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ABSTRACT: Most lesion studies in animals, and neuropsychological
and functional neuroimaging studies in humans, have focused on finding
dissociations between the functions of different brain regions, for exam-
ple in relation to different types of memory. While some of these disso-
ciations can be questioned, particularly in the case of neuroimaging
data, we start by assuming a ‘‘modal model’’ in which at least three dif-
ferent memory systems are distinguished: an episodic system (which
stores associations between items and spatial/temporal contexts, and
which is supported primarily by the hippocampus); a semantic system
(which extracts combinations of perceptual features that define items,
and which is supported primarily by anterior temporal cortex); and
modality-specific perceptual systems (which represent the sensory
features extracted from a stimulus, and which are supported by higher
sensory cortices). In most situations however, behavior is determined by
interactions between these systems. These interactions reflect the flow of
information in both ‘‘forward’’ and ‘‘backward’’ directions between
memory systems, where backward connections transmit predictions about
the current item/features based on the current context/item. Importantly,
it is the resulting ‘‘prediction error’’—the difference between these
predictions and the forward transmission of sensory evidence—that drives
memory encoding and retrieval. We describe how this ‘‘predictive inter-
active multiple memory systems’’ (PIMMS) framework can be applied to
human neuroimaging data acquired during encoding or retrieval phases of
the recognition memory paradigm. Our novel emphasis is thus on associa-
tions rather than dissociations between activity measured in key brain
regions; in particular, we propose that measuring the functional coupling
between brain regions will help understand how these memory systems
interact to guide behavior. VVC 2010 Wiley-Liss, Inc.
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INTRODUCTION

The debate over whether recollection and familiarity are qualitatively
different memory processes reflects a broader debate over the fractiona-
tion of memory, such as, whether there exist distinct memory systems
(e.g., Schacter and Tulving, 1994). While multiple memory processes/
systems may be helpful at one level of description—for example, to
explain behavioral dissociations between different types of memory
test—they may not necessarily have spatially-segregated or independ-
ently-operating implementation in the brain. Nonetheless, dissociations

in the pattern of brain activity during various memory
tasks, as measured for example by functional magnetic
resonance imaging (fMRI), are often cited as further
evidence in support of multiple memory processes.
These fMRI claims most often relate to the medial tem-
poral lobes (MTL), particularly dissociations between
the hippocampus and surrounding perirhinal cortex and
parahippocampal gyri (e.g., Diana et al., 2007). Here
we evaluate these dissociations critically, at least within
the domain of fMRI studies of human recognition
memory (see Brown et al., 2010; Montaldi and Mayes,
this issue, for evidence from animal and human lesion
studies), before proposing a new framework that
emphasizes instead associations rather than dissociations
between the activity of different brain regions.

We begin by briefly reviewing cognitive and neural
theories of recognition memory, before illustrating
some criteria for establishing neuroimaging support for
multiple memory systems, based on patterns of fMRI
response in hippocampus and perirhinal cortex associ-
ated with recollection and familiarity. Even if no study
has yet met these criteria fully, we nonetheless assume a
modal, multiple-memory-systems model in which rec-
ollection and familiarity depend on the ‘‘forward’’ and
‘‘backward’’ coupling between systems. We call this
model PIMMS, which stands for ‘‘predictive interactive
multiple-memory systems,’’ where the novel ‘‘pre-
dictive’’ and ‘‘interactive’’ aspects refer to the idea that
‘‘higher’’ systems are constantly trying to predict activity
in ‘‘lower’’ systems on the basis of past experience. We
sketch how PIMMS might explain the common pat-
terns of recollection- vs. familiarity-related activity in
hippocampus and perirhinal cortex, before generalizing
to more everyday situations, and making predictions for
future experiments. While it becomes more difficult to
test such fully-interactive models based on behavioral
data or even local patterns of fMRI responses, we sug-
gest that they can also be tested by examining changes
in the functional coupling between brain regions.

Theories of Recognition Memory

People’s ability to recognize a stimulus that they
encountered previously has been hypothesized to
entail two qualitatively different types of memory:
recollection and familiarity (e.g., Mandler, 1980). In
keeping with other articles in this special issue, we use
these terms to refer to psychological processes that
both give rise to conscious memory for past exposure
to a stimulus, differing in whether (recollection) or
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not (familiarity) that memory includes details of the episodic
context surrounding that exposure. Experimental assay of recol-
lection and familiarity includes objective tests of aspects of that
prior context (or ‘‘source memory’’; Johnson et al., 1993) or
subjective judgments of context retrieval (such as ‘‘remember’’
vs. ‘‘know’’ judgments; Tulving, 1985). Rather than discuss the
pros and cons of such experimental methods (see instead Mon-
taldi and Mayes, this issue; Wixted et al., 2010), we assume
here that recollection has occurred when there is evidence of re-
trieval of at least one type of extrinsic context (e.g., spatial or
temporal information, or internally-generated thoughts during
prior exposure). Note that we do not include memory for con-
text intrinsic to the stimulus, such as perceptual details not
repeated at test (e.g., Staresina and Davachi, 2008; cf. Wais
et al., 2008), which we hypothesize are bound within a seman-
tic memory system (see later).

When fitting behavioral data from recognition memory
paradigms, assumptions are needed about how recollection and
familiarity cooccur or even interact. In one popular model
(see Yonelinas et al., 2010), recollection and familiarity are
assumed to be independent. In such ‘‘dual-process’’ models of
recognition memory, familiarity is normally assumed to be a
continuous signal, on which people place response criteria to
make their recognition decision, consistent with signal detection
theory (SDT, Green snd Swets, 1966). Recollection on the other
hand can be modeled as a discrete probabilistic event (a ‘‘high-
threshold’’ model) or as a second (orthogonal) continuous signal
(in two-dimensional SDT theories, e.g., Rotello et al., 2004).
Others however have argued that the behavioral data are suffi-
ciently modeled by one-dimensional SDT (see e.g., Wixted
et al., 2010). Some of these researchers take this sufficiency to
indicate that there is only one type of memory process underly-
ing recognition memory (‘‘single-process’’ theories, such as some
‘‘global matching’’ models, Humphreys et al., 1989), such that
recollection and familiarity are regarded as quantitatively rather
than qualitatively different. It is important to note however that
one-dimensional SDT models do not necessarily reject the idea
of qualitatively different memory processes; they assume simply
that, at least for a basic old/new decision, all information
retrieved from memory is combined into a single ‘‘strength of
evidence’’ in order for people to make a decision. Nonetheless,
one take on this ongoing debate between single- and dual-pro-
cess models is that behavioral data from the recognition memory
paradigm are insufficient to resolve this debate (particularly if
SDT is generalized to allow unequal signal and noise variances
or even non-Gaussian distributions; see, e.g., Shimamura, 2010),
and one should instead seek convergent evidence from other
memory paradigms and other types of data, such as those from
neuroimaging (Henson, 2006).

