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Abstract: Power transformers’ reliability is of the highest importance for distribution networks. A
possible failure of them can interrupt the supply to consumers, which will cause inconvenience to
them and loss of revenue for electricity companies. Additionally, depending on the type of damage,
the recovery time can vary and intensify the problems of consumers. This paper estimates the
maintenance required for distribution transformers using Artificial Intelligence (AI). This way the
condition of the equipment that is currently in use is evaluated and the time that maintenance should
be performed is known. Because actions are only carried out when necessary, this strategy promises
cost reductions over routine or time-based preventative maintenance. The suggested methodology
uses a classification predictive model to identify with high accuracy the number of transformers that
are vulnerable to failure. This was confirmed by training, testing, and validating it with actual data in
Colombia’s Cauca Department. It is clear from this experimental method that Machine Learning (ML)
methods for early detection of technical issues can help distribution system operators increase the
number of selected transformers for predictive maintenance. Additionally, these methods can also
be beneficial for customers’ satisfaction with the performance of distribution transformers, which
would enhance the highly reliable performance of such transformers. According to the prediction for
2021, 852 transformers will malfunction, 820 of which will be in rural Cauca, which is consistent with
previous failure statistics. The 10 kVA transformers will be the most vulnerable, followed by the 5
kVA and 15 kVA transformers.

Keywords: distribution system; distribution transformers; k-means clustering; machine learning;
maintenance planning; predictive maintenance

1. Introduction

Power distribution transformers are crucial parts of power system equipment because
they regulate the voltage to various levels on the system components from the generator
to the final consumer [1]. Temporary or permanent failure of a transformer interrupts the
power supply to end users, causing them problem in their work or everyday life activity.
Additionally, the market value of the transformers is high enough, and any possible
malfunction in them causes additional expenses to the Distribution System Operators
(DSOs). It is essential to prevent potential failures and aid in the early detection of issues to
prevent unplanned outages and maintain transformer operation reliability. These failures
may cause extensive outages or even blackouts, affecting both the transmission [2] and
distribution system [3]. Therefore, monitoring systems that consider the weather conditions
with an energy management system must be integrated in the distribution system [4].

In recent research works, efficient allocation strategies have been proposed that can
be also applied to power transformers. These strategies lead to the optimal target, ac-
cording to the technical state of the art, allowing assignment of a failure rate target to
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different units and then to reach the desired reliability goals for the whole system. In [5],
a guideline to determine the appropriate allocation method in relation to the chosen ap-
plication, available resources, and needed accuracy is presented. In [6], a novel method
is focused on the adequate distribution of maintenance budget to system units accord-
ing to the primary variables impacting availability and maintenance of equipment. The
manufacturing sector’s decision-making procedures are being transformed by Industry 4.0
technology [7], where important maintenance policy trends include “remote maintenance”
and the “autonomous maintenance”.

Some reasons for insulation failure in transformers are overload conditions for long
durations, overvoltages, overcurrents, and failure of cooling equipment [8]. Hence, power
utilities consider the health assessment of transformers to be a crucial factor to have a
dependable and effective operation [9]. Each unplanned power outage of a transformer
results in financial losses for both the owner of the transformer and the energy consumers
it supplies. Therefore, it is critical to identify any signals that could point to a potential
transformer defect as soon as possible. No matter where the transformer installation is
located, effective diagnostic procedure selection and accurate interpretation of the findings
of various types of measurements are required.

In [10], a single-phase transformer’s physical geometrical dimensions are modeled
using 3D finite element analysis to mimic the operation of a real transformer. The paper
in [11] describes the creation and use of a technology for the analysis of dissolved gases in oil
for the identification of defects in power transformers. The work in [12] provides an expert
system made to perform insulation diagnostics, and other researchers in [13] discuss the
state and most recent developments in several power transformer diagnostic approaches.
The purpose of [14] is to describe, analyze, and explain current physicochemical diagnostic
procedures for evaluating the insulation state in old transformers. Under on-site operating
settings, the proposed methodology in [15] enables quick, accurate, and secure partial
discharge (PD) diagnostics in a power transformer. A Fourier transform infrared (FT-IR)
spectrometer was used to construct an analytical instrument in [16], while [17] addresses
the issue of on-line dissolved gas analysis (DGA) of a power transformer. Researchers
in [18] investigate and contrast traditional and intelligent DGA interpretation techniques.

Data mining is one method used to develop fault prediction models. Data mining is a
complex technique that includes both computer science and statistics to uncover hidden,
undiscovered, and possibly important information from huge databases [19]. Data mining
comprises several techniques that can be applied on varying datasets. Classification and
regression are the two methods that are most frequently used in the development of
predictive models, according to [20]. Classification classifies each item in a data set into
one of the predefined classes or groups [21].

The major goal of maintenance is to minimize malfunctions and maintain the func-
tionality of the system. Maintenance aims to cut down failures that may happen during
regular equipment operation [22]. An unanticipated production delay, decreased effi-
ciency, and occasionally other consequences might result from equipment failure. Reactive,
preventive, predictive, and prescriptive maintenance procedures are all combined into
effective maintenance [23]. Only when a functional failure is brought on by the function’s
deterioration are repairs or replacements considered reactive maintenance. The routine
examination, alterations, cleaning, replacement of parts, and component repairs make up
preventive maintenance. To evaluate the state of the equipment, predictive maintenance
employs nonintrusive testing methods, visual inspection, performance data, and data
analysis. Through better design, installation techniques, failure analysis, and scheduling,
prescriptive maintenance improves equipment condition and rate of degradation [22]. All
maintenance strategies are analytically presented in Figure 1.
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Figure 1. Maintenance strategies.

It is feasible to suggest cost reduction, machine failure and repair reduction, and in-
ventory reduction methods through the treatment and analysis of these data [24]. Artificial
Intelligence (AI)-based methods are some of the technologies used to examine the vast
amount of data available [25]. In order to increase the power transformer’s reliability, data
communication, storage, and acquisition systems must be more reliable. Additionally,
massive amounts of monitored data from intelligent devices must be analyzed. The ability
of contemporary power systems to gather and retain enormous volumes of data from their
constituent parts is advancing [26]. For the creation of scalable, adaptable, and pluggable
data analysis and real-time self-monitoring systems for manufacturing environments, the
suggested Intelligent Data Analysis and Real-Time Supervision (IDARTS) architecture is
presented in [27].

