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called maximum shear modulus, Gmax. It can be 
determined by in-situ methods from the measurements 
of the shear wave velocity, Vs, by means of cross-
hole, down-hole, up-hole, or surface wave testing. The 
relationship between maximum shear modulus and 

shear wave velocity is rigorous: 2
max sG V   where ρ 

is soil density. This parameter can be also obtained in 
laboratory by resonant column or bender element 
tests. 

Estimation of the dynamic properties (shear 
modulus, G, and damping ratio, D, of soils has 
become the scope of many studies in the field of 
geotechnical earthquake engineering using devices 
such as resonant column, cyclic simple shear, cyclic 
torsional shear and cyclic triaxial (e.g., Hardin and 
Drnevich, 1972a; Tatsuoka et al., 1979; Yoshimi et 
al., 1984; Wilson, 1988; Saxena and Reddy, 1989; 
Yasuda and Matsumoto, 1993; Konno et al., 1994; 
Lanzo et al., 1997; Menq, 2003; Hardin and Kalinski, 
2005; Xenaki and Athanasopoulos, 2008; Senetakis et 
al., 2012a; Senetakis et al., 2012b). 

Many studies have been conducted to 
characterize the factors that affect normalized shear 
modulus (G/Gmax) and damping ratio (D) of soils (e.g.,
Richart et al., 1970; Hardin and Drnevich, 1972b; 
Vucetic and Dobry, 1991; Ishibashi and Zhang, 1993;
Darendeli, 2001; Stokoe et al., 1994, 2004). Based on 
these studies, the most important factors that affect 
G/Gmax of cohesive soils include shear strain (γ), 
effective confining pressure (σ’0), and plasticity index 
(PI). Other parameters have less important effect. 

1. INTRODUCTION

Reliable and accurate curves of soils dynamic 
stiffness are necessary for the solution of many soil 
dynamic problems like vibration of machine 
foundations, response of soil deposits and earth 
structures to earthquake, evaluation of traffic 
vibration, and so forth. Various techniques might be 
used to solve the aforementioned problems. However, 
regardless of the procedure chosen, it is first necessary 
to evaluate the appropriate dynamic properties of the 
materials in the site. For example, to perform site 
response analysis, the normalized shear modulus 
curves of soil should be primarily evaluated. 
However, the range of shear modulus reduction and 
damping curves of soils are quite wide; hence, 
selections of dynamic curves have an important effect 
on the results of dynamic analysis. The range of 
variations in the selection of curves demonstrates the 
uncertainties associated with the nonlinear dynamic 
behavior of soils. Therefore, in these analyses,
uncertainties must be reduced by predicting the shear 
modulus reduction curves with the most accurate 
methods. 

The secant shear modulus, G, represents the 
shear stiffness of the soil in the given level of shear 
strain. It is essentially the slope of the shear stress (τ) 
and strain (γ) curve. Because of the nonlinear nature 
of the stress-strain curve of soils, shear modulus of 
soils changes with strain amplitude. In the range of 
very small strains, soil behavior is approximately 
linear-elastic. The shear modulus at small strains is 
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2. DATA COLLECTION

A wide-ranging database was compiled in the 
current study from the previously published laboratory 
tests (U.S. Army Corps of Engineers, 1978, 1979; 
Kokusho et al., 1982; Borden et al., 1994, 1996; 
Lanzo et al., 1997; S&ME Inc., 1993, 1998; Stokoe et 
al., 1995; Caserta et al., 2012). These studies include 
numerous tests conducted on cohesive soils to 
measure their dynamic properties at low and large 
strain levels using resonant column, simple shear, 
cyclic torsional shear, and cyclic triaxial tests. 

The database was divided into two separate 
groups denoted as training and testing sets consisting 
80 % and 20 % of data, respectively. The testing set 
was utilized to determine when training should be 
stopped to avoid overfitting. The data division process 
was performed so that the main statistical parameters 
of the training and testing subsets (i.e., maximum, 
minimum, mean, and standard deviation) become 
close to each other. For this purpose, a trial selection 
procedure was carried out and the most possible 
consistent division was determined (Masters, 1993). 
The descriptive statistical parameters of these two 
groups are presented in Table 1. 

The results of centrifuge tests (Brennan et al., 
2005), as validation set, were also employed in 
addition to the training and testing sets for further 
examination and generalization of the model 
performance. The number of data considered for 
training, testing, and validation set is 544, 136, and 
15, respectively. 