Here we distinguish between memory processes and memory
systems, where we take the latter to entail spatially-distinct
neural implementations in the brain. In this sense, dual process
models of recognition memory do not imply multiple memory
systems. Recollection and familiarity, for example, could arise
from different computations within the same brain region (e.g.,
Greve et al., 2010), or, as later, from different types of interac-

tion between the same set of brain regions. Conversely though,
spatially-distinct neural systems (for the same type of memo-
randa) would seem to imply different memory processes. Hence,
evidence from neuroimaging (or other brain data) that different
brain regions are differentially involved in experimental condi-
tions presumed to differ only in terms of recollection and famili-
arity would support dual-process models of recognition memory.

Several researchers have mapped multiple memory systems
onto the brain, focusing on the MTL. Some are based on
specific computational principles (e.g., Norman and O’Reilly,
2003); others are verbal accounts (e.g., Aggleton and Brown,
1999). A common theme is that recollection arises from a con-
textual/relational/pattern-separating system in the hippocampus,
whereas familiarity arises from item-based/pattern-completing
cortical systems, such as the perirhinal cortex (see, e.g.,
Norman, 2010; though see also Squire et al., 2007). Before
proposing our own modified multiple memory system view,
we pause to consider the human neuroimaging evidence for
multiple memory systems.

Neuroimaging Evidence for Multiple
Memory Systems

To infer from neuroimaging data that more than one process
is engaged in a memory task, Henson (2005) argued that one
must show a ‘‘qualitative’’ difference in the activity of two more
brain regions across three or more experimental conditions.
The general idea of a qualitative difference is illustrated in
Figure 1. Assume that one measures the mean event-related
fMRI response to three types of trial: (1) correct recognition
of a studied item together with correct retrieval of its study
context (C1); (2) correct recognition of a studied item but
failure to retrieve its study context (C2); and (3) correct
rejections (CR) of unstudied items. Assume further that one
obtains these data from two, independently-defined brain
regions: perirhinal cortex and hippocampus.

The null hypothesis here is that the three conditions differ
only along a single dimension of ‘‘memory strength,’’ with a
relative ordering of activity CR < C2 < C1 (i.e., a single-
process model). An alternative hypothesis is that the conditions
differ in terms of recollection (which is greater in C1 than
C2) and familiarity (which is greater for C2 than CR). How-
ever, the precise mapping between these psychological processes
(memory strength/recollection/familiarity) and neural activity
in each brain region (let alone the mapping between neural
activity and the fMRI signal) is unknown; it is unlikely to be
linear, for example. Therefore, in order to make any type of
inference from fMRI data, we make the minimal assumption
that this mapping is monotonic (Henson, 2005).

The pattern of data at the top of Figure 1A is not sufficient
to reject the null hypothesis, i.e., insufficient to infer separate
processes of recollection (in the hippocampus) and familiarity
(in the perirhinal cortex). This is simply because the two brain
regions may have different mappings between memory process
and fMRI signal; though both monotonic, the mapping may
‘‘saturate’’ at lower levels of memory strength in the perirhinal
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cortex than in the hippocampus (bottom of Fig. 1A; see Hen-
son, 2006, for further elaboration, and Squire et al., 2007, for
a similar argument). It is also possible that increases in memory
strength can produce decreases in the fMRI signal; for example,
if the neural basis of familiarity were reduced responsiveness
(e.g., Brown and Xiang, 1998; Brown et al., 2010). In
this case, even a cross-over interaction between the three condi-
tions and two regions (Fig. 1B) would not reject the null
hypothesis. Indeed, the hippocampus and perirhinal cortex may
be functionally-coupled in a reciprocal fashion, whereby
increased neural activity in one inhibits activity in the other.

But what about the pattern in Figure 1C? This pattern
cannot be explained by a monotonic relationship between
memory strength and fMRI signal. Indeed, one common
explanation for this pattern is that the hippocampus is involved
both in retrieving context, explaining why C1 > C2, and in
encoding new items/contexts (even during a recognition test),
explaining why CR > C2 (e.g., Buckner et al., 2001; Stark
and Okado, 2003). Another possibility is that this pattern
reflects a spatial averaging over distinct subfields within the
hippocampus that are differentially involved in encoding and
retrieval, but beyond than the typical resolution of fMRI (Carr
et al., 2010). Later, we propose an alternative explanation in
terms of contextual-competition in our PIMMS framework.

One might wonder why the data from the perirhinal cortex
are relevant to the above argument; with the nonmonotonic
pattern in the hippocampus being sufficient to reject the null
hypothesis of a single dimension of memory strength. This is
only true if the null hypothesis specifies the relative ordering of
the C1, C2, and CR conditions; otherwise, one could still
assume a single dimension, but where the conditions were

ordered such that C2 < C1 < CR, whereby the pattern in
Figure 1C reduces back to an inconclusive pattern like that
in Figure 1A. In the more general case, a pattern like that in
Figure 1D is necessary to rule out any single-process model.
This case corresponds to a ‘‘reversed association’’ (Dunn and
Kirsner, 1988), where there is a negative-relationship between
two conditions (C2 and C1), concurrent with a positive-
relationship across two other conditions (C2/C1 vs. CR).
This pattern requires the data from at least two brain regions,
because then there is no way to reorder the three conditions
consistently across the two regions and maintain monotonic
psychological-fMRI mappings within each region.

