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ABSTRACT  
 
Predictive microbiology is the integration of traditional microbiology knowledge with those found in the 

disciplines of mathematics, statistics and information systems and technology to describe microbial 

behaviour in order to prevent food spoilage as well as food-borne illnesses. The behaviour of microbial 

populations in foods (growth, survival, or death) is determined by the properties of food (e.g., water 

activity and pH) and the storage conditions (e.g., temperature, relative humidity, and atmosphere). The 

effect of these properties can be predicted by mathematical models derived from quantitative studies on 

microbial populations. Using predictive models changes in microbial populations in foods from 

production/ harvest to consumption can be estimated from changes in product parameters (temperature, 

storage atmosphere, pH, salt /water activity, etc.). Predictive microbiology models have immediate 

practical applications to improve microbial food safety, quality, and are leading to the development of a 

quantitative understanding of the microbial ecology of foods. While models are very useful decision-

support tools it must be remembered that models are, at best, only a simplified representation of reality. 

Because of the complexity of microbial behaviour and food systems, predictive microbiology presents 

some limitations. Predictive microbiology provides a powerful tool to aid the exposure assessment phase 

of ‗quantitative microbial risk assessment‘ and it can be concluded that predictive models, successfully 

validated in agreement with defined performance criteria, will continue to be an essential element of 

exposure assessment within formal quantitative risk assessment. 
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INTRODUCTION 
 

An area of food microbiology has come to be 

known as "predictive microbiology‖ in the last 

few decades. In the first book on the subject, 

published just over 20 years ago, McMeekin et 

al. (1993) defined it as a quantitative science that 

enables users to evaluate objectively the effect of 

processing, distribution and storage operations 

on the microbiological safety and quality of 

foods. The goal of predictive microbiology is to 

develop mathematical equations that describe the 

behaviour of microorganisms under different 

environmental factors (physical, chemical, 

competitive). Predictive modeling of bacterial 

growth and inactivation is an important research 

topic among food microbiologists (Buchanan, 

1993, Skinner and Larkin, 1994, McMeekin et 

al. 1997). Predictive models allow to estimate 

the shelf-life of foods, isolate critical points in 

the production and distribution process and can 

give insight on how environmental variables 

affect the behaviour of pathogenic or spoilage 

bacteria. Predictive microbiology provides us 

with an estimate of the potential growth of 

particular microorganisms under a variety of 

conditions. The models used in predictive 

microbiology are developed from experimental 

work, usually conducted in laboratory media. 

These models are then extrapolated to foods. 

 

Predictive microbiology 

Predictive microbiology may be considered as 

the application of research concerned with the 

quantitative microbial ecology of foods. The 

subject is based on the premise that the 

responses of populations of microorganisms to 

environmental factors are reproducible and that, 

by characterizing environments in terms of these 

factors (affecting microbial growth and survival 

most), it is possible from past observation to 

predict the responses of microorganisms in other 

similar environments. The term ―quantitative 

microbial ecology‖ has been suggested as an 
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alternative to ―predictive microbiology‖ (Ross 

and McMeekin, 1995). 

The concept of predictive microbiology is 

new in its application and not in its existence. 

Esty and Meyer (1922) had used mathematics to 

determine the survival of microorganisms. 

Modeling microbial growth was also being done 

in the field of industrial microbiology (Monod, 

1949). However, it has been recognized that 

food microbiology should build its own 

repository of models without copying those used 

in industrial microbiology, as their objectives are 

different (Baranyi and Roberts, 1994). 

Predictive microbiology deals with 

knowledge of microbial growth responses to 

environmental factors summarized as equations 

or mathematical models. A database may be 

formulated to store raw data and models from 

which the information can be retrieved and this 

information can be used to interpret the effect of 

processing and transportation practices on 

microbial proliferation (McMeekin et al., 1997). 

Coupled with information on environmental 

history during processing and storage, predictive 

microbiology provides support in making 

decisions on the microbiologic safety and quality 

of foods.  

