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This paper introduces the jackknife+, which is a novel method for con-
structing predictive confidence intervals. Whereas the jackknife outputs an
interval centered at the predicted response of a test point, with the width of
the interval determined by the quantiles of leave-one-out residuals, the jack-
knife+ also uses the leave-one-out predictions at the test point to account
for the variability in the fitted regression function. Assuming exchangeable
training samples, we prove that this crucial modification permits rigorous
coverage guarantees regardless of the distribution of the data points, for any
algorithm that treats the training points symmetrically. Such guarantees are
not possible for the original jackknife and we demonstrate examples where
the coverage rate may actually vanish. Our theoretical and empirical analysis
reveals that the jackknife and the jackknife+ intervals achieve nearly exact
coverage and have similar lengths whenever the fitting algorithm obeys some
form of stability. Further, we extend the jackknife+ to K-fold cross validation
and similarly establish rigorous coverage properties. Our methods are related
to cross-conformal prediction proposed by Vovk (Ann. Math. Artif. Intell. 74

(2015) 9–28) and we discuss connections.

1. Introduction. Suppose that we have i.i.d. training data (Xi, Yi) ∈ R
d × R, i =

1, . . . , n, and a new test point (Xn+1, Yn+1) drawn independently from the same distribution.
We would like to fit a regression model to the training data, that is, a function μ̂ : Rd → R

where μ̂(x) predicts Yn+1 given a new feature vector Xn+1 = x, and then provide a prediction
interval for the test point—an interval around μ̂(Xn+1) that is likely to contain the true test
response value Yn+1. Specifically, given some target coverage level 1 − α, we would like to
construct a prediction interval Ĉn,α as a function of the n training data points, such that

P
{
Yn+1 ∈ Ĉn,α(Xn+1)

}
≥ 1 − α,

where the probability is taken with respect to a new test point (Xn+1, Yn+1) as well as with
respect to the training data.

A naive solution might be to use the residuals on the training data, |Yi − μ̂(Xi)|, to esti-
mate the typical prediction error on the new test point—for instance, we might consider the
prediction interval

(1.1) μ̂(Xn+1) ±
(
the (1 − α) quantile of

∣∣Y1 − μ̂(X1)
∣∣, . . . ,

∣∣Yn − μ̂(Xn)
∣∣).

However, in practice, this interval would typically undercover (meaning that the probability
that Yn+1 lies in this interval would be lower than the target level 1 − α), since due to over-
fitting, the residuals on the training data points i = 1, . . . , n are typically smaller than the
residual on the previously unseen test point, that is, |Yn+1 − μ̂(Xn+1)|.
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In order to avoid the overfitting problem, the jackknife prediction method computes a
margin of error with a leave-one-out construction:

• For each i = 1, . . . , n, fit the regression function μ̂−i to the training data with the ith point
removed, and compute the corresponding leave-one-out residual, |Yi − μ̂−i(Xi)|.

• Fit the regression function μ̂ to the full training data, and output the prediction interval

(1.2) μ̂(Xn+1) ±
(
the (1 − α) quantile of

∣∣Y1 − μ̂−1(X1)
∣∣, . . . ,

∣∣Yn − μ̂−n(Xn)
∣∣).

Intuitively, this method should have the right coverage properties on average since it avoids
overfitting—the leave-one-out residuals |Yi − μ̂−i(Xi)| reflect the typical magnitude of the
error in predicting a new data point after fitting to a sample size n (or, almost equivalently,
n − 1), unlike the naive method where the residuals on the training data are likely to be too
small due to overfitting.

However, the jackknife procedure does not have any universal theoretical guarantees. Al-
though many results are known under asymptotic settings or under assumptions of stability of
the regression algorithm μ̂ (we will give an overview below), it is nonetheless the case that,
for settings where μ̂ is unstable, the jackknife method may lose predictive coverage. For ex-
ample, we will see in our simulations in Section 7 that the jackknife can have extremely poor
coverage using least squares regression when the sample size n is close to the dimension d .

In this paper, we introduce a new method, the jackknife+, that provides nonasymptotic
coverage guarantees under no assumptions beyond the training and test data being exchange-
able. We will see that the jackknife+ offers, in the worst case, a 1 − 2α coverage rate (where
1 − α is the target), while the original jackknife may even have zero coverage in degenerate
examples. On the other hand, empirically we often observe that the two methods yield nearly
identical intervals and both achieve 1 − α coverage. Theoretically, we will see that under a
suitable notion of stability, the jackknife+ and jackknife both provably yield close to 1 − α

coverage.

1.1. Background. The idea of resampling or subsampling from the available data, in or-
der to assess the accuracy of our parameter estimates or predictions, has a rich history in
the statistics literature. Early works developing the jackknife and bootstrap methods include
Quenouille [18], Quenouille [19], Tukey [26], Miller [15], Efron [8], Stine [23]. Several pa-
pers from this period include leave-one-out methods for assessing or calibrating predictive
accuracy, similar to the predictive interval constructed in (1.2) above, for example, Stone
[24], Geisser [10], Butler and Rothman [4], generally using the term “cross-validation” to
refer to this approach. (In this work, we will instead use the term “jackknife” to refer to the
leave-one-out style of prediction methods, as is common in the modern literature.) Efron and
Gong [9] provides an overview of the early literature on these types of methods.

While this rich literature demonstrated extensive evidence of the reliable performance of
the jackknife in practice, relatively little has been known about the theoretical properties of
this type of method until recently. Steinberger and Leeb [21], Steinberger and Leeb [22] have
developed results proving valid predictive coverage of the jackknife under assumptions of
algorithmic stability, meaning that the fitted model μ̂ and its leave-one-out version μ̂−i are
required to give similar predictions at the test point. This work builds on earlier results by
Bousquet and Elisseeff [2], which study generalization bounds for risk minimization through
the framework of stability conditions; an earlier work in this line is that of Devroye and
Wagner [7], which give analogous results for classification risk.

In contrast to cross-validation methods, which perform well but are difficult to analyze
theoretically, we can instead consider a simple validation or holdout method. We first parti-
tion the training data as {1, . . . , n} = Strain ∪ Sholdout, then fit μ̂train on the subset Strain of the
training data and construct a predictive interval

(1.3) μ̂train(Xn+1) ±
(
the (1 − α) quantile of

∣∣Yi − μ̂train(Xi)
∣∣, i ∈ Sholdout

)
.
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Papadopoulos [16], Vovk [27], Lei et al. [14] study this type of method, under the name split

conformal prediction or inductive conformal prediction, through the framework of exchange-
ability, and prove that 1 − α predictive coverage holds with no assumptions on the algorithm
A or on the distribution of the data (with a small correction to the definition of the quantile).
This method is also computationally very cheap, as we only need to fit a single regression
function μ̂train—in contrast, jackknife and cross-validation methods require running the re-
gression many times. However, these benefits come at a statistical cost. If the training size
|Strain| is much smaller than n, then the fitted model μ̂train may be a poor fit, leading to wide
prediction intervals; if instead we decide to take |Strain| ≈ n then instead |Sholdout| is very
small, leading to high variability.

Finally, Vovk [28], Vovk et al. [30] proposed the cross-conformal prediction method,
which is closely related to the jackknife+. We describe the cross-conformal method, and
the previously known theoretical guarantees, in detail later on. Their work is based on the
conformal prediction method (see Vovk, Gammerman and Shafer [29], Lei et al. [14] for
background), which provably achieves distribution-free predictive coverage at the target level
1 − α but at an extremely high computational cost.