In fact, we are not aware of any published fMRI study that
has reported a pattern like that in Figure 1C (or 1D), when
the regions have been defined independently (i.e., by anatomi-
cal criteria, separate functional data, or orthogonal contrasts on
the same functional data). The studies that have reported
similar patterns at retrieval, including our own, have tended to
perform post hoc tests across regions that were defined after
searching for significant correlated effects, which raises the
question of statistical bias (Henson, 2006).

A New Multiple Memory Systems Model:
From SPI to PIMMS

Even if we are not aware of any neuroimaging study to date
that has found a qualitative difference in MTL activity associ-
ated with recollection and familiarity, according to the above
criteria, we propose on the basis of other considerations (e.g.,
neuropsychological, evolutionary, comparative, and computa-
tional, Schacter and Tulving, 1994) that there are multiple

FIGURE 1. Hypothetical patterns of fMRI signal (top row) in
perirhinal cortex and hippocampus across three types of trial
during the test phase of a recognition memory experiment: correct
rejections (CR) of unstudied items; correct recognition of studied
items without evidence of any contextual retrieval (C2), analogous
to familiarity; and correct recognition of studied items with

evidence of contextual retrieval (C1), analogous to recollection.
Assuming a monotonic relationship between fMRI signal and
degree of memory strength (bottom row), only the patterns in
Panels C and D are sufficient to challenge single-system/process
models of recognition memory (see text for explanation).
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memory systems in the human brain. However, given the high-
level of anatomical connectivity between brain regions, we
propose that there is a high-degree of interaction between
memory systems in most situations, which can make their
dissociation and identification difficult.

Perhaps the ‘‘modal’’ multiple memory system model is the se-
rial-parallel-independent (SPI) model developed by Tulving and
Gazzaniga (1995)—Figure 2A. This model assumes at least three
memory systems: an episodic system, a semantic system, and
one or more perceptual systems. The name SPI refers to the rela-
tionship between these systems during encoding, storage and re-
trieval: viz., that encoding is a serial process in which a stimulus
is processed first by a perceptual system, then the semantic sys-
tem and finally the episodic system; storage occurs in parallel, in
that this processing may leave separate memory traces in each
system; and retrieval is independent, in that such memory traces
can be accessed independently (depending on the retrieval test,
retrieval cues, etc). According to SPI, recollection is the process
of retrieval from the episodic system, while familiarity is the pro-
cess of retrieval from the semantic system (and the process of re-
trieval from a perceptual system is priming).

A modification of the SPI model was later proposed by
Graham et al. (2000). They proposed that there is a direct
pathway between perceptual systems and the episodic system
that ‘‘bypasses’’ the semantic system. They argued that this
pathway is necessary to explain why recognition memory can
be spared in individuals with Semantic Dementia, despite
their compromised semantic system, particularly for percep-
tually-rich but less meaningful stimuli. This pathway may
also explain how recollection could be intact despite impaired
familiarity, e.g., following a perirhinal lesion (Bowles et al.,

2007). This ‘‘multiple inputs model’’ (MIM) has since been
extended to include other systems (working and procedural
memory) and to provide a more comprehensive account
of human memory (e.g., of autobiographical memory); see
Eustache and Desgranges (2008).

Given our focus on recollection and familiarity in tests of
recognition memory for unrelated, single items, we will focus
on the three-system model in Figure 2B. We distinguish the
systems primarily on their representational content and compu-
tational principles.i We assume that the main purpose of the

FIGURE 2. Tulving’s ‘‘serial-parallel-independent’’ (SPI) model
of encoding, storage and retrieval of memories (and its extension
in the ‘‘multiple input model,’’ MIM), and its relationship to
recollection, familiarity and priming (Panel A), in contrast to the
new predictive interactive multiple memory system framework

(PIMMS) proposed here (Panel B), where encoding, storage and
retrieval are better described as ‘‘interactive-parallel-interactive,’’
and where recollection and familiarity entail interactions between
multiple memory systems.

iSince we later propose that these systems operate according to
similar principles, differing only in their representational content
(and possibly the type of representation, e.g., sparse or distrib-
uted), one could question whether these are really ‘‘memory’’
systems. We accept that they are not different systems in the
sense of operating according to separate memory principles; or
even memory systems in the sense of being specialized for
memory (since we believe plasticity is a general property of
brain regions, whose specialization depends instead on the na-
ture of the information that they code; see also Ranganath,
2010; Cowell et al., 2010). Instead, we use the phrase ‘‘multiple
memory systems’’ here simply to emphasize that different types
of memory (episodic/semantic or recollection/familiarity) arise at
different stages of interaction within a hierarchy of brain regions
(a better name for PIMMS might be ‘‘predictive interactive mul-
tiple memory signals’’). Note also that we do not further charac-
terize these memory systems in terms of different states of con-
sciousness, as does Tulving (2002). We suggest instead that the
nature of conscious states—e.g., explicit vs. implicit memory
(Graf and Schacter, 1985)—is an orthogonal issue (see also Slot-
nick, 2010), which most likely depends on interactions between
these memory systems and other neural systems, e.g., prefron-
tal-parietal networks, Dehaene et al. (2006).
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episodic system is to bind items to their episodic context. By
‘‘item,’’ we refer to visual objects or auditory tokens that are
the focus of attention (entailed, for example, by the nature of a
memory task). More precisely, an ‘‘item’’ is a hypothetical cause
of the current ‘‘stimulus’’ that impinges on the senses. By
‘‘context,’’ we refer loosely to other background information
like the spatial environment, one’s internal thoughts and emo-
tions, and possibly some form of temporal information. We
assume the episodic system is also necessary to encode single
events defined by the cooccurrence of two or more unrelated
items, for example in associative priming (e.g., Degonda et al.,
2005). The primary purpose of the semantic system, on the
other hand, is to store combinations of perceptual features that
repeatedly cooccur (in certain relationships) in the environ-
ment, and which thus define items (e.g., Murray et al., 2007;
Cowell et al., 2010). This includes binding together features
that are represented within different perceptual systems (sensory
modalities), and also ‘‘chunking’’ recurring sets of items into
larger item representations. The role of the perceptual systems
is to abstract and represent those recurring features from the
environment that define items.

