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Predictive Hidden Markov Model Selection for
Speech Recognition

Jen-Tzung Chien, Senior Member, IEEE, and Sadaoki Furui, Fellow, I[EEE

Abstract—This paper surveys a series of model selection ap-
proaches and presents a novel predictive information criterion
(PIC) for hidden Markov model (HMM) selection. The approxi-
mate Bayesian using Viterbi approach is applied for PIC selection
of the best HVMMs providing the largest prediction information
for generalization of future data. When the perturbation of HMM
parameters is expressed by a product of conjugate prior densities,
the segmental prediction information is derived at the frame level
without Laplacian integral approximation. In particular, a mul-
tivariate ¢ distribution is attained to characterize the prediction
information corresponding to HMM mean vector and precision
matrix. When performing model selection in tree structure HMMs,
we develop a top-down prior/posterior propagation algorithm for
estimation of structural hyperparameters. The prediction infor-
mation is determined so as to choose the best HMM tree model.
Different from maximum likelihood (ML) and minimum descrip-
tion length (MDL) selection criteria, the parameters of PIC chosen
HMMs are computed via maximum a posteriori estimation. In the
evaluation of continuous speech recognition using decision tree
HMMs, the PIC criterion outperforms ML and MDL criteria in
building a compact tree structure with moderate tree size and
higher recognition rate.

Index Terms—Approximate Bayesian, decision tree state tying,
model selection, multivariate ¢ distribution, predictive information
criterion, prior/posterior propagation, speech recognition.

1. INTRODUCTION

ODEL selection is a major problem in signal processing

where the model parameters and their number are un-
known and therefore must be estimated. To achieve robust data
modeling, it is necessary to precisely estimate the underlying
parameters of a stochastic model and properly determine the
size of model at the same time. The estimated models are then
tested for robustness against the underestimation or overesti-
mation dilemma. Sometimes, this model selection problem is
referred as model identification [1], model regularization [22],
model order estimation [23], or stochastic model complexity
[26]. In this study, we aim to develop a novel predictive infor-
mation criterion to estimate hidden Markov models (HMMs)
and simultaneously select the proper size of HMMs to repre-
sent the observed data. HMM model selection is not only useful
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for speech recognition but also for general data clustering/mod-
eling applications.

For applications to speech recognition, many research topics
involve model selection problem. For example, when con-
structing speech HMMs, we should assign the number of states
in an HMM as well as the number of mixture components in
an HMM state. It is feasible to apply model selection criterion
to determine these numbers from the observed data. In the
study of speaker clustering [24], a hierarchy of HMMs was
built for individual speaker cluster. Each cluster contained
HMMs corresponding to a set of similar speakers. When
performing speaker-independent (SI) speech recognition, the
closest cluster of HMMs were chosen for recognition. Sim-
ilarly, the noise-cluster HMMs were estimated to improve
the performance of noisy speech recognition [34]. How to
decide the cluster number and population was identified as a
model selection problem. Further, in the research of speaker
adaptation, we endeavored to adapt the existing ST HMM pa-
rameters to a new speaker. It was necessary to share adaptation
data for different distribution identities and perform structural
adaptation [30]. Dynamic model sharing should be established
[5]. Even in language modeling research, the model selection
problem presented itself in category n-gram models, where the
conditional probability of a current word given its word history
was approximated using its word category [31]. Specifying
the word categories and the cluster numbers was important.
In general, a tree model was useful to control the degree of
model sharing [5], [28] although there was no guarantee of
tree optimization. How to determine the suitable tree level and
sharing population was a challenging model selection problem.
In this study of HMM decision tree state tying, all observation
frames corresponding to a context-independent phonetic unit
are collected and split according to the phonetic questions of
their contexts. It is important to choose the best split question
and validate whether the split should be terminated or not. The
complexity of the decision tree is determined so that the tied
context-dependent HMM parameters are properly estimated
(31, [4], [71, [29].

In previous studies, model selection problems using HMMs
were solved empirically without evaluating the fitness between
the observed data and the estimated model. The robustness of
speech recognition cannot be guaranteed. To prevent subjec-
tive judgment, MDL and BIC model selection methods were
explored for decision tree state tying [8], [29]. This paper
presented a predictive information criterion (PIC) to select and
estimate HMM parameters where the model regularization was
incorporated in decision tree construction. We combined the
predictive Bayesian [17], [21] and structural Bayesian [28)
approaches to develop a new PIC model selection for HMM:s.
The segmental predictive information of HMM parameters

1063-6676/$20.00 © 2005 IEEE
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were derived without Laplacian integral approximation. In this
study, we modeled the uncertainty of HMM parameters using a
product of conjugate prior densities for two reasons. One was
to develop the top-down prior/posterior propagation algorithm
for computation of prediction information. The other was to
estimate the HMM parameters via maximum a posteriori
(MAP) theory [13]. To that purpose, we selected the best model
and estimated the parameters for speech recognition based on
decision tree HMMs. PIC criterion was found to be effective
to cluster the context-dependent speech frames into compact
groups. The HMM parameters were properly estimated for
continuous Mandarin speech recognition. In the following
Section, a series of model selection approaches are surveyed.
The PIC model selection is presented and compared with
previous approaches. Section ITI focuses on the formulation of
segmental prediction information for HMMs. The calculation
of hierarchical hyperparameters and the interpretation of model
selection are addressed. In Section IV, the experiments on
decision tree based acoustic modeling are evaluated in terms
of recognition rate, HMM state number and processing time.
Finally, Section V describes the conclusions drawn from this
study.

II. MODEL SELECTION APPROACHES

The model selection problem has been widely discussed in
the literature of statistics, information theory, neural network
and signal processing. This problem aims at selecting a para-
metrical model M,,, with distribution f(X |Am, ks, ) for the ob-
served data sequence X = {X;,...,X,} and trying to estimate
the vector parameter A, = {\1,..., A, }, where the number
of parameters k,, is also to be estimated. Traditionally, the max-
imum likelihood (ML) model selection leans toward choosing
the highest possible dimension, which leads to overestimation
and an overlarge model [27]. Also, the likelihood function is
sensitive to the small parameter variations around the true values
[1]. Several universal approaches were presented to penalize
the overlarge model and de-emphasize the sensitive likelihood
function.