1.2. Notation. Before proceeding, we first define some notation. First, for any values vi

indexed by i = 1, . . . , n, define1

q̂ +
n,α{vi} = the

⌈
(1 − α)(n + 1)

⌉
-th smallest value of v1, . . . , vn,

the 1 − α quantile of the empirical distribution of these values. Similarly, we will let q̂ −
n,α{vi}

denote the α quantile of the distribution,

q̂ −
n,α{vi} = the

⌊
α(n + 1)

⌋
-th smallest value of v1, . . . , vn = −q̂ +

n,α{−vi}.
With this notation, the “naive” prediction interval in (1.1) can be defined as

(1.4) Ĉnaive
n,α (Xn+1) = μ̂(Xn+1) ± q̂ +

n,α

{∣∣Yi − μ̂(Xi)
∣∣}.

Second, we will write A to denote the algorithm mapping a training data set of any size, to
the fitted regression function. Formally, A is a map from

⋃
m≥1(R

d ×R)m (i.e., the collection
of all training sets of any size m ≥ 1), to the space of functions Rd →R. For example, when
μ̂ is the regression function fitted on the training data (X1, Y1), . . . , (Xn, Yn), we can write

(1.5) μ̂ = A
(
(X1, Y1), . . . , (Xn, Yn)

)
.

Similarly, to compute the leave-one-out residuals for the jackknife, we let

(1.6) μ̂−i =A
(
(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn)

)
,

and then the jackknife prediction interval (1.2) can be written as

(1.7) Ĉjackknife
n,α (Xn+1) = μ̂(Xn+1) ± q̂ +

n,α

{
RLOO

i

}
,

where RLOO
i = |Yi − μ̂−i(Xi)| denotes the ith leave-one-out residual.

From this point on, we will assume without comment that A satisfies a symmetry condi-
tion, namely, A must be invariant to reordering the data, that is,

(1.8) A
(
(Xπ(1), Yπ(1)), . . . , (Xπ(m), Yπ(m))

)
= A

(
(X1, Y1), . . . , (Xm, Ym)

)

for any sample size m ≥ 1, any points (X1, Y1), . . . , (Xm, Ym), and any permutation π of the
indices {1, . . . ,m}.

1In defining the quantiles q̂ +
n,α of the residuals, we use (1 − α)(n + 1) rather than (1 − α)n to correct for

the finite sample size—we will see later on why this correction is natural. For the jackknife, it is perhaps more
common to see n in place of n + 1, that is, the residual quantile is defined slightly differently, but for large n the
difference is negligible. Formally, if α < 1

n+1 and so (1 − α)(n + 1) > n, then we set q̂ +
n,α{vi} = ∞.
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FIG. 1. Illustration of the usual jackknife and the new jackknife+. The resulting prediction intervals are chosen

so that, on either side, the boundary is exceeded by a sufficiently small proportion of the two sided arrows—above,
these are marked with a star.

2. The jackknife+. Our jackknife+ method is a modification of the jackknife (1.7).
Defining μ̂−i as in (1.6), the jackknife+ prediction interval is given by

(2.1) Ĉjackknife+
n,α (Xn+1) =

[
q̂ −
n,α

{
μ̂−i(Xn+1) − RLOO

i

}
, q̂ +

n,α

{
μ̂−i(Xn+1) + RLOO

i

}]
.

To compare this to the usual jackknife, we observe that Ĉ
jackknife
n,α (Xn+1) can equivalently be

defined as

Ĉjackknife
n,α (Xn+1) =

[
q̂ −
n,α

{
μ̂(Xn+1) − RLOO

i

}
, q̂ +

n,α

{
μ̂(Xn+1) + RLOO

i

}]
.

The constructions of the usual jackknife and the new jackknife+ are compared in Figure 1.
While both versions of jackknife use the leave-one-out residuals, the difference is that for
jackknife, we center our interval on the predicted value μ̂(Xn+1) fitted on the full training
data, while for jackknife+ we use the leave-one-out predictions μ̂−i(Xn+1) for the test point.

Figure 1 illustrates that, if the leave-one-out fitted functions μ̂−i are all quite similar to
μ̂, which was fitted on the full training data, then the two methods should return nearly
identical prediction intervals. On the other hand, in settings where the regression algorithm is
extremely sensitive to the training data, such that removing one data point can substantially
change the predicted value at Xn+1, the output may be quite different. In Section 5, we will
examine the role of this type of instability in μ̂ more closely.

To give one further interpretation of the difference between the two methods, while the
jackknife interval Ĉ

jackknife
n,α (Xn+1) is defined as a symmetric interval around the prediction

μ̂(Xn+1) for the test point (1.7), the jackknife+ interval can be interpreted as an interval
around the median prediction,

Median
(
μ̂−1(Xn+1), . . . , μ̂−n(Xn+1)

)
,

which is guaranteed to lie inside Ĉ
jackknife+
n,α (Xn+1) for any α ≤ 1

2 (in general, however, the
jackknife+ interval will not be symmetric around this median prediction).

As detailed in Section 7, the jackknife and jackknife+ often perform nearly identically in
practice (and generally achieve an empirical coverage level very close to the target 1−α), but
in some more challenging examples where the regression algorithm is less stable, the original
jackknife may lose coverage while jackknife+ still achieves the target coverage level.

Finally, we remark that in settings where the distribution of Y |X is highly skewed, it may
be more natural to consider an asymmetric version of this method; we consider this extension
in Appendix A.
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2.1. Assumption-free guarantees. Remarkably, although the jackknife+ method appears
to only be a slight modification of jackknife, our main result proves that the jackknife+ is
guaranteed to achieve predictive coverage at the level 1 − 2α, without making any assump-
tions on the distribution of the data (X,Y ) or the nature of the regression method A.

For this theorem, and all results that follow, all probabilities are stated with respect to
the distribution of the training data points (X1, Y1), . . . , (Xn, Yn) and the test data point
(Xn+1, Yn+1) drawn i.i.d. from an arbitrary distribution P , and we assume implicitly that
the regression method A is invariant to the ordering of the data (1.8). We will treat the sam-
ple size n ≥ 2 and the target coverage level α ∈ [0,1] as fixed throughout.

THEOREM 1. The jackknife+ prediction interval satisfies

P
{
Yn+1 ∈ Ĉjackknife+

n,α (Xn+1)
}
≥ 1 − 2α.

This result is proved in Section 6 using the exchangeability of the n + 1 data points
(X1, Y1), . . . , (Xn+1, Yn+1)—we remark that this theorem actually holds more generally un-
der the assumption that the n + 1 data points are exchangeable, with the i.i.d. assumption as
a special case.

In practice, we generally expect to achieve the target level 1 − α with either version of the
jackknife. A natural question is whether the factor of 2 appearing in the coverage guarantee
for jackknife+ is real, or is merely an artifact of the proof. We would also want to know
whether analogous results may be possible for the original jackknife.

In fact, our next result constructs explicit pathological examples to see that, without mak-
ing assumptions, we cannot improve our theoretical guarantee for the jackknife+ (i.e., we
cannot remove the factor of 2 appearing in Theorem 1), and no guarantee at all is possible for
the jackknife. For completeness, we also construct an example to show zero coverage for the
naive method, although for that method we expect to see undercoverage in practice, not just
in pathological examples.

THEOREM 2. For any sample size n ≥ 2, any α ∈ [ 1
n+1 ,1], and any dimension d ≥ 1,

there exists a distribution on (X,Y ) ∈ R
d × R and a regression algorithm A, such that the

predictive coverage of the naive prediction interval (1.4) and the jackknife prediction interval

(1.7) satisfy

P
{
Yn+1 ∈ Ĉnaive

n,α (Xn+1)
}
= P

{
Yn+1 ∈ Ĉjackknife

n,α (Xn+1)
}
= 0.