Similar problems are tackled internationally using a variety of optimization strategies,
including neural networks optimized by Genetic Algorithm (GA) and Fuzzy c-Means [28]
or with self-adaptive strategies for diagnosing fault problems in transformers [29], with
the drawback of requiring a heavier processing burden because of the deployed neural
network. Fuzzy logic, developed by [30], is another tool for making decisions. According
to [31], there are optimization techniques, such as linear programming, that use an objective
function in order to maximize or reduce a result. Determining this objective function might
be challenging in complicated systems, where it is unclear how the variables are related.

According to data from Compania Energetica de Occidente, 1297 transformers burned
in 2016; replacement required substantial expenses and power supply disruptions [32,33].
There have been several recorded causes of burning, including atmospheric discharges,
third-party manipulation, overload, and lack of secondary distribution line trimming. By
eliminating superfluous repair tasks and fewer unexpected power outages, developing
preventive maintenance plans can help cut costs. Due to the unpredictable nature of the
dataset, this study suggests using ML methods as a classification strategy. Using these
methods, it is possible to categorize and rank maintenance needs according to business
requirements.

There have been plenty of research works on transformers predictive maintenance us-
ing various techniques. However, most of the research to date has been on the degradation
of oil alone using dissolved gas analysis (DGA) for transformer health index assessment,
whereas the integrated model for fault diagnosis using other diagnostic data has received
little attention [9,10,12–14]. Major types of faults [18,20] include high- and low-energy
arcing, partial discharge, and hot patches with a range of temperatures, but if negligent
implementation is used, there is no region for a normal aging condition that might lead
to a diagnostic of any of the faults. To avoid these issues, researchers collected different
types of data than the insulating oil parameters for the power distribution transformers
from the Compania Energetica de Occidente [32,33]. The variables were binary, continuous
and categorical, such as the keraunic-level criticality or the earth discharge density. The
authors proposed an AI technique for scheduling predictive maintenance of the power dis-
tribution transformers. The aim of this work is to propose a new methodology for the same
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prediction with higher prediction ability. With more accurate prediction of transformer
failures, the reliability of the distribution system will be higher, providing more satisfied
customers and fewer expenses for the DSO, both for maintenance or replacement of the
power distribution transformers.

The motivation for this study comes from the need to improve the reliability of
power transformers in distribution networks. Transformer failures can cause significant
disruptions to the distribution network and result in costly outages and repairs. By enabling
predictive maintenance through accurate failure prediction, distribution system operators
can reduce the probability of transformer failures and minimize the impact of any failures
that may occur. The research question of this paper was to investigate whether the proposed
model can accurately predict transformer failures and thus enable distribution system
operators to perform predictive maintenance increasing the reliability of their transformers.

The main contributions of this paper are as follows:

• Introducing a predictive maintenance approach for distribution system operators to
increase the reliability of transformers;

• Proposing a novel model for predicting transformer failures that outperforms exist-
ing models;

• Demonstrating the effectiveness of the proposed approach through a case study on an
existing distribution network.

The main advantages of using models to solve the problem of transformer failure
prediction include:

• Increased accuracy: Models can often predict transformer failures with higher accuracy
than traditional rule-based approaches.

• Early detection: Models can detect potential failures before they occur, enabling
distribution system operators to perform preventive maintenance to avoid outages
and costly repairs.

• Scalability: Models can be applied to large-scale distribution networks to identify
potential failures across many transformers simultaneously.

The structure of this work is as follows. In Section 2, the most common transformer
failures are discussed, while in Section 3 the model description is presented. The data
collection and description of the data is reviewed in Section 4. Then, in Section 5, two
different strategies for early MS detection are discussed: supervised learning using support
vector machines (SVM) and non-supervised learning using k-means clustering. In Section 6,
the proposed methodology estimates the predicted number of transformers that will present
malfunction in the future. The concluding notes are provided in the two last sections.

2. Common Transformer Failures

The failure of a power distribution transformer may happen due to internal causes
inside the transformer [34] or due to environmental conditions such as lightning. In [35], an
effort was made to use an online overvoltage monitoring system to acquire the waveform
characteristics of encroaching lightning impulses in power transformers. In another pa-
per [36], a 35 kV distribution transformer that had been struck by lightning was used as the
study object to determine the electromagnetic transient and the protective measures that
should be taken for transformers when struck by lightning. In [37], the lightning protection
of high-voltage transmission lines was approached as an optimization problem where
optimal design parameters are calculated for the lines, relating their cost with the lightning
failures’ cost, aiming to reduce or even eliminate lightning failures. Another research team
examines the developed overvoltages at the entrance of a distribution substation, due
to lightning strike to the connected line, and computes them while considering various
configurations [38]. Using the primary–secondary islanding technique for controlling the
distributed generation units during grid-connected and islanding operation due to vari-
ous causes, such as lightning, another work discusses the viability of planned islanding
operation and looks into the impact of unplanned islanding [39].
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Another factor that may affect a power transformer is extreme weather conditions.
In [40], a risk assessment is performed, proving that incorporating load management in
asset planning is a viable measure that would offset the probability of catastrophic failure
of geomagnetic disturbances. Ref. [41] covers some of these impacts on the electric power
system, specifically distribution transformers and underground cables, while [42] examines
power quality issues in the distribution system. The primary components of the distribution
transformer are the terminals of the magnetic and electrical circuits, the bushings, the tank,
the oil, the radiator, the conservator, and the breather. Any of the components listed
below that are failure-prone can cause the transformer to malfunction. Within the text
each reference to the word “burned” is related to at least one of the malfunctions that are
analytically described in 2.1 to 2.6. A typical power distribution transformer is depicted in
Figure 2.
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2.1. Core

The transformer’s core both conducts magnetic flux and gives it mechanical strength.
DC magnetization or displacement of the core steel during the transformer’s construction
are the two main causes of core failure.

2.2. Winding

The transformer’s windings, which are positioned around the core limb as cylindrical
shells, are responsible for carrying the current. Each strand of each winding is covered with
paper insulation. The windings must be able to endure mechanical forces that can induce
winding displacement in addition to dielectric stress and temperature requirements. These
forces can manifest during lightning and short circuits. Most winding failures are caused
by transient overvoltage or short circuit. The creation of hot spots, the production of copper
sludge, low oil levels, or mechanical flaws in the windings during transformer construction
are a few examples of the causes of winding short circuits. Transient overvoltage may be
caused by lightning or improper transformer connection.
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2.3. Tank

The tank physically protects the transformer core and windings and serves as a
container for the cooling oil. It must be able to tolerate environmental pressures including
solar rays, corrosive air, and high humidity. The tank is examined for leaks, corrosion, and
other signs of abusive handling. A transformer’s internal arcing can rapidly evaporate the
surrounding oil, creating a high pressure inside the transformer that can cause the tank
to break.

