal, reference trajectory,
and control signal, respectively. , and are minimum,
maximum, and control horizon, respectively, andweights the
relative importance of control and output variables. The basic
predictive control strategy and basic parameters are presented
in Fig. 3. The predictive control law adopts a receding policy,
which means that at each time instant, the optimal control se-
quence according to the criterion in (28) is obtained, but only
the first element in this sequence is applied to the plant. The
procedure is repeated in the next time instant.

MBPC stands for a collection of several different techniques
all based on the same principles. Originally, the algorithms have
been developed for linear systems, but the basic idea of predic-
tion has been extended to nonlinear systems [17], [18]. In our
approach, the basic principles of predictive functional control
are applied. In this case, the prediction of the process output is
given by a fuzzy process model. In this section the basics of pre-
dictive functional control based on a fuzzy model (FPFC) for the
first-order system are introduced. The fundamental principles of
predictive functional control [2], [6] are very strong and easy to
understand because they are natural and can be rapidly grasped
because the skilled plant operators always observe these princi-
ples. The global linear model of the smooth nonlinear process of
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Fig. 3. The basic predictive control strategy.

the first order is described by the following difference equation
with global linear parameters:

(29)

Closed-loop behavior of the system is defined by reference tra-
jectory which is given in the form of reference model. The con-
trol goal is to determine the future control action so that the area
between predicted output and reference trajectory over a certain
prediction horizon ( , ) is minimized. The reference model
in the case of first-order system is given by the following differ-
ence equation:

(30)

where the reference model parameters should be chosen to fulfill
the following equation:

(31)

This choice ensures that reference-model output tracks a con-
stant reference signal and it enables the reference trajectory
tracking.

According to (31) it follows that:

(32)

In the case of fuzzy predictive functional control, one single
horizon is assumed , which is called coincidence
horizon . At this horizon the predicted output value coincide
with the reference trajectory. To derive the control law also the
constant future manipulated variable

and has to be taken into account. The
-step ahead prediction of the process output based on fuzzy

model is calculated assuming constant global process parame-
ters over the whole prediction horizon and is given by

(33)

The reference trajectory prediction is given by the following
equation:

(34)

The main idea of FPFC is the equivalence of the objective
increment of the process and the model output increment. The
objective increment is defined as the difference between pre-

dicted reference trajectory and actual process output
signal

(35)

Assuming (34) the objective increment is defined as follows:

(36)

The model output increment is defined by

(37)

According to (33), the model output increment is the following:

(38)

From the above equations and the goal of FPFC, which is de-
scribed with the following:

(39)

the control law of FPFC is obtained in explicit analytical form
as

(40)

The control law given in (40) is usually simplified into the form
given in the following:

(41)

This simplification is justified in

(42)
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where stands for

(43)

and defines the reference-model error. Assuming a stable refer-
ence model the parameter should satisfy the following con-
dition:

(44)

According to the integral action of predictive functional con-
trol, which is due to the second term on the right side of (41)
or the internal model of the process, which is in the inner posi-
tive feedback loop, the reference-model error tends to zero.
This means that the last term in (42) tends to zero

(45)

Equation (42) is according to the previous equation simplified
to the following:

(46)

This justifies the simplification of the control law in (40) to the
simplified control law in (41).

The predictive functional control scheme introduce the incre-
mental law through the internal model of the plant. This in-
ternal model in the positive feedback loop multiplied by in-
verse process model gain enables the integral action to the con-
trol system. This ensures that plant output tracks the reference-
model output also in the case of the input and output distur-
bances [2], [6].

The transformation of the internal model feedback loop from
(41) to transfer function results in

(47)

which clearly indicate the integral action of predictive func-
tional control law.