To make contact with the neuroimaging data, our second
assumption is the hippocampus is a key component of the
episodic system, the perirhinal cortex is a key component of
the semantic system (though extending to anterior temporal
lobes more generally, Patterson et al., 2007) and the more
posterior cortices that are specialized for a particular sensory
modality comprise the perceptual systems (e.g., the ventral
visual pathway in occipitotemporal cortex or the auditory
pathway in lateral temporal cortex). Note that this anatomical
mapping is tentative (see Fig. 3), and each system may of
course include several other interconnected regions (e.g.,
Aggleton and Brown, 1999), not to mention many brain
regions important for other factors that affect memory, like
motivation, attention, emotionality, and organization, but
which are not considered here. Our conception thus shares
many similarities with other recent functional-neuroanatomi-
cal models of memory (e.g., Davachi, 2006; Diana et al.,
2007; Eichenbaum et al., 2007; Ranganath, 2010). However,
our novel addition is that there is not only feedforward of in-
formation during encoding (as in the SPI model), but also
feedback of information, during both encoding and retrieval.
The important consequence is that encoding and retrieval are
no longer separate processes within each memory system, but
arise from recurrent interactions between all three systems
(see later).

Thus we have implicitly defined a hierarchy, with the hippo-
campal episodic system at its apex (e.g., Mishkin et al., 1998).
The role of feedback from one system is to predict the activity
in ‘‘lower’’ systems in this hierarchy. For example, a representa-
tion of the current context (e.g., of the spatial environment,
perhaps represented in parahippocampal regions) is used by the
hippocampus to predict items that are likely to appear in that
context, i.e., to predict activity in the perirhinal cortex. The
role of the feedforward flow of information, on the other hand,
is to transmit the difference between such ‘‘top-down’’ predic-

tions and the current ‘‘bottom-up’’ input. The purpose of the
recurrent interactions throughout the systems is then to mini-
mize this so-called ‘‘prediction error’’ (Mumford, 1992; Dayan
and Hinton, 1996; Rao and Ballard, 1999). For example, the
activity of possible representations of the currently-attended
visual object in perirhinal cortex is adjusted on the basis of the
prediction error passed forward from activity reflecting possible
features in occipitotemporal cortex. Perception of a specific
object (after a few hundreds of milliseconds of such recurrent
processing) occurs when the network of systems settles into a
stable state in which the overall prediction error has been
minimized.

While the recurrent flow of activity that minimizes predic-
tion error reflects the process of perception, memory arises
from subsequent changes in synaptic connections between
systems. The nature of these synaptic changes is again such
that they reduce prediction error that arises when an item/con-
text recurs (by maximizing the ‘‘free energy’’ of the network
as a whole, Friston, 2010). Thus larger residual prediction
errors generally entail greater memory storage. Note that the
synaptic change necessary for long-term storage is assumed to
occur ‘‘offline,’’ i.e., possibly minutes to days after encoding a
stimulus.

This extension of the neurophysiological/computational
idea of ‘‘predictive coding’’ to higher-level memory systems,
particularly contextual predictions from episodic to semantic
memory systems, is why we call this framework ‘‘predictive
interactive multiple memory systems’’ (PIMMS). Furthermore,
by basing this framework on the inherent tendency of the
brain to attempt to predict its surrounding environment,
PIMMS represents a theory of human memory that relates the
psychological and neural causes of encoding and retrieval
processes to a single principle—the minimization of predic-
tion-error—while maintaining distinctions between different
types of representation that distinguish traditional multiple
memory systems.

PIMMS is not the first attempt to characterize neural/cogni-
tive processes within a predictive framework (e.g., Bar, 2007;

FIGURE 3. The relationship between brain, hypothetical mem-
ory system, and behavior in PIMMS. Routes a–f reflect different
possible causes of behavioral outcomes in recognition memory or
perceptual priming paradigms (see text).
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Buckner, 2010; though see also Bubic et al., 2010). However,
we do not use ‘‘prediction’’ here in a general sense, e.g., to
refer to anticipation/simulation of future events (cf. Buckner,
2010). Though such temporal predictions may be an impor-
tant function of episodic memory and the MTL, and a wor-
thy goal for extensions of PIMMS, our use here is restricted
to predictions about the nature of the current stimulus (per-
ception) on the basis of past experience (memory): more pre-
cisely, predictions about one type of information (e.g., of
item representations in perirhinal cortex) from a different
type of information in a higher layer (e.g., of context repre-
sentations in hippocampus). PIMMS is therefore the first
attempt to (1) describe how predictions can be framed within
an interactive, multiple memory system view, and (2) relate
these to behavioral and neuroimaging data on recognition
memory.

Behavioral Outcomes According to PIMMS

The neural determinants of behavioral phenomena depend
on the specific task demands (presumably implemented by
decision mechanisms in frontal/parietal cortices that ‘‘read-out’’
the neural activity from the relevant brain region). Thus in
tasks emphasizing visual perceptual decisions, priming will be
driven by ‘‘read-out’’ of memory-related changes in activity in
occipitotemporal cortex, even if the level of such activity is still
affected the feedback of activity from perirhinal and/or hippo-
campal regions. In tasks emphasizing contextual retrieval, on
the other hand, recollection should be driven by read-out of
multiple regions, including hippocampus, perirhinal cortex and
possibly occipitotemporal cortex.