2.4. Solid Insulation

For electrical isolation, press board and paper formed of cellulose are employed as
solid insulation between the windings. Long chains of glucose rings make up the structure
of cellulose, which breaks down over time to form shorter chains. The average number
of these rings in the chain, or degree of polymerization (DP), serves as a proxy for the
condition of the paper [43].

The transformer insulation system’s most vulnerable point is this sturdy insulation.
Forces produced during short circuits or by the movement of the transformer can mechani-
cally damage solid insulation. CuSO4 production, hot spots produced by insufficient oil, or
overloading of the transformer can all cause faults in insulating materials.

2.5. Insulation Oil

Insulation between the windings and the desired cooling of the transformer are both
provided by the transformer oil [44]. There are two causes of cooling oil failure: either
improper oil circulation or inadequate transfer of heat to the cooling circuit. As a result,
the oil in the transformer becomes more viscous and the temperature in the cooling circuit
becomes too high. The main factor for oil contamination and the production of conducting
particles is moisture and oxygen combined with heat. As a result, the temperature inside
the transformer will increase, and a short circuit will result from the oil insulation failing.

2.6. Bushings

To connect the transformer to the power system, bushings remove the winding termi-
nals from the tank’s outside and cover them with electrical insulation. Sliding bushings
and capacitance graded bushings are the two main types of bushings employed. A center
conductor and insulation made of porcelain or epoxy surround the solid bushing. Short
circuit is the primary bushing failure mode. It can be a result of damage or insulation
material flaws. Sabotage, shipment, or flying parts from other malfunctioning equipment
can all cause damage. Damages, porcelain cracks, and faulty gaskets allow water to enter
the bushing’s insulation, which causes the bushing to fail.

3. Model Description

Computers are taught to learn from experience using ML, much as people do naturally.
ML techniques do not rely on a mathematical model to describe the data; instead, they
employ computational methods to learn information from the data. In general, AI has
been applied in a great variety of technical problems. For example, the electromagnetic
field prediction of electrostatic discharges can be conducted either by ML techniques [45]
or by developing an ANN tool [46]. A heuristic technique for lowering the frequency of
high-voltage substation outages caused by atmospheric overvoltages is presented in [47].
As the amount of data available for learning rises, they adaptively improve at performing
their tasks. Optimized and predictive maintenance strategies are evolved to improve power
availability for consumers [48]. Although SVM and k-means clustering are well-known
techniques, their efficiency varies depending on the dataset and situation at hand. As
a result, it is critical to assess their performance on an individual basis. We intended to
compare the performance of these algorithms on a specific dataset and problem in this
work, which we feel would be beneficial to people working in this area. Our findings show
that our suggested model generation strategy based on k-means clustering outperformed
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the classic SVM method on our dataset in terms of classification accuracy [49]. Other
researchers find that preventive maintenance has been proven effective in improving the
continuity of service and reliability of customers [50]. The new method has higher accuracy
and efficiency in predicting highlight dates’ load rates and is used from [51].

To justify the use of numerical modeling in this study, several previous works have
successfully employed this approach for analyzing transformer performance. For example,
in one study [52], a numerical simulation was used to investigate the effects of different
operating conditions on transformer oil temperature and winding hot spot temperature.
Another study [53] utilized a finite element method to analyze the effect of thermal aging
on the insulation properties of transformers. Additionally, a paper by [54] presented a
numerical model for predicting the partial discharge inception voltage of power transform-
ers. These previous works demonstrate the effectiveness and validity of using numerical
modeling in transformer performance analysis, which justifies its use in this paper as well.
Overall, the numerical modeling used in this study involves the development and training
of an Artificial Neural Network (ANN) model using historical maintenance records and
operational parameters, as well as the evaluation of the model’s performance using various
performance metrics.

There are several ML algorithms that can be used for predictive maintenance of
transformers. Some examples include:

1. Regression algorithms: Linear and non-linear regression algorithms can be used to
predict when a transformer component is likely to fail using multiclass classifica-
tion [55] or ANN [56]. These algorithms can analyze historical data from sensors and
other sources to identify patterns that indicate a component is nearing the end of its
useful life.

2. Random Forest: Random Forest is an ensemble ML algorithm that can be used to
predict the remaining useful life of transformer components [57]. It creates a set
of decision trees and uses the majority vote of these decision trees to predict the
outcome [58].

3. Gradient Boosting: The Gradient Boosting algorithm uses an ensemble of weak
models, such as decision trees, to predict the remaining useful life of transformer
components [59]. It works by iteratively adding new models to the ensemble and
adjusting the weights of the previous models [60].

4. Deep Learning: Deep learning algorithms, such as convolutional neural networks
and recurrent neural networks, can be used to analyze sensor data and predict when
a transformer component is likely to fail [61]. These algorithms can learn to detect
patterns in the data that are not visible to humans [62].

5. Anomaly Detection: Unsupervised ML algorithms such as One-Class SVM, Isolation
Forest, and Autoencoder can be used to detect anomalies in the data, indicating a
failure [63]. These algorithms can detect patterns in the data that are not visible
to humans.

6. Predictive modeling: Predictive modeling algorithms such as the Markov Chain
Monte Carlo (MCMC) [64] and Bayesian networks [65] can be used to predict the
remaining useful life of transformer components. These algorithms use probabilistic
models to estimate the likelihood of a failure occurring [66].

Overall, using ML algorithms for predictive maintenance of transformers can help to
improve the efficiency, effectiveness, and reliability of the maintenance process. By analyz-
ing data from sensors and other sources, ML algorithms can predict when maintenance
is needed, optimize maintenance schedules, and identify the root cause of problems, thus
improving the overall performance of the transformer model.

We have included these algorithms in the methodology section to provide a com-
prehensive overview of the different methods available for predictive maintenance of
transformers. The inclusion of these methods may serve as a basis for future research and
comparison with other approaches in the field.
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In this paper, we used the k-means clustering algorithm to group transformers based
on their behavior patterns and characteristics. We then used Support Vector Machine
(SVM) as a machine learning algorithm to develop a predictive model to identify which
transformers are at risk of failure. The SVM algorithm was trained on clustered data to
predict the probability of failure for each transformer. We also evaluated the performance
of the predictive model using metrics such as accuracy, precision, and recall. The results
showed that the predictive model was able to identify the transformers at risk of failure
with high accuracy and precision.