The development, validation, and application 

of predictive microbiology has been extensively 

reviewed in the last few decades (McMeekin, 

1993; Whiting et al., 1997). Early modeling 

studies mostly concerned on thermal inactivation 

of pathogenic bacteria (Munoz-Cuevas et al., 

2011), but later modeling studies have 

concentrated on descriptions of the effect of 

constraints on microbial growth (rather than 

survival or death), often using a kinetic model 

approach (rather than probability modeling) and 

most often describing the effect of temperature 

as the sole or one of a number of controlling 

factors. For example, the temperature 

dependence model for growth of Clostridium 

botulinum demonstrated a good fit to data, but 

the authors noted that ―care must be taken at 

extremes of growth, as no growth may be 

registered in a situation where growth is indeed 

possible but has a low probability‖ (Graham and 

Lund, 1993). 

 

History 

The development of log-linear microbial death 

kinetics by Bigelow et al., (1920), Bigelow 

(1921) and Esty and Meyer (1922) was the first 

example of a predictive model to find 

widespread application in the food industry. 

Roberts and Jarvis (1983) were the first to coin 

the term 'Predictive Microbiology' (Brul, 2007). 

Predictive microbiology started as a purely 

empirical (though quantitative) science. Its 

earliest appearance is probably Esty and Meyer 

(1922), who described the thermal death of 

Clostridium botulinum type A spores by a log-

linear model, which is still used to estimate the 

necessary heat processing in low-acid canned 

foods. This model simply says that, at a given 

temperature, the relative (or specific) death rate 

of the bacteria is constant with time. In other 

words, the percentage of the cell population 

inactivated in a unit time is constant. This is a 

simple, logical and understandable model, 

similar to those commonly used in physical and 

chemical sciences for processes such as 

dissipation, diffusion, etc, when the force that 

causes the decrease of a certain quantity is 

constant with time (Baranyi and Roberts, 2004). 

A step forward was taken by Scott (1936), 

who investigated how the specific death rate 

depended on the available water, quantified 

today by the so-called water activity, a 

dimensionless number between 0 (dry) and 1 

(wet). He subsequently studied the specific 

effect of temperature on the microbial death rate. 

Today the most frequently assumed relation in 

thermal inactivation theory is that the logarithm 

of the specific death rate decreases linearly as 

the temperature increases (this is equivalent to 

the so-called constant z-value theory) (Baranyi 

and Roberts, 2004). 

 

Modeling bacterial growth 

Microbial modeling allows the description and 

prediction of microbial behaviour under specific 

environmental conditions. These conditions can 

be intrinsic, like pH or extrinsic, like 

temperature or salinity. Microbial responses are 

tested under controlled conditions and the results 

are then expressed as a mathematical equation 

that will allow prediction of untested 

combinations of conditions (Hajmeer and Cliver, 

2002). Even though several conditions affect the 

growth or decline in microbial populations, only 

a few have a significant influence, and it is 

preferred to use as few variables as possible in 

the equation. It is assumed that the effect of a 

factor is independent of whether the 

microorganisms are in a broth or food, as long as 

other relevant factors are equivalent (Ross and 

McMeekin, 1994; Whiting, 1995). 

 

Types of models 

There are several ways to classify models. 

Models can be classified, by the microbiological 

event into kinetic and probability models 

(Roberts, 1989); the modeling approach used 

into Empirical and Mechanistic ways (Roels and 
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Kossen, 1978); or by the variables considered 

into primary, secondary and tertiary (Whiting 

and Buchanan, 1993).  

Kinetic and probability models 

Kinetic models are considered with the rates of 

response (Growth or death). Examples include 

the Gompertz and square root models which, 

describe the rates of response, like lag time, 

specific growth rate and maximum population 

density (McMeekin et al., 1993; Whiting and 

Buchanan 1994) or inactivation/ survival models 

that describe destruction or survival over time 

(Xiong et al., 1999b). 

Probability models, originally used for 

predicting the likelihood that organisms grow 

and produce toxin within a given period of time 

(Hauschild, 1982; Stumbo et al., 1983), have 

been more recently extended to define the 

absolute limits for growth of microorganisms in 

specified environments e.g. in the presence of a 

number of stresses which individually would not 

be growth limiting, but collectively prevent 

growth (Baker and Genigeorgis, 1990). 

Probability models indicate only the probability 

of growth or toxin production and do not 

indicate the speed at which they occur (Roberts, 

1989).  