Furthermore, if α ≤ 1
2 , there exists a distribution on (X,Y ) ∈ R

d ×R and a regression algo-

rithm A, such that the predictive coverage of jackknife+ satisfies

P
{
Yn+1 ∈ Ĉjackknife+

n,α (Xn+1)
}
≤ 1 − 2α + 6

√
logn

n
.

The proof of this theorem, and the proofs for all our theoretical results presented below,
are deferred to the Supplementary Material [1]. The example for the original jackknife is
simple—we choose the regression algorithm A so that models fitted at sample size n are
always less accurate than models fitted at sample size n − 1. The construction for jackknife+
is substantially more technical, and is similar in spirit to the example sketched in Vovk [28],
Appendix A, for cross-conformal predictors in the setting of exchangeable data. (The constant
6 on the vanishing term in the bound for jackknife+ is simply an artifact of the proof, and can
certainly be improved with a more careful construction.)
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2.2. The jackknife-minmax method. We have seen that the best possible coverage guaran-
tee for jackknife+, in the assumption-free setting, is 1 − 2α rather than the target level 1 − α.
To address this gap, we can consider a more conservative alternative to the jackknife+, which
will remove the factor of 2 from the theoretical bound. We define the jackknife-minmax
method as follows:

Ĉjack-mm
n,α (Xn+1)

=
[

min
i=1,...,n

μ̂−i(Xn+1) − q̂ +
n,α

{
RLOO

i

}
, max
i=1,...,n

μ̂−i(Xn+1) + q̂ +
n,α

{
RLOO

i

}]
.

(2.2)

It is simple to verify that this interval is strictly more conservative than jackknife+, meaning
that for any data set, we have

Ĉjackknife+
n,α (Xn+1) ⊆ Ĉjack-mm

n,α (Xn+1).

The advantage that jackknife-minmax provides is that, without any assumptions on the algo-
rithm or distribution of the data, it always achieves the target coverage rate.

THEOREM 3. The jackknife-minmax prediction interval satisfies

P
{
Yn+1 ∈ Ĉjack-mm

n,α (Xn+1)
}
≥ 1 − α.

In practice, however, we will see that the jackknife-minmax prediction interval is generally
too conservative.

3. CV+ for K-fold cross-validation. Suppose that we split the training sample into K

disjoint subsets S1, . . . , SK each of size m = n/K (assumed to be an integer). Let

μ̂−Sk
= A

(
(Xi, Yi) : i ∈ {1, . . . , n}\Sk

)

be the regression function fitted onto the training data with the kth subset removed. To assess
the quality of our regression algorithm using cross-validation (CV), we would consider the
residuals from this K-fold process, namely,

RCV
i =

∣∣Yi − μ̂−Sk(i)
(Xi)

∣∣, i = 1, . . . , n,

where k(i) ∈ {1, . . . ,K} identifies the subset that contains i, that is, i ∈ Sk(i). Using these
residuals, we can define the CV+ prediction interval as

ĈCV+
n,K,α(Xn+1)

=
[
q̂ −
n,α

{
μ̂−Sk(i)

(Xn+1) − RCV
i

}
, q̂ +

n,α

{
μ̂−Sk(i)

(Xn+1) + RCV
i

}]
.

(3.1)

Of course, jackknife+ can be viewed as a special case of CV+, by setting K = n. The advan-
tage of the CV+ method, when we choose a smaller K , is that we only need to compute K

rather than n models; however, this will likely come at the cost of slightly wider intervals,
because the models μ̂−Sk

are fitted using a lower sample size (i.e., n(1 − 1/K)) and will lead
to slightly larger residuals.

3.1. Assumption-free guarantee for CV+. Our next result verifies that the CV+ predic-
tion interval enjoys essentially the same worst-case coverage guarantee as jackknife+.

THEOREM 4. The K-fold CV+ prediction interval satisfies the following coverage guar-

antees:
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(a) (Adapted from Vovk and Wang [31], Vovk et al. [30].)

P
{
Yn+1 ∈ ĈCV+

n,K,α(Xn+1)
}
≥ 1 − 2α −

2(1 − 1/K)

n/K + 1
.

(b)

P
{
Yn+1 ∈ ĈCV+

n,K,α(Xn+1)
}
≥ 1 − 2α −

1 − K/n

K + 1
.

Combining the two bounds, it follows that for all K ,

P
{
Yn+1 ∈ ĈCV+

n,K,α(Xn+1)
}
≥ 1 − 2α − min

{
2(1 − 1/K)

n/K + 1
,

1 − K/n

K + 1

}

≥ 1 − 2α −
√

2/n.

The first part of this result, part (a), is derived from the work of Vovk and Wang [31]
and Vovk et al. [30]; we give more details on this in Section 3.2 below. This known result
proves that the worst-case coverage is essentially 1 − 2α when K is sufficiently small, that
is, K ≪ n. Our new work, proving part (b), completes the picture by giving a meaningful
bound for the case where K is large (at the extreme, K = n for leave-one-out methods). By
combining the two bounds, we see that coverage is essentially 1 − 2α at any K , since the
excess noncoverage is at most

√
2/n uniformly over any choice of K .

We can also compare our result to the holdout or split conformal method (1.3), which is
equivalent to fitting a model μ̂−S1 and constructing the prediction interval using the quan-
tile of the residuals RCV

i for i ∈ S1, but using only a single subset S1 (without repeating K

times for each fold in the partition S1, . . . , SK ). As discussed earlier, this method offers an
assumption-free guarantee of 1 − α coverage, but this comes at the cost of higher variance
due to the single split—in contrast, CV+ reduces variance by averaging over all K splits, but
at the cost of a weaker theoretical guarantee.

3.2. Related method: Cross-conformal predictors. Our proposed CV+ prediction interval
is related to the cross-conformal prediction method of Vovk [28], Vovk et al. [30], which (in
its symmetric version) returns the predictive set

Ĉcross-conf
n,K,α (Xn+1)

=
{
y ∈R :

τ +
∑n

i=11{|y − μ̂−Sk(i)
(Xn+1)| < RCV

i } + τ1{|y − μ̂−Sk(i)
(Xn+1)| = RCV

i }
n + 1

> α

}
.

(3.2)

Here, τ ∼ Unif[0,1] introduces randomization into the method. By comparing to CV+, we
can verify that

(3.3) Ĉcross-conf
n,K,α (Xn+1) ⊆ ĈCV+

n,K,α(Xn+1)

deterministically (we demonstrate this in the Supplementary Material [1]). The two methods
will sometimes produce the same output, but not always—in particular, Ĉcross-conf

n,K,α (Xn+1)

may in principle return a predictive set that is a disjoint union of multiple intervals, while
CV+ always returns an interval.
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We next compare our theoretical findings with the known results for cross-conformal. Vovk
et al. [30] show that the K-fold cross-conformal method has coverage at least2

(3.4) 1 − 2α − 2(1 − α)
1 − 1/K

n/K + 1
.

When K is small, this additional term is negligible, and so we essentially have 1 − 2α cover-
age for cross-conformal. However, for large K , such as K = n for the leave-one-out method,
their earlier result does not yield a meaningful guarantee—the guaranteed coverage level is
zero. In contrast, our new assumption-free result in Theorem 1 proves 1−2α coverage for the
jackknife+ method (i.e., with K = n folds), and Theorem 4 ensures 1 − 2α −

√
2/n coverage

for K-fold CV+ at any choice of K .