The use of machine learning algorithms such as k-means clustering and SVM can
significantly improve the reliability and efficiency of transformer maintenance, reducing
costs and minimizing outages.

k-means clustering is an unsupervised ML algorithm that can be used for the predic-
tive maintenance of transformers. The general process for using k-means clustering for
predictive transformer maintenance is as follows:

1. Data collection: Collect data from sensors and other sources that can be used to train
the k-means clustering algorithm. This data could include information about the
transformer’s operating conditions, such as temperature, voltage, and current, as well
as information about the transformer’s components, such as the age and condition of
the components. Additionally, these data could include the transformer’s type, the
location of its installation, the environmental conditions to which it is exposed, etc.

2. Data preprocessing: Prepare the data for use in the k-means clustering algorithm
by cleaning and preprocessing them. This includes removing missing or duplicate
data, normalizing the data, and transforming them into a format that can be used by
the algorithm.

3. Feature selection: Select the features that will be used by the k-means clustering
algorithm to group similar transformer components together. This includes selecting a
subset of the available features or creating new features by combining or transforming
existing features.

4. Clustering: Apply the k-means clustering algorithm to the preprocessed data to group
similar transformer components together. The algorithm partitions the data into k
clusters, where k is the number of clusters chosen.

5. Cluster evaluation: Evaluate the performance of the k-means clustering algorithm.
This can be performed by measuring the quality of the clusters, such as by using the
silhouette score, or by comparing the clusters to the labeled data if available.

6. Model deployment: Once the model has been trained and evaluated, it is deployed for
use in the predictive maintenance process. This includes using the clusters to identify
groups of similar transformer components that are likely to fail at the same time, and
scheduling maintenance accordingly.

7. Model retraining: Retrain the model over time to account for new data and changes
in the transformer’s operating conditions. This helps to improve the accuracy of the
predictions over time.

We used the k-means clustering algorithm in methodology for predictive transformer
maintenance. The k-means clustering algorithm is used to group transformers based on
their behavior patterns and characteristics. We used k-means clustering to identify groups
of transformers that share similar characteristics, such as number of users, type of clients
and electric power not supplied.

The k-means algorithm is an iterative process that involves the following steps:

• Initialization: Randomly select k data points as initial centroids.
• Assignment: Assign each data point to the nearest centroid.
• Recalculation: Recalculate the centroid of each cluster.
• Iteration: Repeat steps 2 and 3 until convergence.

In the case of our methodology, we initialized k (the number of clusters) based on the
elbow method to find the optimal number of clusters. We then assigned each transformer



Electronics 2023, 12, 1356 9 of 23

to the nearest centroid and recalculated the centroid of each cluster. The process continued
until the algorithm converged.

The k-means clustering algorithm helps us to identify which transformers are more
likely to fail and which ones are performing well by grouping them based on their charac-
teristics and behavior patterns. This information is then used to develop a predictive model
that can identify which transformers are at risk of failure and require maintenance, allowing
for proactive maintenance to prevent downtime and extend the life of the transformers.

Figure 3 displays the flowchart for the proposed model. For various values of K,
Figure 3 depicts the average clustering accuracy of the suggested model creation technique
utilizing k-means clustering (the number of clusters). The accuracy rose with rising K
values, which is consistent with the iterative refining process of the k-means algorithm.
Initial centroids are picked at random in stages 1–3 of the process, and data points are
allocated to the nearest centroid. Steps 4–6 update the centroids to represent the mean
of the data points allocated to each cluster. The method iterates through stages 4–6 until
convergence is obtained in step 7. The findings in Figure 3 indicate that our suggested
strategy of building models using k-means clustering can improve classification accuracy.
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Overall, using k-means clustering for predictive maintenance of transformers can
help to improve the efficiency, effectiveness, and reliability of the maintenance process. By
grouping similar transformer components together, the k-means clustering algorithm can
help to identify groups of components that are likely to fail at the same time and schedule
maintenance accordingly, thus improving the overall performance of the transformer model.

SVMs are a type of supervised ML algorithm used for classification and regression
tasks. The goal of an SVM is to find a hyperplane that separates the data into different
classes, or in the case of regression, to find the best hyperplane that fits the data.

The basic idea behind an SVM is to find a hyperplane that maximally separates the
data into different classes. The equation of this hyperplane is represented as:

w·x + b = 0 (1)

where w represents the weights of the features, x represents the input features, and b
represents the bias term. The weights and bias are learned during the training process.
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SVMs also have a concept of margin, which is the distance between the hyperplane
and the closest data points from each class, called support vectors. The objective of an SVM
is to find the hyperplane with the largest margin.

The optimization problem for an SVM can be represented as:

minimize
(

1
2

)
·‖w‖2 (2)

Subject to:
y·(w·x + b) ≥ 1 for i = 1, 2, . . . , n (3)

where n is the number of data points, y is the class label (−1 or 1), and ‖w‖ is the norm of
the weights.

The above optimization problem is a quadratic programming problem and can be
solved using optimization techniques such as Sequential Minimal Optimization (SMO).

In the case of non-linearly separable data, SVMs use the kernel trick to map the data
into a higher dimensional space where the data become linearly separable. The kernel
function is represented as:

K(x, y) = ϕ(x)·ϕ(y) (4)

where ϕ is a mapping function that maps the input data into a higher dimensional space,
and K(x, y) is the dot product of the mapped data. Some commonly used kernel functions
are the linear, polynomial, and radial basis function (RBF) kernels.

k-means clustering is an unsupervised ML algorithm that is used to group similar
data points together into clusters. The goal is to partition the data into k clusters, where k
is the number of clusters chosen.

The basic idea behind k-means clustering is to find k cluster centroids, which are
the mean value of the data points in each cluster. These centroids are used to define the
boundaries of each cluster. The algorithm iteratively assigns each data point to the cluster
whose centroid is closest to it, and then updates the centroids based on the new assignment
of points.

The process of k-means can be formalized in the following steps:

1. Initialize k centroids randomly: The k centroids are initialized randomly from the
data points.

2. Assign each data point to the nearest centroid: Each data point is assigned to the
cluster whose centroid is closest to it. This can be completed by calculating the
Euclidean distance between the data point and each centroid.