 

Empirical and mechanistic models 

Empirical models usually take the form of first 

or second degree polynomials and are essentially 

pragmatic describing the data in convenient 

mathematical relationship (curve fitting). An 

example is the quadratic response surface used 

by Gibson et al. (1988). Mechanistic or 

deterministic models are built up from 

theoretical bases and allow interpretation of the 

response in terms of known phenomena and 

processes. Attempts, like those of McMeekin et 

al. (1993), to find a fundamental basis for the 

square root model are important steps towards 

more mechanistic approaches. Draper (1988) 

considers the mechanistic models to be more 

preferable than the empirical ones, as they 

usually contain fewer parameters, fit the data 

better and extrapolate more sensibly.  

Whiting and Buchanan (1993) have proposed 

a three level classification method described as 

primary, secondary and tertiary. 

 

Primary models 

These models measure the response of the 

microorganism with time to a single set of 

conditions. The response can either be direct / 

indirect measures of microbial population 

density or products of microbial metabolism. 

These primary models include growth models 

(Gibson et al. 1987; Buchanan et al. 1989), the 

growth decline model (Whiting and 

Cyhnarowicz 1992), D-values or thermal 

inactivation (Rodriguez et al. 1988), 

inactivation/ survival models (Kamau et al. 

1990, Whiting, 1992), growth rate values 

(McMeekin et al., 1987) and even subjective 

estimation of lag time or times to turbidity/ toxin 

formation (Baker et al. 1990). Some of the 

examples of primary models are given in Fig. 1. 

 

 
 

Figure 1.  Some primary models that measure the response of microorganisms.  

                       (Source:  McKellar and Lu, 2004)                     



Fakruddin
 
et al.                                                                   124 

 

 
Figure 2. Development of predictive models in microbiology. 

 

Secondary models 
These models indicate how parameters of 

primary models change with respect to one or 

more environmental or cultural factors (e.g. 

atmosphere, pH, temperature and salt level). 

Response surface (Buchanan and Philips 1990), 

Arrhenius (Broughall et al., 1983), Belehradek 

(Ratkowsky et al., 1991), secondary models 

based on gamma concept such as those described 

by Rosso et al. (1995)  are some examples of 

this type of models. Secondary models may be 

further categorized as direct or indirect.  

 

Tertiary models 

These are applications of one or more secondary 

models to generate systems for providing 

predictions to non-modelers, i.e. user-friendly or 

applications software (Buchanan, 1991; 

Buchanan, 1993) and expert systems (Adair et 

al., 1993). This level would include algorithms 

to calculate changing conditions (e.g. transient 

temperature after 5 days of storage) on the 

growth and survivality of microorganisms, 

compare microbial behaviour under different 

conditions (two salt levels), or graph the growth 

of several microorganisms simultaneously 

(Buchanan, 1991).  

 

Development of models 

Basic procedure for development of a model is 

shown in Fig. 2. 

 

Validation of models 

To assess the reliability of models before they 

are used to aid decisions, they (models) have to 

be validated. Two steps must be taken to validate 

a model once it has been built.  

The first is to test its accuracy with new data 

and new combinations of variables to determine 

if the model can describe the experimental data 

sufficiently. This is called internal validation, 

also termed 'Curve fitting'. This will allow an 

estimation of the goodness of fit and will show if 

and where additional data is needed. Complex 

models tend to be very specific, which can be a 

limitation when testing new data. 

The second step is to compare model 

predictions with microbial responses in actual 

foods. This is called External Validation. This 

will show the model's limitations and may show 

if additional factors must be tested and included 

in the model. Errors in growth or survival should 

always tend towards faster growth rates or better 

survival, respectively, to make a conservative 

prediction (Whiting, 1995). 

Models cannot be used with confidence, until 

this validation is done. Growth rates or 

Statistical measures like Root Mean-square Error 

(RMSE) and regression coefficient or coefficient 

of determination (r
2
) values were used by Duh 

and Schaffner (1993) to assess the reliability of 

predictive equations developed based on 

measurements in brain heart infusion broth and 

those of literature values in food. These terms 
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have been used to mathematically compare data 

derived from literature (Giffel and Zwietering, 

1999). McClure et al. (1993) compared their 

models on the basis of the sum of the squares of 

the differences of the natural logarithm of 

observed and predicted values and suggested 

that a smaller value indicates a model, which, on 

average, better predicts the observed response. 