REMARK 1. By examining the proofs of Theorems 1 and 4, we can see that the argu-
ments apply directly to the K-fold (or n-fold) cross-conformal method; that is, our proofs for
these theorems also establish that

P
{
Yn+1 ∈ ĈCV+

n,K,α(Xn+1)
}
≥ 1 − 2α − min

{
2(1 − 1/K)

n/K + 1
,

1 − K/n

K + 1

}

≥ 1 − 2α −
√

2/n

for K-fold cross-conformal with any K . In the special case that K = n we are guaranteed
coverage ≥ 1 − 2α. The first term in the minimum was established by Vovk et al. [30] as
presented in (3.4) above, but the second term (which allows for meaningful coverage for
large values of K , for example, K = n) is a new result.

3.3. An alternative method: Conformal prediction. The final related method we present
is conformal prediction [29]. (We will sometimes refer to this method as “full” conformal
prediction in order to distinguish it from the split conformal or cross-conformal methods
described above.) Given the base algorithm A, the full conformal prediction method outputs
a prediction set (which consists of a union of one or more intervals) constructed as follows:

(3.5) Ĉconf
n,α (Xn+1) =

{
y ∈R :

∣∣y − μ̂y(Xn+1)
∣∣ ≤ q̂ +

n,α

{∣∣Yi − μ̂y(Xi)
∣∣}},

where

μ̂y = A
(
(X1, Y1), . . . , (Xn, Yn), (Xn+1, y)

)

denotes the output of the algorithm run on the training data augmented with the hypothesized
test point (Xn+1, y). In other words, to determine whether to include a value y in the pre-
diction set at a new point Xn+1, we need to train the algorithm on the training+test data (as
though Yn+1 = y were the true response value), and then see whether the residual of the test
point “conforms” with the residuals on the remaining n points. The exchangeability of the
test and training data ensures that

P
{
Yn+1 ∈ Ĉconf

n,α (Xn+1)
}
≥ 1 − α,

that is, coverage at the target level. However, this desirable theoretical property comes at a
high cost—we can see by construction of the prediction interval Ĉconf

n,α (x) that the training
algorithm A needs to be rerun for every test point feature vector x we might consider, and
for every possible response value y ∈ R (or in practice, for each y in a fine grid over R).

2Vovk et al. [30] do not state this coverage result directly, but instead prove 1 − 2α coverage for a modification
of the cross-conformal method; however, these two formulations can be shown to be equivalent. We give details
in the Supplementary Material [1].
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In certain special cases, there are computational tricks allowing for efficient calculation of
the prediction set, for example, linear regression or ridge regression [3], and the Lasso [13].
Outside of these special cases, full conformal is prohibitively expensive in practice, even on
moderately sized data sets; while it provides an extremely elegant and theoretically rigorous
framework for distribution-free inference, it is not practical in many applied settings.

4. Summary of coverage guarantees and computational costs. In light of these theo-
retical results, which method should a statistician choose in practice? Table 1 summarizes the
theoretical results behind each of the methods under consideration, and the typical empirical
performance that we have observed.

Given the theoretical and empirical properties of the various options, we therefore rec-
ommend the jackknife+ as a practical alternative to the usual jackknife predictive intervals.
On the one hand, the empirical performance of the jackknife+ is nearly identical to that of
the original jackknife (assuming we avoid pathological examples), with both methods giving
intervals of nearly the same width and achieving close to the target 1 − α coverage level.
However, while the jackknife offers no theoretical guarantees in the absence of stability as-
sumptions, the jackknife+ achieves at least 1 − 2α coverage in the worst possible case. On
the other hand, the methods achieving 1 − α (rather than 1 − 2α) coverage guarantees are
either less statistically efficient in the sense of producing wider intervals (split conformal
uses models fitted on a smaller portion of the data while jackknife-minmax is generally too
conservative), or suffer from computational infeasibility (full conformal is computationally
prohibitive aside from perhaps a few special cases).

We now turn to a direct comparison of the computational costs of these eight methods. The
split conformal and naive methods require only one run of the regression algorithm A (to fit
μ̂ on the full training data), while each of the jackknife methods requires n runs (to fit μ̂−i

for each i = 1, . . . , n—and one additional run to fit μ̂, in the case of the original jackknife).
If the training sample size n is so large that fitting n regression functions is not feasible,
we may instead prefer to use K-fold cross-validation. In contrast, the full conformal method
must train A many more times—once for each possible combination of a test point feature
vector x and a possible response value y—except for special cases such as linear regression
or ridge regression. These observations are summarized below:

Table 2 compares the computational cost (ignoring constants) of each method when run on
a training sample of size n, for producing prediction sets on ntest many test points. The middle
column (“Model training cost”) counts the number of times that the model fitting algorithm
A is run on a training data set3 of size (up to) n. The value ngrid denotes the number of grid

TABLE 1
Summary of distribution-free theoretical guarantees and typical empirical performance for all methods

Method Assumption-free theory Typical empirical coverage

Naive (1.4) No guarantee < 1 − α

Split conf. (holdout) (1.3) ≥ 1 − α coverage ≈ 1 − α

Jackknife (1.7) No guarantee ≈ 1 − α, or < 1 − α if μ̂ unstable
Jackknife+ (2.1) ≥ 1 − 2α coverage ≈ 1 − α

Jackknife-minmax (2.2) ≥ 1 − α coverage > 1 − α

Full conformal (3.5) ≥ 1 − α coverage ≈ 1 − α, or > 1 − α if μ̂ overfits
K-fold CV+ (3.1) ≥ 1 − 2α coverage � 1 − α

K-fold cross-conf. (3.2) ≥ 1 − 2α coverage � 1 − α

3It is worth mentioning that for several common regression algorithms, the n leave-one-out residuals can be
obtained without refitting n times, but by simply reweighting the in-sample training residuals. Examples include
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TABLE 2
Summary of computational costs for all methods

Method Model training cost Model evaluation cost

Naive (1.4) 1 n + ntest
Split conf. (holdout) (1.3) 1 n + ntest
Jackknife (1.7) n n + ntest
Jackknife+ (2.1) n ntest · n
Jackknife-minmax (2.2) n ntest · n
K-fold CV+ (3.1) K n + ntest · K
K-fold cross-conf. (3.2) K n + ntest · K
Full conformal (3.5) ntest · ngrid ntest · ngrid · n

points of possible y values (a fine grid over R), used in the construction of the full conformal
prediction method (3.5). The last column (“Model evaluation cost”) counts the number of
times we evaluate a fitted model μ̂ on a new data point. In most settings, the model training
cost is dominant, for example, training a neural network is far more costly than evaluating the
prediction of a trained network on a new example. There are important exceptions, however,
such as K-nearest neighbors, where computing a prediction incurs the cost of identifying the
K neighbors of the test point.

5. Guarantees under stability assumptions. Next, we consider how adding stability
assumptions—conditions that ensure that the fitted regression function μ̂ is not too sensitive
to perturbations of the training data set—can improve the theoretical guarantees of the jack-
knife and its variants. (For simplicity, we only consider leave-one-out methods, and do not
examine K-fold cross-validation here.)

5.1. In-sample and out-of-sample stability. Fix any ǫ ≥ 0, ν ∈ [0,1], any sample size
n ≥ 2, and any distribution P on (X,Y ). We say that a regression algorithm A satisfies
(ǫ, ν) out-of-sample stability with respect to the distribution P and sample size n if, for all
i ∈ {1, . . . , n},

(5.1) P
{∣∣μ̂(Xn+1) − μ̂−i(Xn+1)

∣∣ ≤ ǫ
}
≥ 1 − ν,

for μ̂ and μ̂−i defined as before in (1.5) and (1.6). The probability above is taken with re-
spect to the distribution of the data points (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) drawn i.i.d.
from P . Similarly, A satisfies (ǫ, ν) in-sample stability with respect to the distribution P and
sample size n if, for all i ∈ {1, . . . , n},

(5.2) P
{∣∣μ̂(Xi) − μ̂−i(Xi)

∣∣ ≤ ǫ
}
≥ 1 − ν.