3. Update the centroids: The centroid of each cluster is updated by taking the mean of
all the data points assigned to that cluster.

4. Repeat steps 2 and 3 until the centroids do not change anymore or a stopping criterion
is reached.

The algorithm can be mathematically represented by the following:

1. Initially, k centroids are chosen randomly from the data points. Let the k centroids be
represented by c1, c2, . . . , ck

2. Assign each data point x to the closest centroid, which can be represented by:

argmin(1 ≤ j ≤ k)‖x− ci‖2 (5)

3. Update the centroids by taking the mean of all the data points assigned to that cluster.

cj =

(
1
ni

)
·

1

∑
j

x(j) (6)

4. Repeat steps 2 and 3 until the centroids do not change anymore or a stopping criterion
is reached.
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Figure 4 depicts a thorough block diagram presenting the suggested methodology’s
flow and the interconnections between its many components.
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As machine learning techniques become more prevalent in various fields, the evalua-
tion and validation of these techniques have become increasingly important. Performance
metrics such as root-mean-square error (RMSE), mean absolute error (MAE), and root-
mean-square deviation (RMSD) are commonly used to evaluate the accuracy of machine
learning models [67].

Furthermore, the use of machine learning techniques, such as ANNs, has been found
to be effective in predicting the remaining useful life (RUL) of various engineering systems,
including transformers [68]. In addition, previous studies have demonstrated the effec-
tiveness of ANNs [69] in predicting transformer faults and estimating the remaining life
of transformers [70]. Our proposed AI-based model is based on an ANN approach and
is tailored to the specific problem of determining the maintenance factor for distribution
transformers. The presented approach in this work is well-justified and will provide a
significant improvement over existing methods.

This paper proposes a methodology that uses k-means clustering and Support Vector
Machine (SVM) algorithms for predictive maintenance of transformers. Its main advan-
tages are:

• Non-linear relationships: The SVM algorithm can capture non-linear relationships
between the input features and the output labels, which is useful when dealing with
complex systems like transformers.

• Scalability: k-means clustering is computationally efficient and can handle large
datasets, making it suitable for industrial applications with large amounts of data.

• Interpretable results: k-means clustering provides interpretable results that can be
visualized in the form of clusters, which can help engineers understand the underlying
patterns in the data.

Despite the above-mentioned advantages, the proposed methodology also has some
limitations compared to other methods. These main disadvantages are as follows:

• Feature engineering: The performance of the SVM algorithm is highly dependent on
the quality and relevance of the input features. This requires significant effort and
expertise in feature engineering, which may not be available in all applications.

• Sensitivity to hyperparameters: Both k-means clustering and SVM require tuning
of hyperparameters, such as the number of clusters and regularization parameter,
respectively. The performance of the model can be sensitive to these hyperparameters,
and selecting optimal values requires careful experimentation.

• Limited to labeled data: The SVM algorithm is a supervised learning method and
requires labeled data for training. This can be a limitation in applications where
labeled data are scarce or expensive to obtain.

The specific needs for a custom initialization method depend on the specific character-
istics of the proposed model, such as the number and type of layers, the activation functions
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used, and the size of the input and output layers. In addition, the specific data used to
train the model also influence the choice of initialization method. For example, if a section
of the data is highly unbalanced or noisy, a custom initialization method is designed to
help address these issues. Ultimately, the specific needs for a custom initialization method
depend on the details of the model and data used in the study.

Some potential disadvantages of using a customized initialization method include the
increased complexity and time required to develop and implement the method, as well as
the possibility that the customized method may not generalize well to other datasets or
models. Additionally, if the customized method is not carefully designed or implemented,
it may lead to over fitting or under fitting of the model, which can negatively impact its
performance. It is also possible that the customized method may not result in significant
improvements over standard initialization methods, in which case the additional effort and
complexity may not be justified.

4. Distribution Transformers Data at Cauca Department of Colombia

In the current work, AI techniques have been applied on open access data [15] that
other researchers have similarly used to predict future malfunctions of the distribution
transformers, helping them to create their maintenance schedule. A total of 15,873 distribu-
tion transformers of the Cauca Departments of Colombia are included in the data chosen
for the analysis presented in this work [71].

These distribution transformers located in the rural and urban areas of the 42 munici-
palities are connected to the operator’s network at voltage levels of 13.2 kV and 34.5 kV.
There are 13,112 transformers in the urban areas and 2761 in the rural areas. In Table 1,
the names and classification of variables for the dataset of distribution transformers of the
Cauca Departments of Colombia are presented. There are 16 variables (binary, continuous,
and categorical), which pertain to the years 2019 and 2020. Next to each variable, a short
description follows. Many variables, such as temperature during the transformer’s opera-
tion, the level of oil, and overloads, could not be measured, but are nonetheless crucial for
classification. Additionally, several transformers could malfunction for unknown reasons,
such as electrical discharges or wrong connections.

The technical records of 15,873 transformers were used, out of which 2761 belong to ur-
ban areas, and 13,112 to residential customers. The raw data include history, containing the
reported terms for the transformers and transformers’ technical data: rated power, number
of customers connecting, type of installation, etc. The analysis data used in this paper’s
ML classifiers (SVM and k-means clustering) include the following: the top 16 reported
technical concerns for the problematic transformers population from the raw data, which
are location, rated power, self-protection, average and maximum earth discharge density,
burning rate, keraunic level criticality, detachable connectors, type of clients, number of
users, electric power not supplied, type of installation, air network, circuit queue, length of
network, and burned transformers.

The rated power of the transformers range is between 5 to 2000 kVA, as shown in
Table 2. Also, in Figure 5, both the number of transformers for each rated power and the
number of the burned transformers for the years 2019 and 202 are presented.
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Table 1. Names and classification of variables for the dataset of distribution transformers of the
Cauca Departments of Colombia.

Name of Variable

Type of Variable

Short DescriptionBinary

C
on

ti
nu

ou
s

C
at

e-
go

ri
ca

l

1 0

Location Urban area Rural area - - Location of the transformer

Power [kVA] - - X - Transformer capacity

Self-protection Self-protected Not self-protected - - Inbuilt switch for low voltage (LV)
protection in the transformer or not

Average earth
discharge density
[Rays/km2 year]

- - X - Typical annual rate of lightning strikes
per km2

Maximum earth discharge
density

[Rays/km2 year]
- - X - The annual average for lightning

strikes per km2

Burning rate - - X - The quantity of component failures per
unit of recording time.