 
3. ARTIFICIAL NEURAL NETWORK 

Artificial Neural network (ANN) is a functional 
abstraction of the biological neural structures of the 
central nervous system (Wasserman, 1993; 
Alexhander and Morton, 1993; Anderson 1995; Arbib, 
1995). It can exhibit a surprising number of human 
brain’s characteristics e.g. learn from experience and 
generalize from previous examples to new problems. 
These systems are capable of high-level functions, 
such as adaptation or learning, and lower level 

Zhang et al. (2005) presented predictive 
equations for estimating normalized shear modulus 
and damping ratio. Their equations are based on a mo-
dified hyperbolic model, which include some 
variables: shear strain amplitude, confining pressure, 
and plasticity index (PI). In their study, the database 
was categorized into three groups based on geological
age: Quaternary soil, Tertiary and older soil, and 
residual/saprolite soil. 

In the recent years, new aspects of modeling, 
optimization, and problem solving have been 
developed in light of the pervasive promotion in 
computational software and hardware. Some aspects 
of software engineering, referred to as artificial 
intelligence such as artificial neural networks (ANNs), 
are relied upon the iterative learning of databases. In 
case of complicated problems, experimentalists prefer 
these trial approaches rather than analytical 
optimization. Numerous researchers applied artificial 
intelligence approaches in the various fields of 
geotechnical engineering such as stress-strain 
modeling of soil (Penumadu and Zhao, 1999), slope 
stability (McCombie and Wilkinson, 2002), shallow 
foundations (Shahin et al., 2002), soil liquefaction 
(Baziar and Jafarian, 2007, Baziar et al., 2011; 
Ghorbani et al., 2012; Jafarian et al., 2013), and 
earthquake engineering (Jafarian et al., 2010). 

As discussed above, numerous data of dynamic 
soil properties were measured in laboratory during the 
previous studies. The current study aims to propose a 
RBF-based  neural  network  model  for  predicting 
the  G/Gmax of  cohesive soils in terms of shear strain, 
γ (%), confining pressure, σ’0 (kPa), and Plasticity 
index,  PI (%).  The training process is carried out on 
a wide-ranging database of laboratory tests conducted 
during the previous studies. In order to ensure that the 
RBF model is sufficiently generalized, a seperate
dataset including the results of centrifuge tests is used 
in the modeling. Parametric studies are carried out to 
demonstrate reasonable behavior of the proposed 
model. Outputs of the model are compared with the 
ranges proposed by the previous studies. 

Table 1 Descriptive statistics of the variables used in the model development. 

Statistical parameters Subset Parameters   
  PI (%) σ'0 (kPa) γ (%) G/Gmax 
Minimum Training     5   16 0.0001 0.055 
 Testing     5   16 0.0001 0.059 
      
Maximum Training 132 575 6 1 
 Testing 132 575 4.7 1 
      
S.D.a Training   32.7 128.73 0.623 0.23 
 Testing   31.6 132.01 0.601 0.24 
      
Mean Training   46 118.9 0.160 0.812 
 Testing   47.7 116.81 0.180 0.810 

 

aStandard deviation 
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4. RBF NEURAL NETWORK  
Radial basis functions, which were first used by 

Broomhead and Lowe (1988), are powerful and 
interesting networks due to their rapid training, 
generality and simplicity. Girosi et al. (1991) and 
Hartman et al. (1990) proved that RBF networks are 
universal approximators and can approximate any 
continuous function with arbitrary accuracy.  

The RBF neural network has three layers: the 
input, the hidden, and the output layer. The hidden 
layer involves RBF neurons with Gaussian activation 
functions. The outputs of RBF neurons have 
significant responses to the inputs only over a range of 
values of X called the receptive field. The size of the 
receptive field is determined by the value of σ. 
Activation function of RBF neurons is as Eq. 2. 

 

      2exp 2
T

i i i iX C X C                       (2)
 

where X is an input vector, i , iC and 
i  are Gaussian 

activation function, weight vector, and radius of 
receptive field of ith RBF neuron, respectively. 

The value of σ allows the sensitivity of the RBF 
neurons to be adjusted. During the training, the σ 
value of RBF neurons is such determined as the 
neurons could cover the input space properly. The 
output layer neurons produce the linear weighted 
summation of hidden layer neurons responses 
according to Eq. 3. 