Naturally, since the data points are exchangeable, if (5.1) or (5.2) holds for any single i ∈
{1, . . . , n} then it holds for all i ∈ {1, . . . , n}. These types of conditions appear elsewhere
in the literature, for example, Bousquet and Elisseeff [2] define similar conditions, termed
“hypothesis stability” and “pointwise hypothesis stability.”

While the out-of-sample and in-sample stability properties may at first appear similar, they
are extremely different in practice. Out-of-sample stability requires that, for a test point that
is independent of the training data, the predicted value does not change much if we remove

linear smoothing methods like ordinary least squares, kernel ridge regression, kernel smoothing, thin plate splines
and smoothing splines. Another interesting example is random forests, where the ith leave-one-out fit can be
obtained by simply ignoring all trees containing the ith point.
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one point from the training data. In contrast, in-sample stability requires that, for a point

in the training data set, the predicted value does not change much if we remove this point
itself from the training data set. In a scenario where the model fitting algorithm suffers from
strong overfitting, we would expect in-sample stability to be very poor, while out-of-sample
stability may still hold, for example, we will see in Section 5.5 that this is the case for K-
nearest neighbor methods. On the other hand, strongly convex regularization, such as ridge
regression, induces both in- and out-of-sample stability [2], Example 3. This is not the case,
however, for sparse regression methods (e.g., ℓ1 regularization), which are proved by Xu,
Caramanis and Mannor [32] to be incompatible with in-sample stability.

5.2. Summary of stability results. Before giving the details of our theoretical results, we
summarize our findings on the various methods’ predictive coverage guarantees, with and
without stability assumptions (Table 3).

The assumption free results are the same as those discussed in Section 4, while the results
under stability assumptions are presented next in Theorems 5 and 6.

5.3. Out-of-sample stability and the jackknife. We will next prove that out-of-sample
stability is sufficient for the jackknife and jackknife+ methods to achieve the target coverage
rate, with a slight modification. Define

Ĉjackknife,ǫ
n,α (Xn+1) = μ̂(Xn+1) ±

(
q̂ +
n,α

{
RLOO

i

}
+ ǫ

)
,

and similarly, define

Ĉjackknife+,ǫ
n,α (Xn+1) =

[
q̂ −
n,α

{
μ̂−i(Xn+1) − RLOO

i

}
− ǫ, q̂ +

n,α

{
μ̂−i(Xn+1) + RLOO

i

}
+ ǫ

]
,

which we refer to as the ǫ-inflated versions of the jackknife and jackknife+ predictive inter-
vals.

THEOREM 5. Suppose that the regression algorithm A satisfies the (ǫ, ν) out-of-sample

stability property (5.1) with respect to the data distribution P and the sample size n. Then

the ǫ-inflated jackknife prediction interval satisfies

P
{
Yn+1 ∈ Ĉjackknife,ǫ

n,α (Xn+1)
}
≥ 1 − α − 2

√
ν.

Similarly, the 2ǫ-inflated jackknife+ prediction interval satisfies

P
{
Yn+1 ∈ Ĉjackknife+,2ǫ

n,α (Xn+1)
}
≥ 1 − α − 4

√
ν.

(The different amounts of inflation, ǫ for jackknife versus 2ǫ for jackknife+, are simply an
artifact of the particular definition of out-of-sample stability that we use, and should not be
interpreted as a meaningful difference between these two methods.)

TABLE 3
Summary of theoretical guarantees for all methods under various stability assumptions

Method
Assumption-free
theory

Out-of-sample
stability

In-sample and
out-of-sample stability

Naive (1.4) No guarantee No guarantee ≈ 1 − α

Jackknife (1.7) No guarantee ≈ 1 − α ≈ 1 − α

Jackknife+ (2.1) 1 − 2α ≈ 1 − α ≈ 1 − α

Jackknife-minmax (2.2) 1 − α 1 − α 1 − α
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We remark that if we additionally assume that, in the data distribution, Y |X has a bounded
conditional density (e.g., Y = μ(X)+N (0, σ 2) for some unknown true mean function μ(·)),
then the result of Theorem 5 is sufficient to ensure that the (noninflated) jackknife and jack-
knife+ intervals achieve close to target coverage. The reason is this: if the conditional density
of Y |X is bounded by some constant c < ∞, then very little probability can be captured by
inflating the interval. Specifically,

P
{
Yn+1 ∈ Ĉjackknife,ǫ

n,α (Xn+1)\Ĉjackknife
n,α (Xn+1)

}
≤ 2ǫc.

Combined with the result of Theorem 5, this proves that

P
{
Yn+1 ∈ Ĉjackknife

n,α (Xn+1)
}
≥ 1 − α − 2

√
ν − 2ǫc.

Similarly, for jackknife+, we have

P
{
Yn+1 ∈ Ĉjackknife+

n,α (Xn+1)
}
≥ 1 − α − 4

√
ν − 4ǫc.

5.4. In-sample stability and overfitting. To contrast the scenarios of in-sample and out-
of-sample stability, we will next demonstrate that adding the in-sample stability assumption
would in fact be sufficient for the “naive” prediction interval, defined earlier in (1.4), to have
coverage at roughly the target level. Its ǫ-inflated version is defined as

(5.3) Ĉnaive,ǫ
n,α (Xn+1) = μ̂(Xn+1) ±

(
q̂ +
n,α

{∣∣Yi − μ̂(Xi)
∣∣} + ǫ

)
.

Recall from Section 1 that we would typically expect Ĉnaive
n,α (Xn+1) to undercover severely

due to the overfitting problem (thus inspiring the use of the jackknife to avoid this issue),
and similarly Ĉnaive,ǫ

n,α (Xn+1) will also undercover whenever ǫ is too small to correct for
overfitting. This is often the case even when out-of-sample stability is satisfied. With in-
sample stability, however, this is no longer the case. In other words, the in-sample stability
property is essentially assuming that inflation by ǫ is sufficient to correct for overfitting.

THEOREM 6. Suppose that the regression algorithm A satisfies both the (ǫ, ν) in-sample

stability property (5.2) and the (ǫ, ν) out-of-sample stability property (5.1) with respect to the

data distribution P and the sample size n. Then the naive prediction interval satisfies

P
{
Yn+1 ∈ Ĉnaive,2ǫ

n,α (Xn+1)
}
≥ 1 − α − 4

√
ν.