Keraunic level criticality High risk Low risk - -
Variable product of a prior study

conducted by other parties on behalf of
the distribution company

Detachable connectors
There are

detachable
connectors

No detachable
connectors - - Removable medium voltage connectors

for easy repair of the transformer

Type of clients - - X Residential, commercial, or industrial
consumers

Number of users - - X - Number of clients the particular
transformer is supplying

Electric power not supplied
[kWh] - - X - The energy that the DSO ceases to sell

when the transformer is out of service.

Installation type - - X

Indicates whether the installed
transformer is in a cabin, in a H-type

structure, if it has a macro with an
anti-fraud net, if it is a pad mounted

type, if it is in a simple pole-type
structure, an anti-fraud net pole, a

metal tower or others

Air network Aerial type Non aerial type - - Identifies if the LV network of the
transformers is of the aerial type or not

Circuit queue Position in the
terminal

Position in a
passing point - -

Shows whether the transformer is
situated at a circuit’s terminal point
within the medium voltage network

Length of network [km] - - X - Length of the distribution lines that the
transformer feeds

Burned transformers Burned Not burned - - Shows whether the transformer has
burned this year
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Table 2. Transformer data and number of burned transformers for 2019 and 2020.

Rated Power [kVA] Number of Transformers Damaged Transformers in 2019 Damaged Transformers in 2020

5 1571 23 52

10 3511 423 296

15 3981 252 118

20 13 0 10

25 2651 58 87

30 322 4 6

37.5 1057 17 29

45 686 8 14

50 305 2 2

75 1134 1 11

100 4 0 0

112.5 576 1 4

125 4 3 0

150 27 0 0

200 2 0 0

225 14 0 0

250 1 0 0

300 5 0 0

400 1 0 0

500 1 0 0

630 3 0 0

1000 1 0 0

1125 1 0 0

1250 1 0 0

2000 1 0 0

Total 15,873 792 629

ML algorithms are divided into two categories: controlled training and uncontrolled
training. A collection of training data is utilized to train the algorithm for controlled training,
which enables it to identify the earliest indications of technical problems, follow their
progression, and create a predictive model that can help identify whether the transformer is
at risk of malfunction. An effort was made to cluster the data for unsupervised learning so
that transformers at danger and transformers that are not at risk belong to different clusters.

The extracted data frequently contain gaps, omissions, confusing information, noise
interruptions, and other issues that have an impact on how well the prediction models
function. Therefore, to prevent complications in the future, they must be pre-processed
and validated. It could take a while and be tedious to extract variables from the data of the
transformers. However, the necessary variables from the raw data using statistical analysis
software have been extracted, and then the data that will be the most useful for our needs
have been formatted. Transformer values that were missing were handled by deleting the
associated technical record. Each reported issue for the technical history has been made
to constitute a separate column after the data have been transformed to one record per
transformer. A value of “1” is used to indicate the presence of a documented technical issue
for the technical history and “−1” to indicate its absence.



Electronics 2023, 12, 1356 15 of 23

Electronics 2023, 12, x FOR PEER REVIEW 14 of 23 
 

 

30 322 4 6 

37.5 1057 17 29 

45 686 8 14 

50 305 2 2 

75 1134 1 11 

100 4 0 0 

112.5 576 1 4 

125 4 3 0 

150 27 0 0 

200 2 0 0 

225 14 0 0 

250 1 0 0 

300 5 0 0 

400 1 0 0 

500 1 0 0 

630 3 0 0 

1000 1 0 0 

1125 1 0 0 

1250 1 0 0 

2000 1 0 0 

Total 15,873 792 629 

 

Figure 5. Transformer data and number of burned transformers for 2019 and 2020. 

ML algorithms are divided into two categories: controlled training and uncontrolled 

training. A collection of training data is utilized to train the algorithm for controlled train-

ing, which enables it to identify the earliest indications of technical problems, follow their 

progression, and create a predictive model that can help identify whether the transformer 

is at risk of malfunction. An effort was made to cluster the data for unsupervised learning 

so that transformers at danger and transformers that are not at risk belong to different 

clusters. 

Figure 5. Transformer data and number of burned transformers for 2019 and 2020.

5. AI Methods for Early Transformer Issue Detection

In this study, we aim to investigate the use of AI methods, such as natural language
processing (NLP) and ML, to automatically analyze technical trial eligibility databases
and electronic technical data bases of DSOs, find matches between active technical trials
and suitable transformers, and recommend these matches to DSOs and investigators for
a particular prediction of transformer failure. We use the gathered dataset to apply two
well-known techniques—SVM and k-means clustering—to analyze the data to enhance the
maintenance process for transformers and ensure that customers have a reliable supply
of energy.

The paper proposes a methodology for predictive maintenance of transformers using
Support Vector Machine (SVM) algorithms and k-means clustering. The methodology
consists of several steps. Firstly, we preprocess the data by selecting relevant features
and normalizing the data. The relevant features include operational and environmental
variables such as nominal power of the transformer, earth discharge density and type
of network (aerial or non-aerial type), which have been found to affect the health of
transformers. Normalization is performed to ensure that all variables have the same scale
and range.

Then, k-means clustering is applied to group the data into clusters based on similarity
in the feature space. The number of clusters is determined using the elbow method, which
selects the number of clusters that minimizes the within-cluster sum of squares. The
resulting clusters are labeled and used as input for the SVM algorithm. In the SVM step, a
binary classification model is trained to predict the health state of each transformer based
on the labeled clusters. The model is trained using a labeled dataset, which consists of
historical data on transformer health and corresponding cluster labels. The SVM algorithm
uses a non-linear kernel function to capture non-linear relationships between the input
features and the output labels.

Finally, the performance of the proposed methodology is evaluated using various
metrics such as accuracy, precision, recall. The evaluation is carried out on a test dataset
that was not used during the training phase to ensure the generalizability of the model.
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5.1. Support Vector Machines (SVMs)

SVM is a supervised learning method that analyzes the data used in regression and
classification studies. A label, with numbers +1 belonging to the appropriate class and −1
not, is used when there are two classes being classified. In our study, we used two different
methods to select the features for the SVM and k-means models. For the SVM model,
we used a method called sequential forward feature selection, which selects the most
informative features by iteratively adding one feature at a time based on their performance
on a cross-validation set. This process continues until the desired number of features is
reached. For the k-means model, we used a method called mutual information-based
feature selection, which selects the features that have the highest mutual information with
the target variable (in our case, the class label) while minimizing the redundancy among
the selected features. So, even though the same dataset was used to train both models, the
features used for each model were selected using different methods. Transformers in our
situation are classified as either +1, meaning with technical issues, or −1, meaning without
technical concerns.