However, the interactive nature of PIMMS makes it more
difficult to isolate different memory systems on the basis of
behavioral data alone. This is because it is difficult to distin-
guish ‘‘contamination’’ of a memory test that is supposed to
depend on only one memory system (a ‘‘process-pure’’ test,
Jacoby, 1992) from true neural interactions between two or
more memory systems. Thus the recognition memory task may
be an impure test of episodic memory either because it can be
solved by independent contributions from recollection and
familiarity (as assumed by the SPI and dual-process models
described earlier)—routes b and c in Figure 3—or because
‘‘retrieval’’ of contextual information from the episodic memory
system depends on interactions with the semantic memory
system (or perceptual systems)—routes a and b in Figure 3.
Likewise, a test of repetition priming might include a contribu-
tion from a perceptual system, in addition to independent
‘‘contamination’’ by retrieval from the episodic system—routes
e and f in Figure 3—or true interactions between perceptual
and episodic systems—routes d and f in Figure 3. This high
level of interaction may also explain why most dissociations in
behavioral performance across different memory tasks are single
dissociations, which are easily explained by scaling effects and/
or task-specific noise processes (e.g., Berry et al., 2008), (and
why the more compelling reversed associations, as defined

earlier, are actually rare, though see Richardson-Klavehn et al.,
1999).ii

fMRI Correlates of Encoding and Retrieval
Related to Familiarity and Recollection
According to PIMMS

The ‘‘on-line’’ stabilization process that occurs due to recur-
rent minimization of prediction error over the timescale of
milliseconds (e.g., after presentation of a recognition test cue)
is equivalent to the process of ‘‘retrieval’’; the ‘‘off-line’’ minimi-
zation that occurs over the longer timescale due to synaptic
change is equivalent to learning/storage. This ‘‘storage’’ stage is
not easily detectable with the typical ‘‘online’’ measures of func-
tional neuroimaging. However, the precursors of storage—the
process of memory encoding—can be examined by comparing
the online activity during presentation of a stimulus as a function
of whether that stimulus is later remembered, so-called ‘‘subse-
quent memory’’ effects (Paller and Wagner, 2002). According to
PIMMS, the increased fMRI signal often observed for such
subsequent memory effects is expected because larger residual
prediction errors (after perception/retrieval has occurred, i.e.,
when the network has stabilized) entail greater synaptic change,
which will tend to lead to more successful encoding. Thus
according to PIMMS (and unlike SPI), encoding and retrieval
are intimately related in the sense that they both depend on
the stabilization of the state of all memory systems into one in
which global prediction error is minimized on the basis of
stored information.

In general, prediction errors will be greatest when an unex-
pected stimulus is encountered; such as a novel item (leading
to large prediction error in perceptual systems, e.g., occipito-
temporal cortex, based on an inability of the semantic system
to predict the activity there) or a familiar item in a novel
context (leading to large prediction error in perirhinal cortex,
based on an inability of the episodic system to predict the
activity there). Such novelty is accepted as an important deter-
minant of memory formation, in that it makes evolutionary/
metabolic sense not to repeatedly encode information that is
already well-predicted by the brain. Below, we focus on the
more specific fMRI predictions of PIMMS for encoding and
retrieval related to familiarity and recollection in the recogni-
tion memory paradigm.

iiOne empirical observation often taken as evidence of inde-
pendent retrieval from multiple memory systems (as in SPI) is
‘‘stochastic independence’’: the failure to find significant condi-
tional probability between performance in two memory tests on
the same stimulus. However, testing for such stochastic inde-
pendence requires some care (Poldrack, 1996), and the addition
of nonmnemonic, but task-specific noise processes can dramati-
cally reduce the degree of dependence predicted by single-sys-
tem models (Berry et al., 2008). Moreover, stochastic independ-
ence has been found even between two cues within the same
memory test (Hayman and Tulving, 1989), questioning this mea-
sure as an indicator of independent memory systems.
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Given its slow dynamics, the fMRI signal reflects the integra-
tion of neural activity over time, and so PIMMS predicts
higher fMRI signals when prediction error is greatest, and the
network tends to take longer to settle into a stable state.iii The
reduction in the integrated prediction error over the few hun-
dred milliseconds after stimulus onset has already been pro-
posed as the neural mechanism of ‘‘repetition suppression’’
(Henson, 2003). Repetition suppression refers to the reduced
fMRI response for repeated vs. initial presentations of a stimu-
lus, and is sometimes accompanied by an earlier response la-
tency (Gagnepain et al., 2008a), as predicted by a shorter dura-
tion of underlying neural activity (Henson et al., 2002).
According to PIMMS, repetition suppression in, for example,
occipitotemporal cortex can be interpreted in terms of the cur-
rent visual input being more rapidly ‘‘explained away’’ because
of improved predictions for the perceptual features associated
with (recently seen) items; improvements caused by synaptic
changes triggered by the prediction error that occurred after
the initial presentation of the stimulus.

Repetition suppression in occipitotemporal brain regions has
been associated with perceptual priming. However, repetition
suppression is also found in more anterior temporal regions
like perirhinal cortex (Henson et al., 2003), which has been
traditionally associated with familiarity instead.iv Assuming an
absence of strong predictions about a studied or unstudied
item based on the current context (e.g., via feedback from
hippocampus)—and absence of a strong prediction about the
context from the studied item (see below)—then the only
difference between studied and unstudied items at test will be
the smaller prediction error fed forward from perceptual
systems because of synaptic change after study. Therefore a
smaller fMRI response is predicted in perirhinal cortex for
studied than unstudied items. Note that this greater input to
perirhinal cortex for unstudied items, in conjunction with little
difference in contextual predictions fed back from hippocampus
for studied or unstudied items, in turn entails a greater predic-
tion error fed forward to hippocampus, explaining why CRs
can increase fMRI signal relative to C2 trials in the hippocam-
pus (Fig. 1C). Indeed, the recurrent activity between perirhinal
cortex and hippocampus may entail greater functional coupling
between these regions (Fernandez and Tendolkar, 2006), in
turn leading to encoding of CRs with the test context (Buckner
et al., 2001; Stark and Okado, 2003).