5.5. Example: K-nearest neighbors. To give an illustrative example, consider a K-
nearest neighbor (K-NN) method. This style of example is also considered in Steinberger
and Leeb [22], Example 4.1, and was studied earlier by Devroye and Wagner [7] in the con-
text of estimating the error of a classifier, and by Bousquet and Elisseeff [2] in the context of
error in regression. Given a training data set (X1, Y1), . . . , (Xn, Yn) and a new test point x,
our prediction is

μ̂(x) =
1

K

∑

i∈N(x)

Yi,

where N(x) ⊂ {1, . . . , n} is the set of the K nearest neighbors to the test point x, that is,
the K indices i giving the smallest values of ‖Xi − x‖2 (of course, we can replace the ℓ2
norm with any other metric). We will assume for simplicity that there are no ties between
these distances (for instance, the Xi points might be continuously distributed on R

d , or we
apply a random tie-breaking rule). Now consider out-of-sample stability. Let N(Xn+1) and
N−i(Xn+1) be the K-nearest neighbor sets for the test point Xn+1 given the full training data,
or the training data with data point i removed, respectively. Then we can easily verify that

i /∈ N(Xn+1) ⇔ N(Xn+1) = N−i(Xn+1) ⇒ μ̂(Xn+1) = μ̂−i(Xn+1).
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Therefore,

P
{∣∣μ̂(Xn+1) − μ̂−i(Xn+1)

∣∣ = 0
}
≥ P

{
i /∈ N(Xn+1)

}
= 1 −

K

n
,

where the last step holds by exchangeability of the n training points. This proves that the
K-NN method satisfies (ǫ, ν)-out-of-sample stability with ǫ = 0 and ν = K/n. (In contrast,
we cannot hope for a similar argument to guarantee in-sample stability, since we will always
have i ∈ N(Xi); that is, Xi is one of its own nearest neighbors—and so in general we will
have μ̂(Xi) �= μ̂−i(Xi).)

Applying the conclusion of Theorem 5 to this setting, then we see that K-NN leads to a
coverage rate at least

P
{
Yn+1 ∈ Ĉjackknife

n,α (Xn+1)
}
≥ 1 − α − 2

√
K/n

for the jackknife, and

P
{
Yn+1 ∈ Ĉjackknife+

n,α (Xn+1)
}
≥ 1 − α − 4

√
K/n

for the jackknife+. These results hold with no assumptions whatsoever on the distribution of
the data, and in particular, we do not need to assume that the K-NN prediction is accurate or
consistent on the given data.

5.6. Comparison to existing results. As mentioned above, Bousquet and Elisseeff [2]
study stability in the context of generalization bounds for regression, with the aim of bound-
ing risk rather than predictive inference. The predictive accuracy of the jackknife under as-
sumptions of algorithm stability was explored by Steinberger and Leeb [21] for the linear
regression setting, and in a more general setting by Steinberger and Leeb [22]. Their stabil-
ity assumption (see, e.g., Steinberger and Leeb [22], Definition 1) is essentially equivalent
to our out-of-sample stability condition (5.1). However, the theory obtained in their work
is asymptotic, and relies also on distributional assumptions (see Steinberger and Leeb [22],
(C1)), namely that Yi = E[Yi | Xi] + νi where the noise νi is continuously distributed and
is independent of Xi (e.g., this does not allow for heteroskedasticity). In contrast, our guar-
antee, in Theorem 5, offers a simple finite-sample coverage guarantee with no distributional
assumptions, requiring only algorithm stability.

6. Proof of Theorem 1. Suppose for a moment that we have access to the test point
(Xn+1, Yn+1) as well as the training data. For any indices i, j ∈ {1, . . . , n + 1} with i �= j ,
let μ̃−(i,j) define the regression function fitted on the training plus test data, with points i

and j removed. (We use μ̃ rather than μ̂ to remind ourselves that the model is fitted on a
subset of the combined training and test data i = 1, . . . , n + 1, rather than a subset of only
the training data.) Note that μ̃−(i,j) = μ̃−(j,i) for any i �= j , and that μ̃−(i,n+1) = μ̂−i for any
i = 1, . . . , n.

Next, we define a matrix of residuals, R ∈ R
(n+1)×(n+1), with entries

Rij =
{
+∞ i = j,∣∣Yi − μ̃−(i,j)(Xi)

∣∣ i �= j,

that is, the off-diagonal entries represent the residual for the ith point when both i and j are
left out of the regression. We also define a comparison matrix, A ∈ {0,1}(n+1)×(n+1), with
entries

Aij = 1{Rij > Rji}.

In other words, Aij is the indicator for the event that, when excluding data points i and j

from the regression, data point i has higher residual than data point j . Naturally, we see that
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Aij = 1 implies Aji = 0, for any i, j . We note that this comparison matrix construction is
also examined by Vovk [28], Appendix A, where it is used to establish that leave-one-out
conformal methods fail to achieve 1 − α coverage.

Next, we are interested in finding data points i with unusually large residuals—the ones
that are hardest to predict. We will define a set S(A) ⊆ {1, . . . , n + 1} of “strange” points,4

S(A) =
{
i ∈ {1, . . . , n + 1} : Ai• ≥ (1 − α)(n + 1)

}
,

where Ai• =
∑n+1

j=1 Aij is the ith row sum of A. In other words, the ith point is “strange” (i.e.,
i ∈ S(A)) if it holds that, when we compare the residual Rij of the ith point against residual
Rji for the j th point (for each j �= i), the residual Rij for the ith point is the larger one, for a
sufficiently high fraction of these comparisons.

From this point on, the proof will proceed as follows:

• Step 1: we will establish deterministically that |S(A)| ≤ 2α(n + 1), that is, for any com-
parison matrix A it is impossible to have more than 2α(n + 1) many strange points.

• Step 2: using the fact that the data points are i.i.d. (or more generally exchangeable), we
will show that the probability that the test point n + 1 is strange (i.e., n + 1 ∈ S(A)) is
therefore bounded by 2α.

• Step 3: finally, we will verify that the jackknife+ interval can only fail to cover the test
response value Yn+1 if n + 1 is a strange point.

Step 1: Bounding the number of strange points. This bound is essentially a consequence
of Landau’s theorem for tournaments [12]. For data points i and j , we say that data point i

“wins” its game against data point j , if Aij = 1; that is, point i has a higher residual than
point j , under the corresponding regression μ̃−(i,j). Note that each strange point i ∈ S(A)

can lose against at most α(n + 1) − 1 other strange points—this is because point i must win
against at least (1 − α)(n + 1) points in total since it is strange, and as we have defined it,
point i cannot win against itself.

Let s = |S(A)| denote the number of strange points. The key realization is now that, if we
think about grouping each pair of strange points by the losing point, then we see that there
are at most

s ·
(
α(n + 1) − 1

)

pairs of strange points. This is because there are at most s unique possibilities for the loser,
and for each such loser, it can only lose against at most α(n + 1) − 1 other strange points, as
argued above. In other words, we have established

s(s − 1)

2
≤ s ·

(
α(n + 1) − 1

)
,

and rearranging gives s ≤ 2α(n + 1) − 1 < 2α(n + 1), as desired.

Step 2: Exchangeability of the data points. We next leverage the exchangeability of the
data points to show that, since there are at most 2α(n + 1) strange points among a total of
n + 1 points, it follows that the test point has at most 2α probability of being strange—this
reasoning uses the exchangeability of the data in exactly the same way as the conformal
prediction literature [29].

To establish this formally, since the data points (X1, Y1), . . . , (Xn+1, Yn+1) are exchange-
able and the regression fitting algorithm A is invariant to the ordering of the data points

(the symmetry condition (1.8)), it follows that A
d= 	A	⊤ for any (n + 1) × (n + 1) per-

mutation matrix 	, where d= denotes equality in distribution. In particular, for any index

4The authors thank an anonymous reviewer for suggesting this presentation of the proof.
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j ∈ {1, . . . , n + 1}, suppose we take 	 to be any permutation matrix with 	j,n+1 = 1 (i.e.,
corresponding to a permutation mapping n + 1 to j ). Then, deterministically, we have

n + 1 ∈ S(A) ⇔ j ∈ S
(
	A	⊤)

and, therefore,

P
{
n + 1 ∈ S(A)

}
= P

{
j ∈ S

(
	A	⊤)}

= P
{
j ∈ S(A)

}

for all j = 1, . . . , n + 1. In other words, if we compare an arbitrary training point j versus
the test point n + 1, these two points are equally likely to be strange, by exchangeability of
the data. We can then calculate

P
{
n + 1 ∈ S(A)

}
=

1

n + 1

n+1∑

j=1

P
{
j ∈ S(A)

}
=

E[|S(A)|]
n + 1

≤ 2α,

where the last step applies the result of Step 1.