A. AIC, BIC, MDL, and NPC Criteria

Akaike [1] presented the Akaike’s information criterion
(AIC) for model selection. This pioneering work adopted the
estimate of the mean log likelihood

S(h £(-1Mn)) = Exc[log £(X |Mn)]
= [ BB FX M )aX )

as a criterion of fitness of the structural model f(X |My,)
to the true distribution A(X) of X. From the possible
models M = {M,,} containing parameters A = {A,}
and their numbers K = {k,, }, AIC criterion selects the model
Maic = (Aarc. karc) by

Maic = arg min AIC(M,,)
LT 108 F(X A ki ) + k] ()

min

= ar
8 Am€NknE

The selected parameter A z1c is an ML estimate A}* of param-
eter A,,. AIC criterion is analogous to minimizing the entropy
—S(h: f(- |Mm)).

Schwarz [27] resolved the problem from a Bayesian per-
spective and proposed the Bayesian information criterion (BIC)
for model selection. By considering a priori model probability
P(M,,) and a priori parameter distribution g(A|M,,), the
logarithm of the integral of a posteriori distribution

log f(X. My,) = log/P(Mm)f(X A, My Ydg(A | M)
€)]

is maximized to select the most probable model. BIC selection
is performed in accordance with

Mpgic = arg Mm%)FVIBIC(Mm)

max
mENKkmE

1
« [logf(XI/\m.km) — ikm logn| .
4)

= ar
g/\

Both AIC and BIC were derived by assuming that the observa-
tion data come from a Koopman-Darmois exponential distribu-
tion family [27]. The only difference between (2) and (4) is due
to the second term playing the role of penalty for selecting the
high dimensions. BIC can easily choose a lower-dimensional
model compared to AIC. If the second term is neglected, the
BIC criterion is simplified to a ML model selection where only
likelihood function affects the selected models. A tunable pe-
nalization parameter was merged in BIC for acoustic decision
tree state tying [8].

Rissanen [26] found an interesting relation between estima-
tion and coding, from which he was able to exploit the min-
imum description length (MDL) selection criterion. From the
data coding viewpoints, MDL was designed to find the min-
imum number of bits required to describe the observation data.
‘When formulating MDL, the real-valued parameters were con-
verted to integers by dividing them by their precision. The prior
probability was determined using the universal prior for inte-
gers and optimizing the precision. This MDL approach encoded
each component of parameter A,, by (1/2)logn bits and al-
located the observation X by — log f(X |AM k,, ) bits. Al-
though MDL and BIC initialize from different aspects, they
come up with the same formula

MDL(M,,) = — log f(X [AAF km ) + %p-km logn (5)

where a penalization factor p is incorporated to control model
complexity [8]. Again, the selected parameter Aypr is an ML
estimate A\ML, Shinoda and Watanabe [29] applied MDL for
acoustic decision tree construction. MDL was employed to un-
supervised learning of mixture models [12]. It gave good ini-
tialization in expectation-maximization (EM) algorithm for pa-
rameter estimation.

Merhav [23] presented a model order estimator based on
Neyman-Pearson hypotheses testing criterion (NPC). He
derived order estimator kypc by minimizing the underesti-
mation probability P(kxpc < k) under the constraint that
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the overestimation probability P(kxpe > k) decays faster
than 27°" for £ > 0. Assuming elements of X are distributed
with Koopman-Darmois exponential densities, the estimator is

obtained by
< e} . (6)

Here, k¢ is an a priori known upper bound for model order.
(AYTL, AMLY are ML estimates with dimensions (ko. k,, ). Pa-
rameter € controls the trade-off between the overestimation and
underestimation probabilities. In the area of neural network,
it is crucial to develop regularization theory to select salient
synaptic weights and build a feedforward network model [15].
The Bayesian inference approach has been used as one solution
for the regularization problem [22].

FX AT ko)

, 1
kype = min {k’" F 8 X k)

B. Predictive Information Criterion (PIC)

In general, the criteria of AIC, BIC, MDL and NPC are uni-
versal and applicable to coding, estimation, prediction, adapta-
tion and pattern recognition. Most implementation procedures
have been carried out for integer data in coding/compression
system [26]. The penalization was presumed identical for each
parameter component. The ML estimates AL were first cal-
culated for different models M = {M,, }. The most probable
model was selected by testing whether its parameter number k,,
was too large or too small. These methods focused on finding the
model order estimate k based on ML parameter A", They used
the Taylor expansion of log f(X |Am. ky, ) around AMT to ex-
press its uncertainty due to parameter \,,,. A Fisher information
(Hessian) matrix was calculated to fuifill the Laplacian integral
approximation. The model penalty was explicitly represented
using the parameter number k,,. Instead of using AM" and k,,,,
we present a new model selection where the model complexity is
embedded in the prior density of parameter g(\ |M,, ) and the
parameter uncertainty of posterior density f(\|X, M,,). The
model structure and the type of model parameters are repre-
sented through the prediction information. Related works are
described below.