The mechanisms of priming and familiarity are therefore
related, in that both depend on synaptic changes between the
semantic system and a perceptual system (differing mainly as a
consequence of synaptic change from the semantic to the per-
ceptual system in the case of priming, or from the perceptual
to the semantic system in the case of familiarity). This is con-
sistent with claims that priming and familiarity derive from the
same cause—processing fluency (Jacoby and Dallas, 1981)—
perhaps differing in practice according whether the task orients
the participant toward perceptual fluency (prediction error in
occipitotemporal cortex) or conceptual fluency (prediction error
in perirhinal cortex). However the psychological concept of a
‘‘feeling of familiarity’’ is clearly more complex than such sim-
ple distinctions, since feelings of familiarity only arise when
processing fluency is unexpected (e.g., one might process one’s
toothbrush fluently every evening, but this does not often lead
to a feeling of familiarity attributed to the past, Whittlesea and
Williams, 1998). This concept of familiarity should not
therefore be directly equated with prediction error in perirhinal
cortex; rather prediction error corresponds to fluency, whereas
familiarity is the attribution of that fluency to the past. A full
theory of the concept of familiarity is thus beyond current
considerations, and needs to include meta-memory factors such
as the expected level of fluency in a certain situation.

In the case of recollection, PIMMS states that a key function
of the hippocampus is to optimize the mutual predictability
between items (represented in perirhinal cortex) and contexts
(presumably represented in multiple regions depending on the
type of context, though here we will focus on spatial context,
and assume this is represented in parahippocampal cortex).
Mutual predictability corresponds to the joint probability of
predicting an item from a context and predicting a context
from an item. For example, even though a context may not
strongly predict a particular item, an item may predict a differ-
ent context, leading to high mutual prediction error in the hip-
pocampus. It is this hippocampal prediction error that drives
episodic encoding, i.e., synaptic change between hippocampus
and perirhinal (and parahippocampal) cortices. Therefore those
items that lead to high prediction error in hippocampus (for
reasons including the precision of their item representation and
the strength of their item-context associations; see ‘‘butcher in
office’’ example below) will tend to produce greater hippocam-
pus fMRI signal in the study phase of a recognition memory
experiment that is associated with subsequent recollection in
the test phase.

Later during the test phase, these study-induced synaptic
changes mean that the re-presentation of that item (leading to
a pattern of activity in perirhinal cortex) produces a better
reinstantiation of a representation of its study context. How-
ever, because the current context of the recognition test phase
does not match the reinstantiated context, this produces greater
prediction error in the hippocampus (and possibly the para-
hippocampal cortex)—i.e., greater fMRI signal during recollec-
tion. Conversely, if no context is predicted by the item (i.e., no
study context is reinstantiated), then there is little prediction
error in the hippocampus to minimize, hence little fMRI signal

iiiThe dynamics of the resolution of prediction error may be visi-
ble with other techniques like EEG and MEG—indeed the parie-
tal variant of the P600 that has been associated with recollec-
tion might relate to prediction error in the episodic system,
while the earlier frontal variant of the N400 that has been asso-
ciated with familiarity might relate to prediction error in the
semantic system (see Rugg and Curran, 2007; Paller et al.,
2007)—but such considerations are beyond the present remit.
ivNote that reduced activity to repeated stimuli can be found in
other brain regions too, including the hippocampus, for example
in single cell responses to scenes (Yanike et al., 2009).
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there. In a simple toy example in the Supporting Information,
we give a concrete example of how a simple two-layer version
of PIMMS that distinguishes between these context-to-item
associations and item-to-context associations can explain the
qualitatively different patterns of fMRI signal in Figure 1C.
Below, we expand the above accounts in terms of probability
densities.

A Probabilistic Perspective on PIMMS

One way to think about PIMMS is in terms of prior and
likelihood probability densities. For illustrative purposes,
imagine a single layer of neurons with tuning curves that are
topographically organized, such that similar contexts/items/fea-
tures are represented close together. Probability densities reflect-
ing interpretation of an input to that layer are then likely to be
unimodal distributions (Fig. 4). The likelihood density (the
light lines in Fig. 4) represents the data, or ‘‘evidence,’’ coming
from the system below, and the prior density (the heavy lines
in Fig. 4) corresponds to the prediction coming from the sys-

tem above. The difference between the two density functions
determines the initial prediction error. After settling into a
steady state in which this prediction error is minimized, the
activity in the semantic system, for example, can be interpreted
as the posterior probability (the dashed lines in Fig. 4) of each
item being present, given the contextual priors and perceptual
evidence. The difference between the posterior and prior
densities after the network has stabilized is then the residual
prediction error that drives subsequent learning (such that the
future prior densities are moved slightly toward the posterior
density). Thus a high residual prediction error received by the
semantic system from the perceptual system, for example, will
lead to semantic encoding, while a high residual prediction
error received by the episodic system from the semantic or
perceptual systems will lead to episodic encoding.

The prior distributions in Figure 4 can have either low
or high variance, corresponding to either precise (‘‘strong’’)
or imprecise (‘‘weak’’) predictions, respectively. The evidence
(likelihood) can be similarly precise or imprecise. In the
extreme case where there are no predictions (for example in a
completely novel context), the priors are ‘‘flat’’ (e.g., any item
is deemed equally likely to occur). In addition, a prior can also
be more or less accurate (depending on how close its central
tendency is to the central tendency of evidence). Thus an
‘‘accurate’’ contextual prior means that an expected item is pres-
ent, whereas an inaccurate prior means that an item different
from expected is present. Assuming that the fMRI signal not
only integrates neural activity over the time taken to minimize
prediction error, but also integrates activity spatially across all
neurons in the layer in Figure 4, then PIMMS predicts that
the fMRI signal will tend to increase as the integrated differ-
ence (divergence) between the prior and likelihood densities
increases.v We now show how considering priors and evidence
in terms of both their precision and accuracy can help make
testable predictions for everyday situations.

Everyday Memory and New Experimental
Predictions From PIMMS

The importance of contextual priors:
‘‘The butcher in the office’’

A probabilistic conception of PIMMS suggests some predic-
tions for the fMRI signal in perirhinal cortex (semantic system)
as a function of three different types of context: (1) a precise
and accurate prior (Fig. 4A), (2) an imprecise prior (Fig. 4B),
and (3) a precise but inaccurate prior (Fig. 4C). Because the
prediction error increases across these three contexts (i.e.,
greater divergence between prior and likelihood distributions),
the fMRI signal is expected to increase in perirhinal cortex.