Step 3: Connecting to jackknife+. Finally, we need to relate the question of coverage of the
jackknife+ interval, to our notion of strange points. Suppose that Yn+1 /∈ Ĉ

jackknife+
n,α (Xn+1).

This means that either

Yn+1 > q̂ +
n,α

{
μ̂−i(Xn+1) + RLOO

i

}
,

which implies that Yn+1 > μ̂−j (Xn+1) + RLOO
j for at least (1 − α)(n + 1) many indices

j ∈ {1, . . . , n}, or otherwise

Yn+1 < q̂ −
n,α

{
μ̂−i(Xn+1) − RLOO

i

}
,

which implies that Yn+1 < μ̂−j (Xn+1) − RLOO
j for at least (1 − α)(n + 1) many indices

j ∈ {1, . . . , n}. In either case, then we have

(1 − α)(n + 1) ≤
n∑

j=1

1
{
Yn+1 /∈ μ̂−j (Xn+1) ± RLOO

j

}

=
n∑

j=1

1
{∣∣Yj − μ̂−j (Xj )

∣∣ <
∣∣Yn+1 − μ̂−j (Xn+1)

∣∣}

=
n+1∑

j=1

1{Rj,n+1 < Rn+1,j } =
n+1∑

j=1

An+1,j ,

and, therefore, n + 1 ∈ S(A), that is, point n + 1 is strange. Combining this with the result of
Step 2, we have

P
{
Yn+1 /∈ Ĉjackknife+

n,α (Xn+1)
}
≤ P

{
n + 1 ∈ S(A)

}
≤ 2α.

7. Empirical results. In this section, we compare seven methods—naive (1.4), jackknife
(1.7), jackknife+ (2.1), jackknife-minmax (2.2), CV+ (3.1), split conformal (1.3), and full
conformal (3.5)—on simulated and real data. Code for reproducing all results and figures is
available online.5

5http://www.stat.uchicago.edu/~rina/jackknife.html

http://www.stat.uchicago.edu/~rina/jackknife.html
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7.1. Simulations. We first examine the performance of the various prediction intervals
on a simulated example, using least squares as our regression method. We will see that when
the training sample size n is equal or approximately equal to the dimension d , the instability
of the least squares method (due to poor conditioning of the n × d design matrix) leads to a
wide disparity in performance between the various methods. This simulation is thus designed
to demonstrate the role of stability in the performance of these various methods.

7.1.1. Data and methods. Our target coverage level is 1 −α = 0.9. We use training sam-
ple size n = 100, and repeat the experiment at each dimension d = 5,10, . . . ,200, with i.i.d.
data points (Xi, Yi) generated as

Xi ∼ N (0, Id) and Yi | Xi ∼N
(
X⊤

i β,1
)
.

The true coefficient vector β is drawn as β =
√

10 · u for a uniform random unit vector
u ∈ R

d . The regression method A is simply least squares, with the convention that if the
linear system is underdetermined then we take the solution with the lowest ℓ2 norm (the
limit of ridge regression as the regularization tends to zero). Specifically, for training data
(X1, Y1), . . . , (Xn, Yn), we return the regression function μ̂(x) = x⊤β̂ ,

β̂ = X
†
matYvec,

where Xmat denotes the n × d matrix of covariates, Yvec the vector of responses, and † the
Moore–Penrose pseudoinverse.

We then generate 100 test data points from the same distribution, and calculate the empiri-
cal probability of coverage (i.e., the proportion of test points for which the prediction interval
computed at the X value contains the Y value) and the average width of the prediction inter-
val.

7.1.2. Results. Figure 2 displays the results of the simulation, averaged over 50 trials
(where each trial has an independent draw of the training sample of n = 100 and the test
sample of size 100).

When d < n, the jackknife and jackknife+ show very similar performance, with ap-
proximately the right coverage level 1 − α = 0.9 and with nearly identical interval width.
For d ≈ n (the regime where least squares is quite unstable), the jackknife has substantial
undercoverage—at d = n the jackknife shows coverage rate around 0.5, and continues to
show substantial undercoverage when d is slightly larger than n. In this regime, the jack-
knife+ continues to show the right coverage level, at the cost of a prediction interval that
is only slightly wider than the jackknife. For large d , the jackknife and jackknife+ again
show very similar performance. In fact, this connects to recent work on interpolation meth-
ods (methods that achieve zero training error). Specifically, Hastie et al. [11] study “ridgeless”
regression (i.e., the least squares solution with the lowest ℓ2 norm, as in our simulation), and
demonstrate that this provides a stable solution with good test error as long as d is either suffi-
ciently small or sufficiently large relative to n. We see a similar phenomenon in the predictive
coverage performance of the jackknife.

As expected, the jackknife-minmax is over-conservative, with typical coverage higher than
1 − α = 0.9 across all dimensions d , while the naive method drastically undercovers due to
increasing overfitting as d grows (and in fact, at d ≥ n, the training error is exactly zero, so
the prediction intervals have width zero and coverage zero.)

When d > n, we note that full conformal prediction will always have infinite length in-
tervals since for every potential y in the (Xn+1, y) pair, all n + 1 residuals will equal zero.
Naturally, in such a situation, full conformal will have coverage equal to one deterministi-
cally. In practice, it is common to modify the conformal prediction method by truncating to
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FIG. 2. Simulation results, showing the coverage and width of the predictive interval for all methods. The solid

lines show the mean over 50 independent trials, with shading to show ± one standard error. We observe that the

jackknife undercovers around d = 100 due to instability (since n = 100). Jackknife+ and split conformal are the

only two methods that maintain the correct coverage level throughout without under- or over-covering, but we can

observe that jackknife+ often produces shorter intervals than split conformal. (See text for more details.)

a finite range, for example, to the observed range of Y values in the training data (which has
minimal effect on the coverage guarantee [6]); this is why we see finite length intervals for
full conformal in our simulation results.

Split conformal is the only method other than jackknife+ to maintain coverage at 0.9
throughout. (Note that since split conformal trains on half of the data, its length spikes near
d = 50, rather than d = 100 as for the other methods; this is simply due to the change in
sample size n/2 = 50 used in training. This is a result of instability of OLS when n ≈ d and
is not reflective of comparisons between holdout and jackknife+.)

7.2. Real data. We next compare the various methods on three real data sets. We will
try three regression algorithms: ridge regression, random forests and neural networks (details
given below). Our aim in these experiments is to demonstrate the typical performance of the
various prediction interval methods in a real data setting; we do not seek to optimize the base
methods used as our regression algorithms, but are only interested in how the various predic-
tion interval methods behave in comparison to each other. Due to the high computational cost
of the full conformal method, we do not include it in the comparison.

7.2.1. Data. The Communities and Crime data set6  [20] contains information on 1994
communities, with covariates such as median income, distribution of ages, family size, etc.,
and the goal of predicting a response variable defined as the per capita violent crime rate. Af-
ter removing categorical variables and variables with missing data, d = 99 covariates remain.

The BlogFeedback data set7  [5] contains 52,397 data points, each corresponding to a single
blog post. The goal is to predict the response variable of the number of comments left on the

6http://archive.ics.uci.edu/ml/datasets/communities+and+crime
7https://archive.ics.uci.edu/ml/datasets/BlogFeedback

http://archive.ics.uci.edu/ml/datasets/communities+and+crime
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
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blog post in the following 24 hours, using d = 280 covariates such as the length of the post,
the number of comments on previous posts, etc. Since the distribution of the response is
extremely skewed, we transform it as Y = log(1 + # comments).