Two important factors for validation of 

predictive models are accuracy factor and bias 

factor introduced by Ross (1996). Accuracy and 

bias factors are the mean square differences 

between predictions and observations (Baranyi 

et al. 1999). 

 

Limitations of model 

There are some limitations of predictive 

microbiology that need to be considered. They 

are:  

The models cannot be extrapolated outside 

the ranges (e.g. T°C, a
w
) in which they were 

derived. This is because the models are derived 

from fitting the observed data and therefore do 

not model microbial behaviour. Predictions 

outside the experimental ranges are usually not 

accurate and in some cases are nonsensical.  

The models usually predict faster growth 

rates than are observed. This makes them fail-

safe but they may be overly conservative. The 

reason for this is the models are usually 

conducted in laboratory media and while they 

are validated in foods, they may not have 

widespread application in the food industry.    

Several workers have also pointed out that 

models derived in static conditions may not be 

applicable to fluctuating conditions i.e. those in 

which environmental conditions like 

temperature, pH, gaseous atmosphere and water 

activity change during the life of the product 

(Mackey and Kerridge, 1988; Gibbs and 

Williams, 1990).  

Previous incubation conditions of the test 

organisms can affect the subsequent rate of 

growth of organisms (Walker, 1990; Fu et al., 

1991; Buchanan and Klawitter, 1991). Fu et al. 

(1991) termed this a "Temperature history 

effect" and other environmental conditions like 

pH have also been investigated under this 

"history effect". 

Therefore, great caution is required in the use 

of microbial models as scepticism exists that 

models derived in an experimental system can 

reliably predict the growth of the modeled 

organism in a food and It is very important that 

the model is accompanied by a description of its 

limitations; specific microorganisms, factors 

tested and considered in the model, ranges for 

each of these factors, and combinations of 

factors. The model user must be aware that using 

the model outside its limitations may not give 

valid answers. 

 

Applications of predictive microbiology 

Some of the applications of predictive 

microbiology are listed in Table 1. 

 

Predictive microbiology and HACCP 

HACCP is a system to identify and prevent the 

potential food safety problems with the 

manufacture, distribution and use of a food 

product. The system attempts to identify the 

pathogens in raw materials, routes for entry of 

pathogens into the processing environment, the 

methods for their elimination, and potential 

problems with the finished product when not 

handled properly. A comparison of HACCP and 

predictive microbiology is given in Table 2. 

Thus predictive food microbiology can be 

viewed as an extension of the HACCP concept. 

Hence, the HACCP concept and its integration 

with predictive models have great potential as 

decision-making tools. They help in establishing 

critical limits and in the disposition of a product 

that deviates from the established critical limits. 

A critical control point can exist where the 

model indicates that a certain level of a factor 

permits or surpasses microbial growth. 

Quantifiable estimates of microbial behaviour at 

different levels of the factors can suggest the 

allowable ranges for that factor. The potential 

for predictive microbiology to offer decision 

support and aid in process optimization is the 

subject of extensive research worldwide (Vose, 

1998; McNab, 1998). 

 

Current status of predictive microbiology 

Over the years, researchers have pointed out and 

discussed problems with predictive 

microbiology and many of them suggested 

needed research. Efficacy of models to predict 

outcomes under real life conditions are still 

contradictory. Models developed in laboratory 

broth systems have been reported to be 

inappropriate to describe growth on food (Gill et 

al., 1997). Dalgaard (1995) suggested an 

iterative approach to model development using 

food, rather than laboratory media, as the growth 

substrate for model development. Models should 

be validated rigorously under practical 

conditions.  
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Table 1. Applications of predictive microbiology. 

 

Area of Application Example 

Hazard Analysis Critical Control  

Point (HACCP) 

Preliminary hazard analysis 

Identification and establishment of critical control 

point(s) 

Corrective actions 

Assessment of importance of interaction between 

variables 

Risk assessment Estimation of changes in microbial numbers in a 

production chain 

Assessment of exposure to a particular pathogen 

Microbial Shelf life studies Prediction of the growth of specific food spoilers  

Prediction of growth of specific food pathogens 

Product research and development Effect of altering product composition on food safety 

and spoilage 

Effect of processing on food safety and spoilage 

Evaluation of effect of out-of-specification 

circumstances 

Temperature  function integration and  

hygiene regulatory activity 

Consequence of temperature in the cold chain for 

safety and spoilage 

Education Education on safety, especially non-technical people 

Design of experiments Number of samples to be prepared 

Defining the interval between sampling 

 

 

 

Table 2. Comparison of HACCP and predictive microbiology. 