The dataset is split into two subsets: 14,873 transformers for training and 1000 trans-
formers for testing. The Matlab ML toolbox is used to produce the results. Figure 6 displays
the training’s outcomes for years 2019 and 2020, respectively. Although different supervised
learning models are employed, the SVM provides the best accuracy of 95.60% and 96.93%
for the years 2019 and 2020, respectively, as they are depicted in Figure 6. Successfully and
unsuccessfully learned points are shown in Figure 6 as well. It is obvious that 104 (year
2019) and 102 (year 2020) transformers (points) are unsuccessfully taught for class −1,
whereas 551 (year 2019) and 355 (year 2020) transformers (points) are poorly learned for
class +1.
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All 1000 transformers utilized for testing are appropriately categorized according to
the obtained classifier. In addition, we tested the SVM learning while eliminating some
features. The accuracy of learning increased to 96.74% and 97.25% for the years 2019 and
2020, respectively, when the following features were removed: location, power, removable
connectors, electric power not supplied, air network, and circuit queue. We can infer from
the foregoing that the reported terms under consideration should not have a significant
impact on the transformers’ technical problems. Additionally, the learning accuracy is
higher than this presented in [33], in which it was 95.43% for 2019 and 90.62% for 2020.
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5.2. k-Means Clustering

In unsupervised learning, a hidden structure in the data is found when the correct
response is not known up front. A natural grouping of the data is produced by the
clustering technique, and items from the same cluster have a higher degree of similarity
than those from other clusters. In k-means clustering, a “prototype” data point serves as a
representation for each cluster. Figure 7 depicts the clustering in clusters 2, 3, and 4. The
clusters’ average value indicates that two clusters are the ideal quantity. It is appropriate
given that there are just two classes to which the transformers belong. The first one is for
transformers that have technical problems, and the second one is for transformers that do
not. The intention of this work is to explain that the performance of the proposed model
construction method using k-means clustering was evaluated using the leave-one-out
cross-validation method. In this method, each data point is left out in turn, and the model
is trained using the remaining data points. The left-out data point is then classified using
the trained model, and the process is repeated for each data point. The overall accuracy of
the model is calculated as the proportion of correctly classified data points. This evaluation
method allows us to assess the robustness and generalizability of the proposed model
construction method.
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Our proposed approach is based on a customized initialization method for the parame-
ters of the model. The main advantage of this method is that it takes into account the specific
needs of our problem and optimizes the initial values of the parameters accordingly. To
implement this method, we first analyze the characteristics of the data and the architecture
of the model. We then design a customized initialization strategy that takes into account
the specific needs of our problem. More specifically, we start by defining the activation
functions and the number of hidden layers for the neural network. Next, we initialize the
weight and bias parameters of each layer based on a customized initialization method. We
then train the model using back propagation with a suitable loss function. Our customized
initialization method is based on a combination of heuristics and domain knowledge.

The paper also discusses the practical implications of the proposed methodology
for distribution system operators. By using predictive maintenance, operators can detect
potential failures in transformers before they occur, allowing for timely maintenance and
repair. This can lead to cost savings by reducing unplanned downtime and extending the
lifespan of transformers.

In summary, our proposed approach is based on a customized initialization method
that takes into account the specific needs of our problem. By analyzing the characteris-
tics of the data and the architecture of the model, we design a customized initialization
strategy that optimizes the initial values of the parameters. While our method requires
significant domain expertise and experimentation, we believe that it offers several ad-
vantages over standard initialization methods for deep learning models. The proposed
methodology offers a promising approach to predictive maintenance of transformers in the
electrical power industry and has the potential to improve the reliability and efficiency of
distribution systems.
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6. Maintenance Scheduling for 2021

According to the prediction for 2021, using the previously presented methodology,
there will be 852 transformers that will present malfunction, 820 of which will be in Cauca’s
rural areas, which is consistent with past failure statistics. From Figure 8 and the relevant
Table 3, it is obvious that the 10 kVA transformers remain a priority at risk, with 5 kVA
and 15 kVA following. Additionally, in Table 3, the percentage results of the failures in
transformers, related to the total transformer number (on each rated power), are presented
as well. It is obvious that the higher the absolute number of the installed transformers (per
rated power) the higher the percentage failure for the specific rated power. The residential
sector receives the majority of the transformers’ (96.2%) energy, making its consumers
the most exposed to and impacted by the frequency of unexpected power outages. For
transformers with a rated power of 100 kVA and between 125 kVA and 2000 kVA, there is no
predicted transformer that will present malfunction. The impact of failure in a high-rated
power transformer in comparison to a low one has some significant differences. First of all,
in a high-rated power transformer, the number of non-power-supplied customers is greater,
and consequently, the profit losses of the power companies are also higher. Additionally,
the maintenance cost and replacement cost of a high-rated power transformer are also
higher than a low-rated one.

As can be seen in Figure 8 and Table 3, the proposed methodology is compared to the
methodology proposed in [33]. The methodology proposed in the current work predicts
in general in every transformer’s power, rating a smaller number of transformers that
may present problems in comparison to [33]. The total predicted burned transformers for
the methodology presented in [33] is 910, while for the AI methodology presented in this
work, the number is 852. This difference of 58 transformers is not negligible. Taking into
consideration that the proposed methodology presents a higher accuracy rate than that
in [33], it has a positive impact on the maintenance of these transformers. The maintenance
of the transformers that may be burned is more expensive than periodic maintenance with
fewer spare parts that must be replaced and with fewer working hours. Consequently, the
proposed methodology saves a considerable amount of money to the DSO that may be
used in investments.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 23 
 

 

outages. For transformers with a rated power of 100 kVA and between 125 kVA and 2000 

kVA, there is no predicted transformer that will present malfunction. The impact of failure 

in a high-rated power transformer in comparison to a low one has some significant differ-

ences. First of all, in a high-rated power transformer, the number of non-power-supplied 

customers is greater, and consequently, the profit losses of the power companies are also 

higher. Additionally, the maintenance cost and replacement cost of a high-rated power 

transformer are also higher than a low-rated one. 