FIGURE 4. Illustration of prior and likelihood probability
density functions within a layer of topographically organized
neurons comprising a memory system. The x-axis might reflect, for
example, the features in a perceptual memory system, or items in a
semantic memory system, organized by similarity along a single
dimension for illustrative purposes (in reality the distributions
might be multidimensional). The prior, from a higher layer in
PIMMS, is shown in heavy lines; the data likelihood (or
‘‘evidence’’), from a lower layer, is shown in light lines (and the
posterior probability is shown by the dashed lines). The integrated
difference between prior and evidence densities gives the initial
prediction error (PE) shown in each panel. The top row shows
cases with fixed evidence but different prior precisions; specifically:
a precise and accurate prior (Panel A, e.g., ‘‘butcher in the butch-
er’s shop’’); an imprecise prior (Panel B, e.g., ‘‘butcher on the
bus’’); or a precise but inaccurate prior (Panel C, e.g., ‘‘butcher in
one’s office’’). Panels D and E show the converse case of an impre-
cise (flat) prior together with either imprecise evidence (e.g., a
meaningless stimulus) or more precise evidence (e.g., a primed
stimulus) respectively. Panel F shows the case for low-frequency
items, where the evidence is less precise, but the prior is biased
toward other (high-frequency) items.

vIn general however, note that neural activity in PIMMS does
not need to conform to probability densities (i.e., it is not con-
strained to sum to one), in that total integrated activity within a
layer of neurons can change (e.g., due to ‘‘global’’ attentional
effects), without any necessary change in the accuracy or preci-
sion of the priors/evidence.
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This theoretical prediction may not be very surprising, but the
assumption of PIMMS that the amount of subsequent synaptic
change between perirhinal and hippocampal systems is deter-
mined by the amount of residual prediction error leads to the
further experimental prediction that the occurrence of an item
that is not expected in a context (Fig. 4C) will be better
episodically encoded than occurrence of the same item in a
context that has no strong expectancy (Fig. 4B).

An everyday example of this prediction would be a modifica-
tion of the famous ‘‘butcher on the bus’’ example. This exam-
ple is normally used to illustrate familiarity—i.e., a sense of
knowing the person but not remembering who they are—but
the question here is how well this event would be encoded
(and in the examples below, we are assuming that the butcher
is, in fact, recognized as the butcher). As a type of public trans-
port, one could argue that the context of being on a bus does
not impose strong predictions about the people one might
encounter there. In the context of the butcher’s shop however,
there is a strong prior for the butcher, while in one’s office at
work, there are strong priors for one’s work colleagues instead.vi

According to the above argument, PIMMS predicts that one
will encode the event of ‘‘butcher in the office’’ better than
‘‘butcher on the bus’’ (and both should of course be better
encoded than the fully-expected ‘‘butcher in the butcher’s
shop’’). In other words, if one later encountered the butcher in
a new town (another context with weak priors); the prediction
is that one would be more likely to recollect his previous
appearance in one’s office than his previous appearance on a
bus. Testing the above prediction of PIMMS in the laboratory
(i.e., fMRI scanner) requires imposing specific contexts and
varying the precision of associations between those contexts
and specific items. We are not aware of such an fMRI experi-
ment to date, but would predict that such an experiment
would show both increased perirhinal and hippocampal activity,
and increased perirhinal-hippocampal connectivity (see below),
for those conditions analogous to the ‘‘butcher in the office,’’
relative to those analogous to the ‘‘butcher on the bus.’’

The importance of item priors:
‘‘The recently seen butcher’’

The perspective of precision and accuracy can also help
explain the role of prior item knowledge in recognition mem-
ory. Consider the case when the (episodic) prior on the seman-
tic system is flat—i.e., no particular items are predicted in
the current context—but the evidence from lower perceptual
systems varies (Figs. 4D,E). If a completely novel stimulus is

encountered (unlike any known item), then there will be a flat
distribution of activity across neurons in the semantic system.
This is because, even if there is reasonably precise input to the
perceptual system, the lack of any unique predictions for
that combination of features (in the item-to-feature and fea-
ture-to-item connections) results in an imprecise likelihood
within the semantic system. The prediction error forwarded to
the episodic system between a flat (episodic) prior and such flat
evidence (Fig. 4D) is minimal (i.e., there is little information that
can be learned). In turn, episodic encoding of such unknown
items (in terms of weight changes between semantic and episodic
systems) is minimal. This would be analogous to the standard
‘‘butcher on the bus’’ situation: if the butcher is not identified as
such (the posterior distribution over the item layer remains
imprecise), then that situation will not be well-encoded.vii If a
stimulus is better known (or more closely resembles known
items), on the other hand, there will be a more precise data like-
lihood, greater prediction error, and hence greater episodic encod-
ing (Fig. 4E). This can explain the better recognition memory
for novel stimuli (e.g., visual squiggles) that are found to be
more ‘‘meaningful’’ (Voss and Paller, 2007).

This explanation may seem difficult to reconcile with
evidence that recollection is often better for low than high
frequency words (for review, Yonelinas, 2002), but in fact,
PIMMS can predict greater episodic encoding for low than
high frequency items if the contextual prior is assumed to be
imprecise, but not flat—specifically, slightly biased toward high
frequency items (Fig. 4F). While the evidence (input from
perceptual systems) may be less precise for low- than for high-
frequency items, the presence of some information in the
feature-to-item associations from the perceptual layer (unlike
the above case of a truly unknown stimulus) means that the
data likelihood for a low frequency-item is not flat. Impor-
tantly, its central tendency will be further removed from that of
the prior than would be the central tendency of a high-frequency
item, which can lead to a greater relative prediction error for
low-frequency items and hence a greater updating of item-
context connections (i.e., greater episodic encoding; though
effects of frequency at encoding are also likely to involve other
factors such as attention; Diana and Reder, 2006).