 

HACCP Predictive Microbiology 

Identify potential hazards and assess their severity 

at different stages of processing or operations. 

Identify the microorganism(s) of concern 

 

Identify the Critical Control Points (CCP) 

where control measures need to be 

implemented. 

Develop an understanding of the ecology of 

microorganism to better identify the source and the 

likelihood of contamination. 

Specification of control criteria and methods to 

ensure a control has been achieved (when 

necessary). 

Compare information with preset control 

specifications (i.e., accept/reject criteria) 

 

Establish and implement monitoring 

procedures, and response measures 

to noncompliance situations. 

Incorporate the available information into 

monitoring systems that indicate microbial 

proliferation 

 

 

 

In real conditions, situations may deviate 

from the predictions of models but this type of 

deviations does not necessarily imply that the 

model is defective. Rather it implies that 

knowledge of some food ecosystems is 

incomplete and factors other than those used in 

model development have an effect on microbial 

behaviour. 

The common theme of the problems in 

predictive microbiology discussed above is that 

of uncertainty—uncertainty in terms of the 

starting conditions (e.g., initial microbial load 

and types) and the microbial response in a static 

or changing environment. Uncertainty translates 

to variability if the distribution of response times 

is understood and the variance can be described. 

As we have indicated above, the variability 

associated with very long response times limits 

the utility of kinetic models and requires a 

probability approach. Thus, while in the last few 

decades predictive modelers were justified in 

their selection of temperature as a primary factor 

to model in kinetic approaches, the next decade 

may see a return to probability modeling as 
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pioneered by Genigeorgis (1981) and Roberts et 

al. (1981). This shift will derive impetus from 

the emergence of dangerous pathogens with very 

low infective doses, and continued kinetic 

modeling will concentrate on survival and death 

rather than growth of populations. 

The first kinetic death model to find 

widespread use in the food industry was for 

thermal destruction (Stumbo et al., 1983). As an 

example of such model, we can consider a model 

describing a 12-log cycle reduction of 

Clostridium botulinum spores in a short time 

with considerable certainty. Current research is 

approaching toward less severe processes with 

longer response times and to the complications 

of ―shoulders‖ and ―tails‖ to define the 

growth/no growth interface. Biologic variability 

will again dictate a probability approach to 

describe the survival and slow decline of 

microbial populations (McMeekin et al., 1997). 

 

Challenges in predictive microbiology 

Considerable progress has been made in defining 

philosophic approaches and experimental 

protocols for growth model development and 

many models have been developed and 

published, as a result more validation studies are 

required, particularly involving independent and 

industry based trials. More emphasis should be 

placed on modeling the death kinetics of food-

borne pathogens with low infective doses. 

Measurement of environmental factors (e.g. 

temperature) can be achieved with precision, but 

in some situations, (e.g. in chilling of meat 

carcasses), it is more difficult (McMeekin et al., 

1997). Location of the sensor can be an 

important consideration (Gill et al., 1991a, Gill 

et al., 1991b). Furthermore, development of 

techniques to measure constraints such as water 

activity, pH, or redox potential on a microscale 

might provide useful information for a complex 

food such as salami. This would allow definition 

of the role of the microenvironment in 

determining microbial behaviour (McMeekin et 

al., 1997).  

The inherent variability of response times 

(generation time and lag phase duration) is an 

issue in predictive microbiology (Ratkowsky et 

al., 1996).  The variance was shown to be 

proportional to the square or cube of the 

response time (Ratkowsky, 1991; Alber and 

Schaffner, 1992; Ratkowsky et al., 1996c). The 

practical implication of these findings for the 

application of kinetic models is that inherent 

biologic variability increases markedly with 

increasing response times, and thus the 

confidence limits associated with predictions 

also increase markedly. However, if the 

probability distribution of the response time is 

known, one can determine the probability that an 

organism will grow more quickly than a 

predicted response time (Ratkowsky et al., 

1996c). Thus, kinetic models are appropriate to 

describe consistent microbial growth responses, 

but under extreme conditions a probability 

approach may be required (McMeekin et al,. 

