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THESIS ABSTRACT 

Hybrid Modeling of Estrogen Receptor Binding Agents Using Advanced 

Cheminformatics Tools and Massive Public Data 

by KATHRYN RIBAY 

 

Thesis Director:  
Dr. Hao Zhu 

 
 
 
Estrogen receptor-α (ERα) is a critical target for drug design as well as a potential source 

of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents 

is critical in both drug discovery and chemical toxicity areas. Using computational tools, 

e.g. Quantitative Structure-Activity Relationship (QSAR) models, can predict potential 

ERα binding agents before chemical synthesis. The purpose of this project was to develop 

enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics 

tools that can integrate publicly available bioassay data. The initial ERα binding agent data 

set, consisting of 446 binders and 8,307 non-binders, was obtained from the Tox21 

Challenge project organized by the NIH Chemical Genomics Center (NCGC). After 

removing the duplicates and inorganic compounds, this data set was used to create a 

training set (259 binders and 259 non-binders). This training set was used to develop QSAR 

models using chemical descriptors. The resulting models were then used to predict the 

binding activity of 264 external compounds, which were available to us after the models 

were developed. The cross-validation results of training set [Correct Classification Rate 

(CCR)) = 0.72] were much higher than the external predictivity of the unknown compounds 

(CCR= 0.59). To improve the conventional QSAR models, all compounds in the training 
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set were used to search PubChem and generate a profile of their biological responses across 

thousands of bioassays. The most important bioassays were prioritized to generate a 

similarity index that was used to calculate the biosimilarity score between each two 

compounds. The nearest neighbors for each compound within the set were then identified 

and its ERα binding potential was predicted by its nearest neighbors in the training set. The 

hybrid model performance (CCR=0.94 for cross validation; CCR=0.68 for external 

prediction) showed significant improvement over the original QSAR models, particularly 

for the activity cliffs that induce prediction errors in conventional QSAR models. The 

results of this study indicate that the response profile of chemicals from public data 

provides useful information for modeling and evaluation purposes. The public big data 

resources should be considered along with chemical structure information when predicting 

new compounds, such as unknown ERα binding agents. 
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CHAPTER 1: INTRODUCTION AND RESEARCH GOALS 

Section 1: Estrogen Receptors and Estrogen Disrupting Chemicals 

 
Estrogen receptors (ER) are cellular proteins that are activated when bound to 

estrogen molecules. When activated, estrogen receptors trigger the expression of gene 

products crucial to the endocrine system.1  ER are members of the broader family of nuclear 

receptors. These receptors, which include receptors for steroid hormones, thyroid 

hormones, vitamin D and retinoids, They are characterized by a small DNA binding 

domain and a large ligand binding domain at the C-terminal end of the protein.2  There are 

two unique estrogen receptors: ERα and ERβ. ERβ was first identified in 1992 in rat 

prostate and ovary tissue, while ERα has been characterized for much longer.3 These two 

receptors are highly similar in the DNA binding domain, which binds to the estrogen 

response elements in target genes, but differ more significantly in other regions. While the 

DNA binding domain is 97% homologous between the two receptors, the ligand binding 

domain of ERβ is only 60% homologous to that of ERα.4 

In the most straightforward estrogen receptor interactions, the estrogen compound 

binds to the ligand binding domain of the estrogen receptor and the resulting complex 

recruits the required coregulators to interact with the estrogen response elements in the 

target genes and carry out the targeted gene transcription.4 The estrogen receptor binds as 

a dimer in the presence of an agonist ligand.5 This process can become increasingly 

complex depending on the agonist or antagonist nature of the binding agent, the cofactors, 

and the targeted gene.4,6-9 For both ERα and ERβ, the primary agonist is 17-β estradiol 

(Figure 1).10  
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Figure 1: 17-β estradiol 

 

Previous studies have identified the substructural elements strongly associated with ERα 

binding (biophores) as well as substructural elements strongly associated with nonbinding 

(biophobes).11,12 The existence of these fragments and the distance separating them can be 

used to suggest compounds for future study, but identifying biophore fragments in 

compounds of known activity does not always correspond to ERα binding in compounds 

of unknown activity. For example, a phenolic –OH group (Figure 2) is a common 

structural element in ERα binders, yet if the surrounding compound creates steric hindrance 

that prevents H-bonding, the compound will be inactive.12  

 

Figure 2: Phenolic –OH group, a substructural element commonly found in ERα binders 
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Estrogen receptors can also be activated by certain endocrine disrupting chemicals 