Lastly, consider for example the effect of repetition priming
on episodic encoding. Take an extended recognition memory

viNote that these ‘‘semanticized’’ associations between a context
(e.g., butcher’s shop) and an item (e.g., butcher) may in fact be
instantiated in direct connections between parahippocampal
and perirhinal cortex, rather than via the hippocampus (an issue
we will explore in extensions of PIMMS), but for the purpose of
the predictions for the laboratory (fMRI) experiment below, we
assume that experimentally-established context-item associa-
tions engage the hippocampus, i.e., the episodic system.

viiNote that we do not distinguish here between a representation
of a familiar face, and a representation of the identity of that
face (both are subsumed within the semantic system here). In a
more complex model with yet further levels of representation, it
might be possible to explain how a familiar face (the unrecog-
nised butcher) can be well encoded (i.e., later recollected) as
having occurred in a specific context (owing to plasticity
between that layer and a contextual layer, e.g., hippocampus),
even if that face is never identified as the butcher’s. We are also
aware that we do not address the issue of how new semantic
representations of completely novel stimuli are ever learned,
which is a difficult question that we leave for further develop-
ments of PIMMS, though is likely to entail changes in lateral
connections within a region.
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paradigm in which some of the items in the study phase are
pre-exposed in a preceding ‘‘priming phase.’’ One effect of this
prior perceptual processing of a stimulus is to ‘‘sharpen’’ the
feature-item connections, leading to a more precise distribution
of evidential input into the semantic system. In conjunction
with an uninformative contextual prior, this sharper likelihood
produces greater prediction error and in turn greater episodic
encoding (cf. Figs. 4B and E). Assuming that the context in
most laboratory experiments conforms to such a weak prior
(i.e., though a participant may become aware that only words
or pictures will be presented, the probability of any particular
exemplar of that category is normally fairly constant), this
improved episodic encoding for perceptually primed relative to
unprimed words is exactly what was found in a recent behav-
ioral experiment (Gagnepain et al., 2008b; see also Poppenk
et al., 2010).

Furthermore, the primed items are likely to have addition-
ally been associated with a different context (that of the
priming phase), which might be reinstated when they are
presented again during the main study phase. According to
PIMMS, this will in turn increase the mutual prediction error
in the hippocampus, again affecting episodic encoding of the
new study context. Returning to the above ‘‘butcher in the
office’’ example, the strength of encoding in episodic memory
will depend not only whether or not one has seen the butcher
recently (i.e., whether his face has been primed), but also
whether those occasions occurred in one or a varied set of
contexts. This trade-off between effects at perceptual, semantic
and episodic levels makes the precise patterns of local fMRI
signal in each brain region difficult to predict uniquely. This is
the kind of situation where the effective connectivity between
brain regions might be better able to dissociate familiarity and
recollection.

The importance of effective connectivity

As described above, PIMMS proposes that recollection and
familiarity depend on complex spatial and temporal interac-
tions between all three memory systems. Coupled with the
temporal and spatial integration of the fMRI signal, this means
that, while local patterns of fMRI signal within brain regions
may be predicted in certain situations, it will be difficult to
predict this pattern a priori (or uniquely) in many other situa-
tions. Nonetheless, another prediction made by PIMMS is that
the pattern of ‘‘effective connectivity’’ between brain regions
should differ during recollection and familiarity. ‘‘Effective
connectivity’’ refers to changes in the functional coupling
between regions as a consequence of an experimental manipu-
lation.viii Increased functional coupling between two regions is

generally expected when the prediction error in both regions is
high (in that greater interaction between regions is needed to
reduce that error), but can also occur when prediction error is
rapidly reduced in one region because of activity in the other:
i.e., effective connectivity from Region A to Region B is high
when activity changes in Region B are highly dependent on ac-
tivity in Region A. PIMMS predicts that familiarity will be
associated with changes in the effective connectivity between
semantic and perceptual systems, while recollection will be
associated with increased effective connectivity between epi-
sodic and semantic and/or perceptual systems (Fig. 2B). Sup-
port for the latter hypothesis comes from a recent fMRI
experiment that examined subsequent memory effects for
primed and unprimed stimuli, using the extended recognition
paradigm described above (Gagnepain et al., in press). In this
experiment, the result of complex interactions between episodic
and perceptual systems like those described above was that the
neural correlates of encoding that led to subsequent recollec-
tion were not apparent in the local pattern of fMRI signal in
the hippocampus per se, but rather in increased effective con-
nectivity between the hippocampus and a brain region (in the
lateral, superior temporal cortex) that was associated with the
perceptual priming of the auditory words.

CONCLUSIONS

We have outlined a theoretical framework—PIMMS—and
applied it to the topic of this special issue, viz. the neural
correlates of recollection and familiarity. We have focused on
evidence from fMRI on healthy human volunteers during
recognition memory paradigms. However, we believe PIMMS
can be extended to many other phenomena in memory (and
perception), such as priming and recall paradigms, and data
from methods such as lesion studies and single-cell recording,
including data from brain regions outside the MTL.

While we have used the phrase ‘‘memory systems’’ to relate
PIMMS to traditional theories of memory, we believe predic-
tion-error-driven plasticity is a general property of brain
regions, supporting both memory and perception within those
same regions. Indeed, memory encoding (storage) and percep-
tion (memory retrieval) are intimately-related in terms of ‘‘off-
line’’ vs. ‘‘on-line’’ reduction of prediction error, respectively. At
the same time, we accept that a primary reason why different
brain regions might support different types of memory is
computational (in the sense of Marr, 1971): in that it seems
advantageous, for example, to separate one system that stores
what is unique about experiences (e.g., individuation/pattern
separation)—an episodic system—from another whose primary
function is to extract regularities across experiences (e.g., gener-
alization/pattern completion, McClelland et al., 1995)—a
semantic system. Our main point is that in most everyday
situations, it also makes sense for these systems to operate
together (e.g., to both individuate an event and adjust prior
knowledge about the content of that event). This means that,

viiiMore precisely, effective connectivity refers to the causal
influence that activity in one region has on that in another
(Friston, 2002), as defined for example by an explicit network
model, and can be framed dynamically in terms of how the rate
of change of activity in one region depends on the level of ac-
tivity in another.
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unless one or more memory systems are inactive (e.g., from a
brain lesion), ‘‘on-line’’ or ‘‘performance’’ measures like behav-
ioral outcomes or fMRI will reflect a complex interplay between
each system.
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