1997) 

Models must be validated in foods under 

conditions that mimic situations encountered in 

normal practice, e.g., decreasing temperature and 

water activity during active chilling of meat 

carcasses or fluctuating temperatures during the 

distribution and storage of many food 

commodities (McMeekin et al., 1997).  

Modeling lag phase duration is also a 

problem (Baranyi et al., 1995). Predicting lag 

phase duration in foods is very difficult not due 

to the lack of a suitable model, rather the 

difficulty comes from the lack of knowledge of 

the physiologic status of the microorganisms 

contaminating the food. The organisms may 

include cells that are actively growing, 

exhibiting a physiologic lag phase, damaged and 

under repair, exhibiting physiologic 

(endospores) or exogenous dormancy (VNC 

cells), damaged but unable to reproduce because 

of ineffective repair mechanisms, and dead 

(McMeekin et al., 1997). 

Methods to define the physiologic status of 

food-borne contaminants under various 

conditions need to be developed. This will 

require observations on individual cells or small 

populations of cells either directly by 

microscopy or an indicator of single-cell 

metabolic activity (Baranyi and Roberts, 1995). 

Luminescent Salmonella strains have been used 

as real-time reporters of growth and recovery 

from sub-lethal injury (Chen and Griffiths, 

1996). Alternatively, a parameter to describe the 

suitability of cells to grow in a new environment 

may be incorporated in the model (Baranyi and 

Roberts, 1995). 

 

Future prospect 

Models should be developed which take into 

consideration possible interactions between 

microbial flora present in the product (Griffiths, 

1994; Ross and McMeekin, 1994). This is 

especially true of dairy products where lactic 

acid bacteria, preservatives used in foods, 

synergistic effects between organisms have a 

profound influence on microbial growth and 

these require consideration in future model 

development. 

Mathematical modelling of fungal growth 

has not received a similar degree of interest as 
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modelling of bacterial growth and there is a need 

for concerted effort from scientists, food 

manufacturers and processors to overcome the 

hurdles faced in modelling fungal growth in 

foods (Gibson and Hocking, 1997). Spoilage 

organisms have also not received much attention 

for development of comprehensive models 

(Whiting, 1997). Other microbial situations that 

need microbial modeling are growth in 

heterogeneous foods, on surfaces or boundaries, 

in microenvironments and biofilms (Whiting, 

1997). 

 

Progress is expected in the area of: 

Dynamic modeling: interaction between bacteria 

and environmental factors 

Lag modeling: by means of quantifying and 

modeling the effect of history via the actual 

physiological state of the bacteria 

Growth / no growth boundaries for bacteria and 

environment 

Probability of growth: for answering the 

question ―what is the probability that the 

microbial load is over a specified value, at a 

specified time?‖ (for Quantitative Microbial 

Risk Assessment purposes) 

More advanced quantification of the structure of 

the food environment 

Modeling individual cell kinetics by stochastic 

birth/death processes: Connecting deterministic 

modeling at population level to statistical 

assessment and variability characterization at 

single cell level 

Relating predictive microbiology and molecular 

microbiology: using data on how genes are 

switched on as a function of the (dynamically 

changing) environment; characterization of 

variability and stress-tolerance; 

Computational microbiology and bioinformatics 

development: data storage and retrieval in a more 

advanced way. 

These tasks require the interdisciplinary 

collaboration of food microbiologists and 

mathematicians; food technologists and 

computer scientists; molecular microbiologists 

and statisticians. 

 

 

CONCLUSION 
 

Just 20 years ago very few food microbiologists 

believed that models of microbial growth and 

death would ever be sufficiently reliable to be 

used in the food industry, or by food regulators. 

From the early empirical models, a new 

generation of modeling approaches, together 

with international collaboration, has opened the 

door to the possibility of predicting growth and 

death properties for the key microorganisms in 

food. In this summary of our current predictive 

microbiology knowledge, readers can find a 

comprehensive picture of the direction the 

subject is expected to continue and what is likely 

to change.  
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