V. PREDICTIVE CONTROL BASED ONFUZZY MODEL FOR

HEAT-EXCHANGER PILOT PLANT

The predictive approach discussed in the previous section
has been implemented on a real temperature plant, the heat-ex-
changer pilot plant. The model of the plant can be given as
model of first-order dynamics with a small time delay which
is neglected. The parameters of the plant vary according to the
operating point. The relation which is modeled by fuzzy model
is presented in the following:

(48)

The fuzzy model which was developed on real-time data of the
plant consists of six rules and is of the first order. The fuzzy
parameters of the model depends only on physical variable
or with other words, depends on process output. The fuzzy
model in form of fuzzy rules is presented in (49) with sampling

Fig. 4. The linguistic variableT .

time s. The sampling time was chosen to fulfill the
requirements of sampling in different operating points

(49)

The linguistic variable of is shown in Fig. 4, where it is
shown that operating domain is divided into six membership
functions. The characteristics of the plant behavior are shown
in Fig. 5, where a statical characteristic measured on the plant
data is shown and the gain of the process that is also measured
on the plant data is compared with the fuzzy model based esti-
mation of the process gain. It is shown that process gain varies
significantly according to the operating point. The fuzzy model
in (49) was used as an internal model in the predictive functional
algorithm. The global linear parameters are calculated instantly
in each sampling instant as shown in (27). With respect to those
parameters, the predictive functional control law is calculated
due to (41). The prediction horizon is normally chosen as in-
teger number in the interval defined in

(50)

where stands for the reference-model time constant and
for sampling time. In our case, it was chosen due to the fre-
quency characteristics study of the input and output disturbance
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Fig. 5. The plant and fuzzy model characteristics.

transfer functions and the open-loop transfer function. The co-
incidence parameter has a very small influence on the input
disturbance frequency response, in the case of the output distur-
bance frequency response the magnitude is moving to the lower
frequencies when the coincidence horizon is getting higher. The
higher value of coincidence horizon would also shift the mag-
nitude of the open-loop frequency response to the lower fre-
quencies, which means a slower response to the reference signal
changes. In our application a predictive horizon has been chosen
as according to the previous study of frequency charac-
teristics. The reference-model time constantis chosen ap-
proximately equal to the time constant of the plant. The choice
was made to show only the phenomena of perfect reference-
model tracking in the case of nonlinear plant gain using fuzzy
predictive functional control. The reference-model time con-
stant was chosen as s, this results in the discrete
transfer function

(51)

with the sampling time s. The reference-model time
constant or in a discrete time domain the parameter, is
the most important tuning parameter in the case of FPFC. The
parameter has great influence on the input and output distur-
bance rejection. By decreasing the parameter, the magnitude
of frequency response characteristic is shifted to the higher fre-
quencies in both cases. A lower value of the parameteralso
reflects in a faster response to the reference signal changes.

The output of the process and the reference-model output
are shown in Fig. 6. The inlet temperature of the heated

water is controlled using a simpleON–OFF controller and
varies between 60C and 65 C. Also the outlet flow and
the inlet temperature are slightly changing during the op-
eration period. In the last period shown in Fig. 6, a disturbance
was made changing the outlet flow from the normal value.
This variation which has a great influence to the process dy-
namics was rejected very fast. Due to the leak of sensors the
outlet flow can only be displayed and cannot be sampled.

Fig. 6. The plant output temperature, the reference-model temperature, and
the control original.

That is also the main reason that it has not been used as an input
variable to the process model. The problem of heat-exchanger
control with sensor limitation represents a serious problem. To
obtain a good control action is difficult because of the nonlinear
system behavior. The results which have been obtained using
the proposed fuzzy predictive algorithm exhibits a very good
performance in both modes, in model following mode, and dis-
turbance rejection mode.

VI. CONCLUSION

In this paper, fuzzy predictive control scheme is presented.
The development of a new fuzzy predictive scheme was
motivated by the unsatisfactory results obtained by using
conventional techniques. Regarding the real-time experiments
realized on the heat-exchanger plant, it can be seen that the
novel algorithm introduces a great robustness and satisfac-
tory performance also in the presence of model parameters
mismatch which was obtained by change of the outlet flow.
The proposed approach offers some advantages in the case of
nonlinear systems with simple dynamics. The main advantage
in comparison to the other modern techniques is simplicity
together with excellent performance.
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