The Medical Expenditure Panel Survey 2016 data set,8 provided by the Agency for Health-
care Research and Quality, contains data on individuals’ utilization of medical services such
as visits to the doctor, hospital stays, etc. Details on the data collection for older versions
of this data set are described in Trena et al. [25]. We select a subset of relevant features,
such as age, race/ethnicity, family income, occupation type, etc. After splitting categori-
cal features into dummy variables to encode each category separately, the resulting dimen-
sion is d = 107. The goal is to predict the health care system utilization of each individ-
ual, which is a composite score reflecting the number of visits to a doctor’s office, hospital
visits, days in nursing home care, etc. With missing data removed, this data set contains
33,005 data points. Since the distribution of the response is highly skewed, we transform it
as Y = log(1 + (utilization score)).

7.2.2. Methods. Our procedure is the same for each of the three data sets. We randomly
sample n = 200 data points from the full data set, to use as the training data. The remaining
points form the test set.

We run our experiment using three different regression algorithms A—namely, ridge re-
gression, random forests and neural networks. The details of these algorithms are as follows:

• For ridge regression, we define μ̂(x) = β̂0 + x⊤β̂ for

β̂0, β̂ = arg min
β0∈R,β∈Rd

{
1

2

n∑

i=1

(
Yi − β0 − X⊤

i β
)2 + λ‖β‖2

2

}
,

where the penalty parameter is chosen as λ = 0.001‖Xmat‖2, where Xmat ∈ R
n×d is the

covariate matrix of the training data, and ‖Xmat‖ is its spectral norm. This choice is to
accommodate situations in which the matrix Xmat does not have full column rank as in
the case where d > n. In such cases, the solution above is nearly the least-squares solution
with minimum ℓ2 norm.

• For random forests, we use the RandomForestRegressormethod from the scikit-
learn package [17] in Python, with 20 trees grown for each random forest using the mean
absolute error criterion, and with default settings otherwise.

• For neural networks, we use the MLPRegressor method also from scikit-learn,
run with the L-BFGS solver and the logistic activation function, and with default settings
otherwise.

For each choice of A, we construct six prediction intervals (naive, jackknife, jackknife+,
jackknife-minmax, CV+, split conformal), and calculate their empirical coverage rate and
their average width on the test set. We then repeat this procedure 20 times, with the train/test
split formed randomly each time, and report the mean and standard error over these 20 trials.

7.2.3. Results. Figure 3 displays the results of the real data experiments. For each data
set, each regression algorithm, and each one of the six prediction interval methods, the figure
plots the average coverage and average width, together with their standard errors across the
20 independent trials.

We see that the jackknife and jackknife+ methods both yield empirical coverage extremely
close to the target level of 90%, and have very similar predictive interval widths. However,

8https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192

https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-192
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FIG. 3. Results on three real data sets, using either ridge regression, random forests, or neural networks as the

regression algorithm. The bar plots show the coverage and the width of the predictive interval for all methods.
The figures display the mean over 20 independent trials (i.e., splits into training and test data), with error bars

to show ± one standard error. In general, the naive method undercovers while jackknife-minmax overcovers, and

the remaining methods have well calibrated coverage. In terms of their interval lengths, we typically (but not

necessarily) get the expected order: jackknife < jackknife+ < 10-fold CV+ < split conformal.

in some settings, the jackknife+ shows slightly higher coverage than jackknife, and slightly
wider prediction intervals. These settings correspond to regression methods with greater in-
stability. As expected, the naive method undercovers in some settings and the jackknife-
minmax is generally overly conservative. Split conformal performs reasonably well: its length
and coverage is sometimes comparable to the jackknife+, but is also significantly wider in
some instances. Intuitively, if the best regression function in the considered function class is
simple and the dataset is large, split conformal should perform fine even though it uses n/2
points for training and n/2 for calibration; however, in settings where the dataset is small
relative to the complexity of the best regressor, then we should observe significant gains in
using n − 1 points for training and n points for calibration. One phenomenon that is not
visible in the empirical results is that split conformal is a randomized method, with output
varying slightly depending on the random split, while jackknife+ is a deterministic method
on any fixed training data set.

8. Summary. The jackknife+ differs from the jackknife in that it uses the quantiles of

μ̂−i(Xn+1) ± RLOO
i = μ̂(Xn+1) +

(
μ̂−i(Xn+1) − μ̂(Xn+1)

)
± RLOO

i ,
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instead of those of μ̂(Xn+1) ± RLOO
i , to build predictive intervals. By applying the shifts

μ̂−i(Xn+1) − μ̂(Xn+1), the jackknife+ effectively accounts for the (possible) algorithm in-
stability, yielding rigorous coverage guarantees under no assumptions other than exchange-
able samples. This, together with its empirical performance on real data, makes it a better
choice than the jackknife in practice. In cases where the jackknife+ is computationally pro-
hibitive, K-fold CV+ offers an attractive alternative. Here, it would be interesting to see if
the coverage guarantees for the latter method can be somewhat sharpened.

APPENDIX A: ASYMMETRIC JACKKNIFE+ AND CV+

In settings where the distribution of Y given X appears to have symmetric noise, it is nat-
ural to construct predictions intervals symmetrically, which is why we can consider absolute
values of residuals. If the data is likely to be skewed, however, we may want to consider an
asymmetric construction. Fix any α+, α− > 0 with α+ + α− = α, and let

Ĉjackknife+
n,α± (Xn+1)

=
[
q̂ −
n,α−

{
μ̂−i(Xn+1) + R

sgn,LOO
i

}
, q̂ +

n,α+

{
μ̂−i(Xn+1) + R

sgn,LOO
i

}]
,

(A.1)

where the signed residuals are

R
sgn,LOO
i = Yi − μ̂−i(Xi).

We can of course consider the analogous asymmetric version of the original jackknife,

Ĉjackknife
n,α± (Xn+1)

=
[
μ̂(Xn+1) + q̂ −

n,α−

{
R

sgn,LOO
i

}
, μ̂(Xn+1) + q̂ +

n,α+

{
R

sgn,LOO
i

}]
.

(A.2)

This type of asymmetric jackknife was considered by Steinberger and Leeb [22]. Similarly,
we can define an asymmetric version of jackknife-minmax or of CV+. We remark that, even
if we were to choose α− = α+ = α/2, these asymmetric constructions would not necessarily
be equal to the original jackknife, jackknife+, jackknife-minmax and CV+ intervals, because
the empirical distribution of the signed residuals will in general be asymmetric even if only
due to random chance.

All of the coverage guarantees that we have proved for the various symmetric methods,
hold also for their asymmetric counterparts. For example, to verify 1 − 2α coverage for the
asymmetric jackknife+ in the assumption-free setting, the proof of Theorem 1 proceeds iden-
tically except that the matrix of residuals R ∈ R

(n+1)×(n+1) constructed in the proof is re-
placed with two matrices

(R±)ij =
{
+∞ i = j,

±
(
Yi − μ̃−(i,j)(Xi)

)
i �= j,

where R+ (resp., R−) is used to bound the probability of noncoverage in the right (resp., left)
tail by α+ (resp., α−).
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SUPPLEMENTARY MATERIAL

Supplement to “Predictive inference with the jackknife+” (DOI: 10.1214/20-
AOS1965SUPP; .pdf). In the Supplementary Material, we provide proofs for theoretical re-
sults.
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