Geisser and Eddy [14] addressed a predictive approach to
model selection where the predictive density was maximized
for selection. The predictive sample reuse (PSR) criterion was
presented for structural model selection. Djuric and Kay [10]
used the predictive density as a criterion for model selection.
A normal linear regression data modeling was considered to
calculate the predictive density. The cross validation principle
was employed to yield the consistent model order estimates
[11]. MacKay [22] adopted the Bayesian evidence to penalize
the over-complex model. Based on Bayesian philosophy, he se-
lected the model bearing the best prediction capability. The se-
lected model had good generalization to predict future data oc-
currence. The prior density of model parameter g(A | M,,, ) acted
as a regularizer. Instead of using ML estimate A\ML, we will
present the maximum a posteriori (MAP) parameter estimate

AMAP for the selected model. Specially, we adopt an informa-
tion-theoretic criterion, called the predictive information crite-
rion (PIC), which is expressed by the logarithm of the predictive
distribution
PIC(M,,)
= 10g F(X M) =10g [ F(XIA, o g (A fom A
= log f(X | AT, om )+10g g(ANAT |om) + log AN . (7)

log likeclihood

~
model regularization

Taking the logarithm embodies the prediction information we
gain from the observation data X. For ease of interpretation,
we use the integral approximation [22]. The first term repre-
sents the log likelihood given the most probable parameters. The
model regularization is accordingly controlled by the prior den-
sity g(A |pm ) as well as the parameter uncertainty A\ of the
posterior likelihood f(A | X. ., ). Considering the case of uni-
form prior g(A |¢., ) and posterior f(A X, ¢, ), the complex
models are endowed with greater parameter varieties, which re-
sult in smaller quantity of prior density g(A |y, ). Also, the
complex model provides better model fitting and higher pos-
terior likelihood. Equivalently, the parameter uncertainty A\
is reduced. For these reasons, the complex models can be au-
tonomously penalized according to PIC criterion. Similar to
using penalization factor p in MDL criterion, we may merge a
forgetting factor p in the exponent of the second term g(A |¢m )
of (7) to adjust the effect of prior density [16] in the PIC crite-
rion. The forgetting factor has a value in the range of 0 < p < 1.
We neglect the expression of p in the following formulation.

AIC, BIC, MDL, NPC, and PIC approaches aim at general-
izing likelihood for model selection. There are similarities and
dissimilarities between different criteria. When we look at the
original formulas of BIC and MDL, it is interesting to see them
arising from a similar mathematical form. Both criteria were in-
corporated with the prior density g(A |M,,, ) for integration over
parameter A. BIC criterion is related to PIC by

BIC(M.,) = log f(X, M) = log P(My,) + PIC(M,,). (8)

BIC formulation in (4) was obtained when the observations were
modeled using Koopman-Darmois exponential density and the
integral was carried out through Taylor expansion. Interestingly,
the model selection can be viewed as a pattern classification
problem where the most probable model is selected via maxi-
mizing a posteriori density f(M,, | X ). The MAP model selec-
tion is equivalent to BIC criterion because

Myap = arg pnax f(Mpn]X) = arg Jmax, log f(X. M,,)
= Magic. )

Similar to BIC and MDL, PIC involves an integral in predic-
tion distribution, which is often intractable. In [2], a stochastic
approximation scheme, called variational Bayes (VB), was em-
ployed in calculating the integral through maximizing the free
energy. This energy approximated the joint posterior distribu-
tion over model parameters.
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The novelties of this paper are clarified as follows. The pro-
posed PIC model selection is specially exploited for continuous-
density HMMs with multivariate real-valued observation data.
The problem of building compact decision trees is tackled. In-
stead of approximating the integrals in predictive density using
VB or through Taylor expansion, this paper presents an exact
solution to finding prediction information of individual HMM
parameters for each frame. The parameters are estimated via
MAP rather than ML theory adopted in AIC, BIC, MDL and
NPC selection criteria. By incorporating the conjugate priors,
the structural hyperparameters are derived for PIC calculation
and MAP estimation. Consistently, the prediction information,
parameter estimation and hyperparameter evolution are initial-
ized from the Bayesian theory. In what follows, we address the
PIC model selection for the framework of HMMs.

1. PIC FOR HMM SELECTION

In [6], [17], [21], the Bayesian predictive classification (BPC)
was developed for robust decision using the predictive distribu-
tion. The BPC-based speech recognizer was robust to pertur-
bation of HMM parameters due to estimation error, noise in-
ference, etc. The uncertainties of HMMs were represented by
a prior density. The integral was achieved using Laplacian ap-
proximation [17]. Herein, we apply the approximate Bayesian
method in [17], [21] for resolving model selection problem in-
stead of classification problem. We are concerned with how to
determine suitable size of HMM parameters to fit the observed
data. A novel PIC criterion is discovered for state-clustered de-
cision tree construction.

A. PIC Formulation for HMMs

In the context of HMMs, the prediction information is calcu-
lated by merging the unobserved state and mixture component
sequences (s.1). Jiang et al. [21] presented a contributive work
for calculating the Bayesian predictive density of HMMs. Re-
ferring to Jiang’s work, we determine the prediction informa-
tion via Viterbi approximation. Namely, we decode the best se-
quences (§, 1) for observation X through the Viterbi algorithm.
The segmental prediction information of HMMs is computed by

PIC(M,,) = log/Zf(X,s,lM,cpm )9(A o YA
s,1

> log / £ 010 om )9 om)dA (10)

where the summation of likelihood of all possible sequences
(s.1) is approximated by the single likelihood of the best se-
quences (8§, 1). The continuocus-density HMM parameters A =
(m. A, 8) consist of the initial state probabilities 7 = {m;}, state
transition probabilities A = {a;;} and mixture Gaussian pa-
rameters = {wix, mix, 7ix } including mixture weights, mean
vectors and precision matrices for states 7 and mixture compo-
nents k. The state observation density of d-dimensional x; has
the form

f(Xt |9i ) = Zwikf(xf. |mik,7‘ik)
k

1
x Xk:wik|7'ik|l/20xp [— 5 (xt —m) Trik(xe —mi)| -
11

ML estimation of parameters A can be easily found in [25].
This paper aims at selecting the optimal model Mpic pro-
ducing the largest prediction information. The integral in (10)
is calculated over the randomness of those HMM parameters
A= {73, 05,5,,, Wy}, My 1, Ts,1, } corresponding to the op-
timal state and mixture component sequences (s.1) = {3,.1;}.
If we assume that four sets of parameters {3, }, {as,3,,,}
{w;;,} and {m,; .7, ; } are independent at each frame, the
prediction information is decomposed as shown in (12) at the
bottom of the page, which is a summation of the corresponding
prediction information PIC(73, ), PIC(as,s,,, ), PIC(w; ; ) and
PIC(m, ; ,7;,;,)- The prediction information PIC(m; ; , 75 ;,)
involves a double integral operation. Hereafter, we formulate
the prediction information for w5, = m;, a3,
wgtzl = Wik, m'S‘Liz = Mik and T§LZL = Tik.