(EDC), resulting in a disruption of normal estrogen signaling. This can lead to a variety of 

neurological, metabolic, reproductive, and developmental effects since estrogen receptors 

mediate estrogen signaling in reproductive tissue as well as in the brain, lungs, and 

cardiovascular system.6 Like hormones, many EDC can have tissue-specific action, even 

at low doses. The disruption is especially harmful to children and developing fetuses.7 In 

some pharmaceutical instances that tissue-specific action of ER binding agents has been 

harnessed, such as in the case of Tamoxifen. Tamoxifen, a selective estrogen receptor 

modulator, is an ERα antagonist that is used to target ER positive breast cancer tumors.13 

Due to the large ligand bind domain of both estrogen receptors, there are many small 

molecules which exhibit various degrees of interaction with the receptor. Once bound with 

the EDC, the ER-ligand complex can cause either agonist or antagonist activity depending 

on the resulting conformation.7 While there are many EDC that interact with both receptors, 

the difference between these two receptors allows some ligands specifically bind to only 

one receptor. Among all known binding agents, the ERα binders are much better 

characterized than ERβ binders.1,6,14 Due to the nature of available data, this study focused 

solely on ligands binding to ERα. 

When estrogen receptors are activated by small molecules other than estrogens, the 

expression of the associated genes is deregulated leading to neurological, developmental, 

and reproductive toxicity.15 When considering the large amount of compounds which need 

to be evaluated for their estrogen receptor binding potentials, traditional experimental 

toxicology protocols can be costly and time-consuming. As a result, there is a strong need 

to effectively pre-screen and prioritize small molecules for potential endocrine disruption 
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prior to more costly animal testing. In a 2007 publication, the U.S. National Research 

Council identified both high-throughput screening (HTS) and computational models as 

critical chemical toxicity evaluation tools in 21st century toxicology.16 HTS, which uses an 

automated robotic systems to conduct a large volume of microplate assay tests rapidly, has 

been viewed as a potential alternative to animal models due to the ability to test many 

molecules at a rapid pace and lower cost. The large number of HTS studies has resulted in 

publically available bioassay databases which are a rich source of in vitro data.17 A 

downside to HTS is the frequent rate of false positives and false negatives that can occur 

due to the set concentration which may not correlate with the AC50 values of the tested 

compound.18 Quantitative high-throughput screening (qHTS) builds on HTS by 

incorporating the ability to test varying compound concentrations in order to provide more 

detailed biological activity data. qHTS. This allows for more useful information that can 

be used to more confidently assess the activity of small molecule compounds. Motivated 

by these available data, computational modeling, which costs even less than HTS or qHTS, 

has gained attention as another important evaluation protocol for EDC.19 

Section 2: QSAR Modeling Studies 

Quantitative structure-activity relationship (QSAR) modeling was originally 

developed to identify lead compounds in drug design but has gained importance in recent 

years for wider applications.20 QSAR modeling uses mathematical equations to define a 

relationship between the structure of a compound and its biological activity and then uses 

this quantitative relationship to make predictions of the activity of unknown compounds. 

The QSAR model development process consists of three steps: data preparation, data 

analysis/ model preparation, and model validation.21 Each step in this process contains 
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potential pitfalls that current best practices are designed to avoid. Data preparation requires 

that the bioassay information used be reliable and have used consistent methodology across 

all compounds.22 In most large databases, there exist errors in the recorded chemical 

structures of the compounds, in some cases as high as 10%.23 Most databases record the 

chemical compounds as Simplified Molecular Input Line Entry System (SMILES) strings, 

and incorrect translation or human entry error can lead to mistakes in the chemical 

structure24 and, as a result, the chemical descriptors used to build the QSAR model. 

Therefore, prior to use in QSAR modeling, the chemical compounds must be screened for 

errors and erroneous chemical structures should be corrected or discarded. Additionally, it 

is important to avoid using compounds beyond the scope of the chemical descriptors to be 

used in the QSAR model as well as remove any duplicates. Compounds can either be 

associated with an exact value for activity or classified into categories (i.e. active/inactive). 

Finally, the data set must be large enough to incorporate a diversity of chemical structures 

that will create a more robust QSAR model.23-25  

Once the database is checked and curated, the chemical structures are used to 

generate chemical descriptors. Chemical descriptors can be categorized as one-dimensional 

(such as atom or bond counts), two dimensional (such as path lengths or connectivity), or 

three dimensional (spatial properties of molecules). In this project, three-dimensional 

descriptors were not used. Prior to the development of a QSAR model, all descriptors must 

be normalized to the same [0-1] range scale, and redundant descriptors are removed. 