 

1

n

k i kii
y w


                                                        (3)

 

where yk is the kth output and wki is the weight from 
the ith RBF neuron to the kth output neuron and n is 
the number of RBF neurons. 

The numerical results of many scientific and 
engineering applications indicate that RBF networks 

functions such as data pre-processing for different 
kinds of inputs. Neurons are the main processing 
elements of the ANNs. Details of the structure and 
operation of ANNs can be found in many publications 
(Smith, 1993; Fausett, 1994; Galushkin, 2007).  

Feed forward back propagation algorithm could 
be mentioned as a sub-set of multi-layer perceptron 
neural networks. The topology of FFBP ANNs 
consists of a set of neurons connected by links in a 
number of layers. The basic configuration usually 
consists of an input layer, a hidden layer and an output 
layer. The number of hidden layers establishes the 
complexity of the network. Designating the correct 
number of hidden layers and the number of nodes in 
each layer has been evaluated by try and error. 
However, each node multiplies every input by its 
interconnection weights and then adds the sum of the 
products to a bias number, and then passes the sum 
through a transfer function to generate the results. The 
transfer function which is usually a sigmoid function 
can be presented as the Eq. 1. 

 

   
1

1 i j i i
i i j i i w x b

y f w x b
e
 

  
                    (1)

 

where wij is the weight of the connection joining the 
jth neuron in a layer to the ith neuron in the previous 
layer and xi is the value of ith neuron in the previous 
layer. Under the aegis of this function, the output yj

from the jth neuron in a layer could be calculated. 
After comparing the obtained results with the target 
values, the errors would be calculated and by using 
the back propagation algorithm the entire weights 
would be corrected. This process will be continued 
until either errors are less than a specified value or the 
number of training epochs reaches the favorite 
repetition. At this stage, ANN is considered as trained 
(Hornik et al., 1989). 

 
Fig. 1 Typical topology of RBF networks.



Y. Jafarian et al. 

 

 

92 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

anticipate that the models are generalized enough to 
predict real normalized shear modulus of cohesive 
soil.  

 
5. RESULTS 

Numerous runs were performed with various 
initial settings and the performance of the developed 
model was analyzed for each run. Consequently, the 
best model was selected according to the treated 
statistical criteria i.e. R2, MAE and RMSE. In 
addition, a comprehensive parametric study was 
performed to monitor the behavior of each model 
versus variations of input variables. The proposed 
predictive model involves three input parameters (γ, 
σ’0, and PI) and one output (G/Gmax). 

Two ANN models, feed forward back 
propagation, FFBP, and radial basis function, RBF, 
were utilized to predict the normalized shear modulus 
of cohesive soils. The results indicate that RBF model 
is a better model than the FFBP model in light of its 
simplicity and reasonable performance in shear 
modulus prediction. This is reflected by presenting the
values of target statistical parameters in Table 2. 
Therefore, in this study the detailed results of RBF 
model are presented. 

Precision of the proposed model is examined by 
plotting the measured versus predicted values of 
G/Gmax for training, testing, and all element tests data,
as shown in Figures 2–4, respectively. The values of 
R2, MAE, and RMSE are respectively equal to 0.969, 
0.028, and 0.039 for training sets (Fig. 2) and 0.960, 
0.032, and 0.049 for testing sets (Fig. 3). For all data 
sets (Fig. 4), R2 is equal to 0.967 while MAE and 
RMSE are equal to 0.028 and 0.042, respectively. 

It was previously indicated that the centrifuge 
data set was included in the analysis to confirm 
enough generalization of the model for future 
predictions. The centrifuge tests data were adopted 
from the study conducted by Brennan et al. (2005) on 
clayey soil. In their studies, the centrifuge tests were
carried out by Cambridge centrifuge, with 10 m 
diameter beam, under the centrifugal acceleration of
50 g. The earthquake excitation was applied using the 
mechanical stored angular momentum actuator. 

are very good tools for interpolation and also their 
training is very fast. Typical topology of RBF 
networks is shown in Figure 1. 

In this study, RBF neural network was used for 
the prediction of normalized shear modulus of 
cohesive soils. This network has 3 neurons in input 
layer, 3 neurons in hidden layer, and 1 neuron in 
output layer. Input parameters include: shear strain, 
effective confining pressure, and plasticity index of 
soil and output parameter is normalized shear 
modulus. In order to obtain a more efficient training 
process, the input and target were standardized to have 
zero mean and unity standard deviation. In this study, 
results of geotechnical centrifuge tests with 15 data 
pairs were used as validation set for further
controlling on the training stoppage and increasing the 
generality of the model for future predictions. 