To solve (12), the prior density should be specified before-
hand. The choice of prior density is crucial in PIC calculation.
The vague or diffuse distribution [10], [14] and the uniform dis-
tribution [21] served as the priors to calculate the predictive den-
sity. Nevertheless, it is attractive to adopt the conjugate prior
where the prior and the pooled posterior densities belong to the
same distribution family [9]. With this property, the incremental
learning algorithm was constructed for speaker adaptation [16].
A conjugate prior approach to Bayesian model selection was ex-
ploited for nonlinear regression models [32]. Using HMMs, it
is appropriate to use Dirichlet density as the conjugate prior for
probability parameters 7;, a;; and wik, i.e., g(m; |m; ) o< 771,
glaij|mij) « a,r»’;jﬂl and g(wik |vix) x wi* ™', because of
the conditions »; 7; = 1, 3 ,a;; = 1l and 35, wix = 1. The

Qij,

PIC(Mm) = log {/W§1g(7r§1 |(Pm )dﬂ-§l X H li/a‘éﬁu-lg(a‘h;‘wx |(Pm )da-&p&wl

t

m

-Qtityrgti/. )q(m:/h 7'_;!2/ ’ Qom )dm';'il)‘q(r;’th |(pm )drglzll }

=PIC(m;,) + > (PIC(as,3,,,) + PIC(w;,;,) + PIC(m 5 .7, ;)
t

12)
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normal-Wishart density serves as the conjugate prior for HMM
mean and precision parameters [9], [13]

o —d)/2
G(min, Tike | Tikes fhike, Qi Ui ) X |7'ik|(a b=/

) 1
Qk (Mg — pin) Trig (Mg — ,U'ik)} CXp [‘ ‘z‘tr(uik"'ik):|

Ti
X CXP [— —
(13)

where hyperparameters ; > 0, n;; > 0, vy > 0, i > 0,
air > d— 1, pip is a dx 1 vector and u;;, is a d X d positive
definite matrix. The predictive densities of parameters 7;, a;;
and w;, correspond to the means of Dirichlet densities [9]. The
prediction information is obtained by

PIC(7;) = 10%/7Ti!}(7fi |ni )dm; = log E(m;)

= logn; —log » _m; (14)
PIC(a,;) = logn;; — loanij (135)
j

(16)

PIC(wix) = logvik — logZu;k.
k

To find the prediction information PIC(m;k,7;) for mul-
tivariate mean m;; and precision r;;, we determine the
marginal density g(rixl¢m ) and the conditional density
g(mk |rik: ©m ), which are proportional to the Wishart and
Gaussian density functions, respectively [6]. The inner integral
in PIC(m., 7 ) is derived by

Tik 172
p—— ik
X CXp —ltr Tik (x¢ — pik)(x¢ — /L;k)TT;k an
2 Tik + 1

using the property of the integral of an arranged Gaussian func-
tion being unity. The outer integral turns out to

(Tik + 1)—1/2 |U|_(Qik+1)/2
. . 1
% /‘U|(sz+1)/2 |Tik|(a,k—d)/2exp [_atT(UTik)]d'rik (18)

with notation U = wu + (Tir, + 1) " 7 (x¢ — par (¢ — prire) T
The integral is done over a Wishart density and has the result
of unity. We finally derive the predictive density of (mx. i)
having the form of d-dimensional multivariate t distribution
with o, — d + 1 degrees of freedom, location vector 1,3 and
precision matrix (a;x — d + 1) 7 (7 + 1)_1u,-y_,c1 [6]. The re-
sulting prediction information PIC(m,x, ;) is given by

1
—5{ log(Tix + 1) + (e + 1)

(19)

X [1og |u,,~k|+log<1+

Generally, the ¢ distribution has a flatter shape with thicker tails
as compared to a Gaussian distribution. With larger variance,
the selected models are robust to parameter perturbation and
insufficient data. The merit of PIC is due to the incorporation
of increasing variance for model selection. Also, it is noted
that the conjugate priors of HMM parameters using Dirichlet
and normal-Wishart densities are not only helpful to obtain
the closed-form prediction information at each frame, but also
make it feasible to calculate the MAP estimate of HMM pa-
rameters A\)AF . The number of parameters k., is determined
from AMAF | accordingly. Readers may refer to [13] for MAP
formulation of HMMs. We may represent the model either by
My = ¢ or My, = (AMAP 1), In general pattern recogni-
tion, we require the estimated parameters AMAF to compute the
likelihood function of test data matched with various patterns
with parameters AMAP,

B. Estimation of Hyperparameters for Tree Structure HMMs

When adopting PIC decision for model selection, we need
to determine the hyperparameters ¢,, for candidate models
M,,,. Generally, different models built using the common data
X could be characterized via a tree structure, e.g., decision
tree state tying. The models locating in a tree layer reflect a
certain degree of parameter sharing. Higher tree nodes share
parameters for wider data range. The hyperparameters of a
smaller cluster in layer » are estimated using the corresponding
data X, and the hyperparameters of the broader cluster in
layer x — 1. Consequently, the problem of model selection
is equivalent to selecting a tree cut from the tree structure as
illustrated in Fig. 1. Each tree cut I',,, represents a specific data
partition X = X; U-.-U X, for model M,,. Larger cluster
number x,, (or parameter dimension k,;, ) is inherent in complex
models. Simple models have smaller &,,. The overestimation
and underestimation dilemma happens accordingly. We intend
to evaluate the prediction information for different tree cuts.
The hyperparameters $r, = ($1...., @, ) along the tree cut
' producing the largest prediction information are selected.
The prediction information is accumulated for all nodes in
the tree cut. Finally, the hyperparameters $,, or the resulting
MAP parameters A\MAF are determined to characterize the
observation data X .