As can be seen in Figure 8 and Table 3, the proposed methodology is compared to 

the methodology proposed in [33]. The methodology proposed in the current work pre-

dicts in general in every transformer’s power, rating a smaller number of transformers 

that may present problems in comparison to [33]. The total predicted burned transformers 

for the methodology presented in [33] is 910, while for the AI methodology presented in 

this work, the number is 852. This difference of 58 transformers is not negligible. Taking 

into consideration that the proposed methodology presents a higher accuracy rate than 

that in [33], it has a positive impact on the maintenance of these transformers. The mainte-

nance of the transformers that may be burned is more expensive than periodic mainte-

nance with fewer spare parts that must be replaced and with fewer working hours. Con-

sequently, the proposed methodology saves a considerable amount of money to the DSO 

that may be used in investments. 

 

Figure 8. Predicted burned transformers during 2021 for both the methodology in [33] and the pro-

posed methodology. 

  

Figure 8. Predicted burned transformers during 2021 for both the methodology in [33] and the
proposed methodology.



Electronics 2023, 12, 1356 19 of 23

Table 3. Transformer data and predicted burned transformers during 2021 for both the methodology
in [33] and the proposed methodology.

Rated Power [kVA] Number of Transformers
Number of Predicted Burned Transformers

Methodology in [33] Proposed Methodology

[%] * [%] *

5 1571 148 0.93 135 0.85

10 3511 431 2.72 400 2.52

15 3981 152 0.96 140 0.88

20 13 7 0.04 8 0.05

25 2651 95 0.60 92 0.58

30 322 5 0.03 4 0.03

37.5 1057 35 0.22 33 0.21

45 686 15 0.09 16 0.10

50 305 2 0.01 3 0.02

75 1134 12 0.08 14 0.09

100 4 0 0.00 0 0.00

112.5 576 8 0.05 7 0.04

125 4 0 0.00 0 0.00

150 27 0 0.00 0 0.00

200 2 0 0.00 0 0.00

225 14 0 0.00 0 0.00

250 1 0 0.00 0 0.00

300 5 0 0.00 0 0.00

400 1 0 0.00 0 0.00

500 1 0 0.00 0 0.00

630 3 0 0.00 0 0.00

1000 1 0 0.00 0 0.00

1125 1 0 0.00 0 0.00

1250 1 0 0.00 0 0.00

2000 1 0 0.00 0 0.00

Total 15,873 910 5.73 852 5.37

*: Expresses the percentage of the transformer of the specific rated power to the total number of the installed
transformers, which is 15,873.

7. Discussion and Limitations

Since power transformers are the foundation of the power system, which is a complex
network, their efficient performance is essential to the system’s dependable and secure
operation. They are highly expensive and take a lot of time to maintain and replace if they
are damaged because they are critical components. The biggest issues with power trans-
formers are the various flaws that develop in them. These devices are subject to mechanical,
thermal, and electrical stresses because of fluctuating loading and weather conditions. In
the worst-case scenario, these shifting variables could cause several defects that would
create abnormal circumstances and cascade failure. Transformers can be maintained in a
variety of methods, including predictive, corrective, and preventative maintenance.

There are certain limitations in the proposed methodology. First of all, for the power
transformers that break down, their related data are sparse, and traditional trained models
perform poorly since there are not enough characteristics that can be learned. Additionally,
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the available data were for just two years (2019 and 2020). Although important for clas-
sification, several factors, such as the temperature during transformer operation, the oil
level, and overloads, could not be measured and many transformers may also fail for unex-
plained reasons with no correlation with those mentioned in this work. Modern predictive
maintenance tools should use a real-time monitoring system that analyzes gases using a
variety of DGA techniques, collecting temperature from the transformer’s winding and the
environment, collecting data from the relays that protect the transformer for various threats
(such as overvoltage, over frequency, overcurrent, etc.), and performing risk analysis by
comparing measured data to historical databases. In the future, the use of such a system
will help to improve prediction in transformer failure, saving costs for the DSOs.

From the current work, the following conclusions can be obtained:
(a) The majority of fault detection techniques focus on evaluating a single failure;

however, many failures may occur simultaneously and are advised to be further studied.
(b) Other key and essential techniques for diagnosing transformer faults include

acoustic signal processing and image identification, which have garnered considerable
interest from power companies, academic institutions, and equipment operating units.

(c) The accuracy of prediction may be greatly increased by using the mined association
rules between dissolved gas content and additional data (such as oil temperature, load,
and winding temperature).

(d) As previously described, the suggested methodology uses a classification predictive
model to identify the minimum distribution transformers that are vulnerable to failure.
This methodology provides better accuracy than in [33] for the years 2019 and 2020 as they
are depicted in Figure 6. Consequently, it will also present better prediction results for 2021
than the other researchers described in [33].

Consequently, (a), (b), and (c) need further study. Future work should collate these
additional data, which must be gathered by a DSO on which the proposed methodology
will be applied.

8. Conclusions

The recommended methodology employs a classification predictive model to identify
with minimal error the number of transformers in the Cauca Department of Colombia that
are very susceptible to failure. This was verified by training, testing, and validation using
real data in Cauca. In accordance with prior failure statistics, the prognosis for 2021 states
that 852 transformers would malfunction, 820 of which will be in rural Cauca. The 10 kVA
transformers, and then the 5 kVA and 15 kVA transformers, will be the most at risk.

The reported results for application of ML methods to early detection of technical
issues not only can help distribution system operator to increase the number of selected
transformers for predictive maintenance but also can be beneficial for customer satisfaction
to improve the amount of delivered energy. Early recognition and accurate diagnosis of
technical issues are crucial to delay expensive problems as much as possible and improve
the reliability of the network. Due to predictive maintenance, the mean time between
failures improves the performance of distribution power transformers and it increases the
expected lifetime of the transformers, a fact that both delays the transformer’s replacement
for some more years and saves funds for the distribution system operators.

The results illustrate that the use of ML on transformers’ technical history data could
speed up the process of technical maintenance of transformers and help find transformers
for which major technical issues can occur. As future research, the proposed methodology
could be applied to the Greek Distribution Network or/and the Greek Transmission System,
taking into consideration the same parameters and some more (e.g., the dielectric strength
of the transformer’s insulation oil). A more cost-effective maintenance schedule for electric
power distribution companies might be created with the help of a precise estimation of the
usable life left in transformers.
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