In order to examine the robustness of the 
proposed models, the coefficient of determination 
(R2), mean absolute error (MAE), and root mean 
squared error (RMSE) between the measured and 
predicted G/Gmax ratios were obtained according to 
Eqs. 4-6. 

 

 
 

 

2

22
2

m pN
mN

mN

X X
R X

X


 

 
                     (4)

 

 m pN
X X

MAE
N





                                        (5)

 

 2

m pN
X X

RMSE
N





                                   (6)

 

where N is the number of data, Xm and Xp are 
measured and predicted values, respectively. 

Among the developed models, the RBF neural 
network model with the most great performance 
(greater coefficient of determination and smaller MAE 
and RMSE) for the training, testing, and validation 
data sets was selected. Since, the models were
generated based on the element tests data and 
validated by the centrifuge tests, it is reasonable to 

Table 2 Target statistical parameters to comparison of FFBP and RBF models. 
 

Group Performance 

 FFBP model  RBF model 

 R2 MAE RMSE     R2   MAE RMSE 

Training 0.958 0.031 0.043  0.969 0.028 0.039 

Testing 0.963 0.030 0.046  0.960 0.032 0.049 

All element tests 0.961 0.033 0.044  0.967 0.028 0.042 

Validation (centrifuge) 0.918 0.042 0.047  0.923 0.041 0.044 
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Fig. 2 Measured versus predicted values of G/Gmax for training data set. 

Fig. 3 Measured versus predicted values of G/Gmax for testing data set. 

Fig. 4 Measured versus predicted values of G/Gmax for all element tests data. 
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in accordance with the mechanisms found in the 
experimental investigations. For this purpose, 
variations of any input parameter on the amount of 
G/Gmax were studied while the other input parameters 
were kept constant at their mean values in the data set.

Variations of the G/Gmax data predicted by RBF-
based model against γ at different levels of PI are
shown in Figure 6. The variations are similar to the 
results presented by Vucetic and Dobry (1991) for 
cohesive soils, because they showed that clays with 
more plasticity obtain larger G/Gmax values at a certain 
level of shear strain amplitude. They concluded that 
plasticity index (PI) is the main factor controlling the 
modulus reduction curve (G/Gmax-γ). Also, they 
concluded that soils with higher plasticity tend to have 
a more linear cyclic response at small strains and to 
degrade less at larger γ than soils with a lower PI. 
Based on Vucetic and Dobry (1991)'s results G/Gmax-γ 
curve moves up as the soil plasticity (PI) increases. 

Readers can refer to the original reference of this 
study (Brennan et al., 2005) for more details on the 
tests  procedure  and the processed G/Gmax data. 
Figure 5 depicts measured versus predicted values of
G/Gmax for the validation data set. The values of R2, 
MAE, and RMSE for this data set were obtained equal 
to 0.923, 0.041, and 0.044, respectively. In fact, the 
evolved model has obtained high accuracy for both 
testing and validation sets. From the plots shown in 
Figures 2–5, it is observed that the developed model 
can predict the G/Gmax of cohesive soils with 
reasonable accuracy. 

 
6. PARAMETRIC ANALYSIS AND MODEL 

ACCURACY 

Further examination on the model performance 
under various conditions was conducted through a pa-
rametric analysis. This part of the study was 
performed to evaluate whether the model outputs are 

Fig. 5 Measured versus predicted values of G/Gmax for centrifuge validation set. 

Fig. 6 Variation of G/Gmax predicted by RBF-based model against γ at different levels of PI.
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Fig. 7 Variation of G/Gmax predicted by RBF-based model against σ'0 at 
different levels of γ. 

Fig. 8 Difference between the experimental and RBF-based predicted values 
of G/Gmax with respect to γ. 

residuals are satisfactorily distributed between two 
lines with ±10 % relative error. 