However, estimating hyperparameters for structural HMMs
is tricky. In a decision tree structure, the observations X,.._; of
a tree node in layer x — 1 are split into the observation subset
X in layer x. Let the hyperparameters of tree nodes in layers
x — 1 and « be denoted by ¢,._; and ¢, respectively. Hyper-
parameters ¢, include {nF. 0%, vf}. 7}, . 1. uf}. Due to
the attractive property of conjugate prior, we can establish the
top-down prior/posterior propagation algorithm for estimation
of structural hyperparameters. The underlying concept is sim-
ilar to structural Bayes method discovered by Shinoda and Lee
[28]. In [28] and [30], the hierarchical priors were presented
to estimate the MAP parameters for speaker adaptation. The
priors were used to tackle the data sparseness problem in adap-
tation. Herein, we are engaged in estimating hyperparameters
for measuring model complexity and resolving model selec-
tion problem. The proposed algorithm aims to determine the
hyperparameters through calculation of the posterior density.
The posterior density f(A|X,, ¢._1) of tree node in layer  is



382 TEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 3, MAY 2005

Prior/Posterior
Propagation

(Xt Pet)

(Xe.0,)

Tree Cut

Fig. 1.

formulated by applying the corresponding observations X,, =
{x¥} and the prior density g(A |¢.—1 ) of its father node in layer
k-1

f(>‘ |Xm~, cPn—l) X Z f(Xn-s~ 1 I’\ ' ‘pn—l)g()‘ |‘pn—l)

s,1

gf(Xn,ék,sin |)‘» Pr—1 )(]()\ |(pr€«1)

=9(Mex). (20)

Again, the Viterbi approach is employed to obtain the for-
mulation. When incorporating conjugate prior g(A |@x—_1)
with hyperparameters ¢._1, the resulting posterior density
f(AXs. 1) belongs to the same distribution family,
which can be expressed by a new prior density g(A|p.)
with new hyperparameters .. By repeating this procedure,
the hyperparameters ¢, of all tree nodes are estimated in
a top-down manner. Here, the prior density g(A|p.—1) is
represented as the product of Dirichlet and normal-Wishart
densities. The derived posteriori density f(A|X,,.—1) has
the same joint density g(A|p.) with new hyperparameters
or = {N7 05 Vi The G ik wi ) [13]

nf =nf "+ () @D
g =5+ D AL g) 22)
t
v, = vy 4+ G (23)
h=Th |+ 24)
afy =af 4+ (5, (25)
k—1 k-1 K oK
A R R S
Hie = = o - (26)
ik i
L
K— K Ti 1 =K K— <K K—
ufy =ujy 1+Sik + T—N_Lr—k,c(xik—l"ik 1)(X?k — Hig I)T
ik ik
27

J

Tree structure of HMMs illustrating the prior/posterior propagation in top-down manner. A tree cut is determined for model selection.

where §(-) is Kronecker delta function, v§(¢) = 6(8f — 1),
(.3) = 607 - D6(F — 1) (i = 2,600k =
Y. 6(8F —)o(Iy — k) and
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o= > CRG k) ey — X5 (cf — X))
t

-~
Xik =

(28)
(29)

When the hyperparameters of each tree node are estimated,
the prediction information PIC(M,,) of all tree cuts I, is
determined. The best PIC model Mpic can be selected. The
HMM mean vectors and covariance matrices in tree node x are
obtained through MAP estimation, i.e., m;xvap = pfy and
Taniap = (af, = d) 7 ufy, [13], [16].

C. Interpretation of PIC Model Selection

We further interpret how PIC criterion is employed for model
selection. Conceptually, PIC chooses the model carrying the
largest prediction capability. The derived predictive density of
HMM mean vector and precision matrix has a form of multi-
variate ¢ distribution. Fig. 2 shows an example of PIC selection
between simple and complex models illustrated by univariate
t distributions. A univariate ¢ distribution with o degrees of
freedom, location parameter /+ and precision 7 is expressed by

f(z|M)=t(e, p.7)

replel e
= a1 /°T @) [l+ a(ﬂ) i) ]

where « > 0,7 > 0 and I'(:) is a gamma function
[9]. Generally, simple model M, has a smaller number
of parameters than complex model M.. Without loss of
generality, the predictive densities of simple and com-
plex models are assigned with a single ¢ distribution
flz|M,) = #(5,0.1), and a mixture of equally weighted
t distributions f(z |M.) = 0.5-t(5.2,.2) + 0.5 - £(5. =2, 1),
respectively. A simple model M, makes only a small range of
predictions but shapes steep distribution f(z | M, ) in range R,.
Conversely, the complex model M. has more free parameters to

(30)
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Fig. 2. PIC selection between simple and complex models is interpreted.
Predictive densities of simple and complex models are respectively specified
by a t distribution, f(x [M,) = #(5,0,1), and a mixture of ¢ distributions
fle M)y =05 -8(5.2,2) +0.5- #(5,-2,1).

cover a greater variety of observation randomness. However, the
flatter distribution shape makes the density f{x|M.) smaller
for a wide range of data occurrence. The range of complex
model excluding R; is denoted by R.. In case of data falling in
wider range R., complex model M.. is preferably chosen. But,
when data are located in smaller range R, the less powerful
model M, becomes a more probable model.

IV. EXPERIMENTS

The proposed PIC criterion is a general model selection
approach to different data modeling. This paper highlights
the model selection problem for HMM framework. Except
deriving the prediction information, we establish the relation
between HMM parameter estimation and model selection from
a Bayesian viewpoint. To investigate the effectiveness of PIC,
we conduct a series of continuous speech recognition experi-
ments where PIC is applied to construct HMM decision trees.

A. Decision Tree Construction Acted as a Model
Selection Problem

Decision tree state tying is a top-down clustering mechanism.
The state observation data of a phonetic unit are successively
split according to questions about their context dependencies
[3]. The tied HMM state parameters are estimated using clus-
tering data. Importantly, the fitting of observed data to HMM
parameters using decision tree involves the model selection
problem. When performing a node split, we require the objec-
tive criterion to select the best question to separate data X,.._;
of a tree node into XY and X corresponding to the answers
of “Yes” and “No”, respectively. Whether the split is continued
or terminated depends on the calculated information measures
of X._1, X¢ and X. ML [33] and MDL [29] are popular for
goodness-of-fit evaluation in decision tree construction. We
implemented ML and MDL for a comparative study. Using ML
or MDL, we choose the best question for node split which can
attain the largest improvement in log likelihood or description

length. In case of no increase in log likelihood or decrease in
description length, Ay < 0 or Ayipr, > 0, the split should
be terminated. To prevent building overlarge decision trees
using ML criterion, the increasing amount of log likelihood
T and the floor number of observation frames in tree node 7,
are used in place of termination condition Ay, < 0. Using
MDL, the penalization factor p is tuned in addition to the
condition Aypr, > 0. In this manner, the optimal tree cut I',,
is determined when the splits are terminated in all branches. A
good model selection criterion is crucial for node split as well
as termination evaluation. In this study, we adopt the PIC crite-
rion to select the best split question, which achieves the largest
gain in prediction information Apjc. In the case of Apic > 0,
a twofold complex model using X7 and X is better than a
simpler model using X,_;. The split is continuously applied
to child data XY and X . Conversely, when Apjc < 0, the
simple model is selected and the split is terminated. The com-
pact decision tree models are selected accordingly. Using PIC,
we adopt the forgetting factor p in addition to the termination
condition Apic < 0.

B. Experimental Setup and Implementation Issues

The benchmark speech database MAT-400 was used
for building HMM decision trees. MAT-400 contained the
Mandarin speech Across Taiwan (MAT) for 400 speakers (216
males and 184 females) recorded over telephone networks.
We sampled 20 800 utterances with 12.3 hours covering iso-
lated syllables (MATDB-3), command words (MATDB-4)
and continuous speech (MATDB-5), and hence generated
speaker-independent HMMs. The benchmark test telephone
speech (Test500) consisted of 500 sentences of 15 males and 15
females, which were different from those of MAT-400. Test500
contained 4754 syllables serving as the common evaluation
set for Mandarin speech recognition [7]. All utterances were
sampled at 8 kHz with 16-bit resolution. Each frame was char-
acterized by 12 Mel-frequency cepstral coefficients (MFCCs),
12 delta MFCCs, one delta log energy and one delta-delta log
energy. The sentence-based cepstral mean subtraction was ap-
plied for telephone channel normalization. Without considering
the tonal information, there were 408 confusing base Man-
darin syllables covering 22 initials (consonants) and 38 finals
(vowels). The sub-syllable HMM units were specified. The ini-
tial and final of a syllable were modeled via three and six HMM
states, respectively. The null initial was modeled by two states
for the syllable containing only final part. Five states were used
to characterize the pre-silence, post-silence and between-syl-
lable silence. The intra- and inter-syllable dependencies were
modeled through right context-dependent (RCD) initials and
RCD finals, respectively. RCD initials were group-dependent
of 38 finals. We built 94 RCD initials, 2400 RCD finals and 7
group-dependent null initials for continuous speech recognition
[7]. Due to lack of training data, only the three rear states were
context dependent for RCD finals. We empirically chose the
mixture component number according to the number of frames
in a state. Without decision tree state tying, we generated
7615 HMM states. This model set was too large to estimate
reliable parameters. To resolve the overestimation problem, we
prepared 31 consonant phonetic questions and built 38 decision
trees for state tying of Mandarin finals instead of using 2400
RCD finals. The syllable bigram was applied for base syllable
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TABLE 1
PERFORMANCE COMPARISON OF BASELINE CI INITIAL/CI FINAL AND
CD INITIAL/CI FINAL WITHOUT DECISION TREE CONSTRUCTION

CI Initial, C1 Final CD Initial, Ct Final

Number of trained states 375 502

Syllable recognition rate (%) 48.9 51

decoding of 500 test utterances. The resulting perplexity 85.2
was measured with syllable vocabulary size being 408. The
syllable recognition rates (%) and the number of trained HMM
states were reported for evaluation. The computation costs
in training as well as recognition sessions were evaluated by
executing the proposed algorithms on Sun Workstation with
model Ultra 10. For comparison, we realized HMM modeling
using 22 context-independent (CI) initials and 38 CI finals.
The resulting syllable recognition rate was 48.9% as listed in
Table 1. The number of trained HMM states was only 375. In
CI system, we used eight states to model the syllable with only
final. When we applied 94 RCD initials and 38 CI finals, the
syllable recognition rate 51% was obtained using 502 HMM
states. In both baseline cases, the trained HMM parameters
were underestimated.

To achieve robust estimation of context-dependent HMM pa-
rameters, the model selection approach was crucial to perform
decision tree state tying. In PIC implementation, the HMM pre-
cision r; and hyperparameter u;; were assumed to be diagonal
matrices. The PIC criterion was evaluated only for HMM mean
vector m;, and precision matrix r;x. Evaluation of other HMM
parameters was neglected. The PIC procedure for decision tree
construction is described as follows.

1) Perform Viterbi alignment and collect the data X; for each
CI HMM state. Set s = 1 for this root node. Use X to
estimate the initial hyperparameters 1.