 
7. COMPARISON WITH THE PREVIOUS STUDIES

Predictions of some previously published 
equation (Ishibashi and Zhang, 1993) or curves 
(Vucetic and Dobry, 1991; Stokoe et al., 1999) are 
compared with the G/Gmax values predicted by the 
current  model.  Ishibashi and Zhang (1993) collected 
a database of experimental results on dynamic shear 
modulus and damping ratio. They presented a rela-
tionship for normalized shear modulus of cohesive 
soils in terms of cyclic shear strain, effective 
confining pressure, and plasticity index. Shear 
modulus reduction data of the currently used database 
(measured data) are plotted along with the predictions 
of RBF-based model and Ishibashi and Zhang (1993)'s 
relationship in Figure 9. It is clear that the relationship 

Comparison between the results of the parametric 
study for γ and PI (Fig. 6) and their study confirms 
that predictions of the proposed RBF neural network 
model are in agreement with the experimental results.

Figure 7 shows variations of normalized shear 
modulus, G/Gmax, versus confining pressure, σ’0, at 
different levels of shear strain, γ. According to this 
figure, G/Gmax increases with increasing σ’0 and 
decreasing γ. This finding is in qualitatively good 
agreement with the results of laboratory studies 
carried out by some researchers (e.g., Kagawa, 1992; 
Lanzo et al., 1997). 

Besides, difference between the measured 
G/Gmax and predicted values, as relative error in 
percentage, was plotted with respect to shear strain, γ, 
for all element tests data in Figure 8. It is observed 
that the developed model can predict the G/Gmax of 
cohesive soils with reasonable accuracy because the 
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Fig. 9 Comparison of RBF-based model with Ishibashi and Zhang (1993) equation. 

It is clearly seen in Figure 11 that accuracy of 
their relationship decreases with increasing shear 
strain and the relative error reaches about 40 %, 
whereas this value was about 10 % for RBF neural 
network model (Fig. 8).  

Table 3 presents the values of R2, RMSE, and 
MAE for the proposed RBF model and the G/Gmax

values estimated by Ishibashi and Zhang (1993)’s 
equation for cohesive soils. The results presented in 
this Table confirm higher precision of the proposed 
model with respect to the equation. It is required to 

overestimates the values of normalized shear 
modulus, especially in small to moderate shear strain 
amplitudes. For further examination, Figure 10 was 
plotted to depict the measured values of G/Gmax versus 
those predicted by Ishibashi and Zhang’s equation for 
all element tests data. The values of R2, MAE, and 
RMSE were obtained equal to 0.821, 0.071, and 
0.094, respectively. As shown in this figure, for 
G/Gmax in the range of 0.8 to 1, values of G/Gmax are 
over-predicted, and for other values are under-
predicted. 

Fig. 10 Measured versus predicted values of G/Gmax by Ishibashi and Zhang (1993) 
equation for all element tests data. 
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Fig. 11 Difference between the experimental and predicted values of G/Gmax by Ishibashi and Zhang 
(1993) equation with respect to γ. 

Fig. 12 Comparison of RBF-based model with curves of Vucetic and Dobry (1991). 
 

notice that the current study has employed a database 
larger than that used by Ishibashi and Zhang (1993). 
In addition, the proposed RBF model was developed 
by training of this larger database. Therefore, superior 
performance of the proposed model is reasonable and 
expectable.  

Comparison is also made between the values 
predicted by RBF neural network model and the 
G/Gmax-γ curves proposed by Vucetic and Dobry 
(1991) in Figure 12. The figure demonstrates that the 
predicted and the measured data points are distributed 
in the range of the proposed curves.  

Table 3 Comparison between values of R2, MAE, 
and RMSE for RBF model and previous 
study. 

Model Performance  
 R2 MAE RMSE 
Ishibashi and Zhang 
(1993) 

0.821 0.071 0.094 

RBF-based model 
all element tests data 

0.967 0.028 0.042 

RBF-based model 
centrifuge data 

0.923 0.041 0.044 
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Fig. 13 Comparison of RBF-based model with curves of Stokoe et al. (1999). 
 

A parametric analysis was performed to 
investigate the behavior of the RBF model under 
different conditions and to compare model behavior 
with those observed in experimental studies. The 
results showed that G/Gmax increases due to increasing 
σ’0 and PI, while other parameters were kept constant. 
These trends of the developed model in the parametric 
analysis were in good agreement with the previously 
published experimental results. 

A comparison between performance of the 
developed model and some previously published 
relationship and charts was done. It was clearly 
observed that the RBF neural network model yields a 
much better performance than the previous 
relationship and charts. The developed model 
facilitates estimation of soil shear modulus for the 
routine geotechnical projects for a wide range of 
cohesive soils. 
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