2) For each nonleaf node, find the best split question pro-
ducing the largest PIC gain Apic. If Apic > 0, split the
data X, into two child nodes X? and X7 for “Yes”
and “No” answers, respectively. Set X and X! as non-
leaf nodes. Go to step 3. If Aprc < 0, stop splitting and set
X —1 as leaf node. Go to step 4.

3) Use child node data X, and father node hyperparameters
@wx—1 and apply (24)—29) to estimate hyperparameters
oo = {15, af, u. uf} for child node X,. Go to step 2.

4) When all splitting processes are terminated, a decision
tree is constructed. Estimate MAP parameters for all leaf
nodes. Finally, HMM parameters A'*F are estimated and
selected.

Here, the initial hyperparameters ; are estimated by refer-
ring to the mechanism [16] using the data X, of a CI phonetic
unit. The ML estimation method is employed to obtain Til{c =
Cirr otfy, = A+ Cines plyy = Kike = M, mr and ufy, = G “Tik,ML"
To examine the effect of hyperparameters, we also carry out
PIC without top down prior/posterior propagation algorithm.
The prediction information of all tree nodes is determined using
fixed and common hyperparameters, i.e., {775,. . p5. w5} =
{Cik- d + Cikeo g L, ik - Ti_k%.\IL} for all .

TABLE I
PERFORMANCE COMPARISON OF DECISION TREE CONSTRUCTION USING ML,
MDL, AND PIC CRITERIA UNDER DIFFERENT VALUES OF CONTROL
PARAMETERS T, Ta, p AND p. PIC REALIZATIONS USING COMMON
AND STRUCTURAL HYPERPARAMETERS ARE COMPARED

T, 50 150 250 350 550
ML Number of trained states 5142 3988 2020 1539 996
Syllable recognition rate (%)  54.6 353 356 33.2 33.7
T\ (T, =250) 0 200 400 600 1000
ML Number of trained states 2020 1832 1507 1097 688
Syitable recognition rate (%) 36 56.7 35 335 524
P 0.5 1 1.5 2 5
MDL Numbher of trained states 2853 1898 1720 1267 710
Syllable recognition rate (%) 57 57.7 58 56.4 549
P 0.7 0.8 09 0.95 [
PIC Number of trained states 2383 2121 1870 1709 1587
(common)
Syliabie recognition rate (%)  36.3 3571 58.3 37.9 3575
P 0.7 0.8 0.9 0.9 |
pPiCc , A
Number of trained states 2510 2253 1903 1795 1620
(structural)
Syllable recognition rate (%)  37.4 595 60.4 60.9 39.8

C. Performance Comparison of ML and MDL Using
Different Thresholds

When ML and MDL model selection criteria are employed
in HMM decision tree state tying, we are investigating the
recognition performance versus different control parameters.
The node split questions with the largest differences in log
likelihood Ay, and description length Ayipy, are chosen. The
ML based split is stopped according to the increasing amount of
log likelihood TA and the floor number of observation frames
T... Using MDL, the penalization factor p is adopted to control
the stop condition. In Table II, we list the syllable recognition
rates and the numbers of trained HMM states for two cases of
ML based decision trees. In the first case, different thresholds
T,, are examined under To = 0. We can see that the number
of trained states is reduced from 7615 without decision trees
to 5142 with decision trees in case of T,, = 50. The syllable
recognition rate 54.6% is obtained. When we modify the
threshold by T, = 250, the recognition rate is improved to 56%
with smaller HMM parameter number 2020. This illustrates the
importance of applying decision trees in reducing the amount
of context-dependent HMM parameters. If the threshold 7,
is further increased, smaller states are trained but with lower
recognition rates. In the second set of ML evaluation, we fix
the threshold 7;, = 250 and adjust another stop condition Tx.
We find that the best recognition rate is slightly raised to 56.7%
under Tao = 200. Interestingly, the trained HMM parameters
are simplified to 1832 states. The higher the threshold T'a is,
the smaller the size of HMM parameters attained. Here, the
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result of 56.7% is the best performance of ML when we search
on a two-dimensional space of T,, and Ta. With regard to
MDL. model selection, the stop condition Aypr, > 0 with
tunable penalization factor p is applied to control the tradeoff
between speech recognition rate and HMM parameter size. The
best recognition rate 58% is achieved under p = 1.5. More
attractively, the number of trained states is reduced to 1720. It
is obvious that MDL consistently obtains a smaller number of
states and higher recognition rates than ML. MDL is superior
to ML for model selection. Compared with the baseline cases,
the recognition results using ML and MDL based decision trees
are significantly improved. But, the disadvantage is to induce
a larger amount of HMM parameters and higher computation
costs.

D. Mutual Information Criterion for Decision
Tree Construction

When performing node splitting for decision tree construc-
tion, we select the best question to separate data X, _; into the
most incoherent subsets X? and X'. We choose one model or
two models. MDL and PIC model selection methods consider
only one preset model complexity rather than different models
with different complexities. It is more reasonable to apply the
mutual information criterion to examine data homogeneity for
optimal node splitting. The minimjzation of mutual information
was feasible to find statistically independent models [20]. This
property is desirable for decision tree splitting. To fulfill mu-
tual information criterion, we need to calculate the weighted
entropies for the variables in X1, X¥ and X . The resulting
delta entropy was used to merge the most similar pair of discrete
HMM densities in [18]. Also, this criterion was applied for op-
timal node splitting in decision tree construction of semi-con-
tinuous HMMs [19]. Herein, the decision trees of continuous
HMMs using Gaussian densities are built. The entropy decrease
due to a node splitting is given by

AEntropy = CEH(XE) + C:H(X:) - <n—1H(ch«1) (31)

where (¥, ' and (,_; are the observation frame numbers
serving as weighting factors and the entropy of Gaussian
density of father node X1 & N{mu_1,7c_1) is [15]

1
H(Xn-1) = 5 [d+dlog2m —loglramal].  (32)

The delta entropy has the form of

1 n n
AE)ntropy = 5 [Cn—l IOg |TN—1| - Cg log |7‘zl - Cli IOg |T': ”

= Awe 33)

which is equivalent to the negative of maximum likelihood cri-
terion [33]. The node splitting using maximal delta entropy has
the same realization as that using maximal delta log likelihood.
We have investigated the performance of ML decision trees.

E. Effectiveness of PIC versus Different Hyperparameters and
Forgetting Factors

Further, the proposed PIC model selection is evaluated in
terms of syllable recognition rate and number of trained states.
During decision tree construction, the data clustering is per-
formed according to the question providing the largest gain of
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Fig. 3. PIC based decision tree construction is evaluated under different

forgetting factors p. Syllable recognition rates of CI Initial/CI Final, CD
Initial/CI Final, ML, and MDL based decision tree construction are compared.

prediction information Apyc. The clustering is terminated when
Apre < 0 accompanied by different forgetting factors p. The
forgetting factor adapts the effect of prior parameters in derived
prediction information. The case of p = 1 means no forget-
ting. Prior statistics is entirely kept for model selection. When
forgetting factor p approaches zero, the model complexity pe-
nalization is almost de-emphasized. Also, we evaluate two PIC
realizations using fixed common hyperparameters and proposed
structural hyperparameters. This evaluation aims to know the
goodness of structural hyperparameters for PIC model selection.
As shown in Table II, the PIC realizations using structural hyper-
parameters are much better than those using common hyperpa-
rameters for different forgetting factors. Using common hyper-
parameters, the best syllable recognition rate 58.3% is obtained
when p = 0.9. However, PIC can achieve syllable recognition
rate as high as 60.9% when applying structural hyperparameters
and p = 0.95. Hereafter, we only report the results of PIC using
structural hyperparameters. Fig. 3 displays the syllable recogni-
tion rates using PIC model selection versus different factors p.
The results of CI Initial/CI Final, CD Initial/CI Final, ML with
Ta = 200 and MDL with p = 1.5 are included for comparison.
In case of a very small forgetting factor p = 0.001, PIC attains
a recognition rate of 53.6%. The original PIC without applying
forgetting factor, i.e., p = 1, had a recognition rate of 59.8%.
For the cases of forgetting factor larger than 0.7, PIC outper-
forms other methods in term of recognition performance. Also,
Table II indicates that the best recognition rate of PIC attains a
slightly larger parameter size than that of MDL. Nevertheless,
PIC is advantageous because of its good performance in recog-
nition rate as well as suitable model size.

F. Performance Comparison of Training and Recognition
Time Costs

Finally, we evaluate different model selection approaches in
terms of training and recognition time costs. The results are pro-
vided in Fig. 4, which illustrates the overall performance com-
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Fig. 4. Performances of CI Initial/CI Final, CD Initial/CI Final and the best
decision tree construction using ML, MDL and PIC model selection criteria
are compared. The numbers in brackets denote the corresponding state number,
training hour and recognition second.

parison. We compare the recognition rate, number of trained
states, training time (in hours) and recognition time (in sec-
onds) for CI Initial/CI Final, CD Initial/CI Final, ML, MDL,
and PIC model selection. The training time means the time of
executing an EM iteration of HMM training. The recognition
time per sentence is averaged over 500 test sentences. We can
see that using context-dependent decision trees takes much more
training cost than the baseline system. The training and recog-
nition times of the baseline system are less than two hours and
a half second, respectively. In the construction of decision trees,
the training overhead arises from the larger number of HMM
states, the question selection operation and the split termina-
tion evaluation. The question selection for data clustering is the
most time-consuming work. However, the recognition time is
mainly affected by the size of HMM states. We find that PIC
requires the highest training cost due to the extensive computa-
tion of evolutionary hyperparameters and HMM prediction in-
formation. MDL attains the desirable computation costs in spite
of tunable control parameters. Overall, the proposed PIC model
selection is promising for HMM decision tree construction be-
cause of its moderate recognition time and storage requirement
of HMM parameters.

V. CONCLUSION

We surveyed several important model selection approaches
using AIC, BIC, MDL and NPC. A new PIC model selection
using approximate Bayesian is proposed to generalize the
likelihood criterion and resolve the overestimation and under-
estimation dilemmas for HMM data modeling. The similarities
and dissimilarities between PIC and other criteria were de-
scribed. Using PIC, the model complexity was autonomously
controlled according to the prediction information. The model
with the largest prediction information was retrieved. Theo-
retically, the selected model provided the best generalization
for future data occurrences. To realize PIC for HMMs, we
applied Viterbi approach and characterized the statistics of
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real-valued muitivariate HMM parameters by the conjugate
prior densities. The formulated prediction information had
exact solution at the frame level without Laplacian integral
approximation. A multivariate ¢ distribution was obtained to
express the prediction information due to HMM mean vector
and precision matrix. When the most likely model was selected,
the corresponding HMM parameters were determined via
MAP estimate. Using the property of conjugate prior, we also
constructed a top-down prior/posterior propagation algorithm
to calculate the structural hyperparameters for HMM decision
trees. These structural hyperparameters were essential for eval-
uating prediction information and retrieving compact decision
trees. The prediction information, parameter estimation and hy-
perparameter evolution for HMMSs were analytically addressed
based on Bayesian learning viewpoints. We also addressed the
relationship between ML and mutual information criteria for
decision tree construction of HMMs. In the experiments, the
proposed PIC achieved the highest speech recognition rate with
moderate number of HMM states compared to ML and MDL
criteria. PIC using structural hyperparameters outperformed
that using shared hyperparameters. PIC spent higher processing
times in training and recognition sessions. In the future, we will
investigate whether the estimated structural hyperparameters
are proper for Bayesian model regularization. The PIC model
selection will be further expanded for other data modeling prob-
lems and pattern recognition applications. A straightforward
extension of PIC for constructing compact Gaussian mixture
models will be developed for speaker recognition. We will also
improve mutual information criterjon for data homogeneity
evaluation in decision tree state tying.
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