Outliers can create be identified by performing a Principal Component Analysis, in which 

the chemical descriptors are reduced to principal components, and the chemical compounds 

are mapped onto the most orthogonal principal components.26 The resulting graph will 
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visually demonstrate if any compounds are significant structural outliers, and may 

negatively affect the QSAR model development. These compounds should be discarded in 

order to develop a more effective QSAR model. In addition, it can be used to confirm that 

the active and inactive compounds are occupying a similar region of chemical space, and 

will produce a balanced model. However, this process does not allow for the identification 

of activity outliers, which can create activity cliffs.27 

QSAR models use a variety of machine-learning methods to develop and test 

predictions for unknown compounds. In this study, the methods chosen were Support 

Vector Machines (SVM), Random Forest (RF), and k-nearest neighbor (kNN). These 

modeling methods are discussed in further detail in the modeling methods section of 

Chapter 2. In order to validate the models, both cross-validation and external prediction are 

used. Five-fold cross validation consists of dividing the training set into five equal subsets. 

Each subset is removed once, while the remaining four subsets are used to develop the 

QSAR models. The resulting models are then used to predict the activity of the withheld 

subset.28 Using this method, each compound in the training set is predicted once. These 

predictions are compared to the actual activity in order to evaluate the QSAR model.  

While cross-validation is important in order to verify that the training set has 

produced a model that is consistent across its internal chemical space, frequent studies have 

shown that external prediction often shows lower accuracy than cross-validation.22,29 Thus, 

it is essential to use an external test set to in order demonstrate model predictivity with 

confidence.21 For external test set validation, the QSAR model is developed using the full 

training set. This model is used to predict the biological activity of all compounds in the 
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test set, and the predictions are compared to the known activities in order to evaluate the 

effectiveness of the QSAR model. 

When developing QSAR models, several modeling methods are used in order to 

generate multiple predictions for each chemical compound. These predictions are then 

averaged into a consensus prediction. This avoids the need for arbitrary selection of the 

“best” QSAR model, as the model which best predicted the chosen test set may show 

slightly different performance with a different set of compounds. The consensus prediction, 

based on multiple models using multiple descriptor sets, is more reliable and is better used 

as justification for selecting a compound for further study.30,31 As the consensus prediction 

is an average, it must be assigned a designation of active or inactive by rounding the value 

down to zero (inactive) or up to one (active). In the case of a test set compound that is 

highly dissimilar from the compounds in the modeling set, an applicability domain32 may 

be used to discard the compound from prediction. This prevents an unjustified 

extrapolation of the defined structure-activity landscape.33 

QSAR modeling allows for the computational screening of large sets of 

compounds, which is both cheaper and faster than animal testing or even HTS. In 

pharmaceutical chemistry, it is particularly useful for determining potential lead 

compounds as well as excluding compounds that exhibit unfavorable bioactivities. 

However, existing QSAR studies have shown both the potential and limitations of the 

current uses of QSAR modeling.20,34,35 As this method has moved from the domain of 

pharmaceutical chemistry alone to the wider field of toxicology, certain problems have 

arisen. Rather than searching for potential leads, computational chemists are searching for 
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potentially harmful compounds, and the challenge of creating global models that accurately 

predict general toxicity through QSAR continues to elude.29  

QSAR modeling has been applied to develop estrogen receptor binding models 

multiple times in recent years. These studies have covered a wide range of modeling 

approaches and data set sizes (Table 1). In the first study, Liu, Papa, and Grammatica36 

combined information from multiple bioassays to refine the identified ERα activity of 108 

compounds. They then used ordinary least squares regression and genetic algorithm to 

develop a QSAR model using chemical structure descriptors of those compounds and 

predicted the activity of 28 additional compounds. This model showed strong results but 

used very small training and test sets. Taha et al.37 specifically modeled the binding of 

ligands to ERβ using genetic algorithm and multiple least squares regression to build the 

QSAR models. Their results showed acceptable prediction within the modeling set, but 

poor prediction for external compounds. Zhang et. al.38 and Deng et. al.39 both developed 

QSAR models to address both ERα and ERβ. In both cases, the QSAR models were better 

able to predict binding to ERα than ERβ, in part due to the size of the available datasets 

used to develop the models. A recent study by Zang, Rotroff, and Judson40 used a large 

data set of ERα binding activity from the Tox21 project to develop QSAR models using a 

combination of random forest (RF) support vector machines (SVM) methods. While this 

modeling study achieved acceptable predictivity, it used only chemical structure data in 

developing the QSAR models which can leave the results vulnerable to certain specific 

prediction errors known as activity cliffs. 
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Year Receptor 

Studied 
Data Set 

Size 
Method Reference 

2008 α 108 OLS/GA-VSS 36 

2010 β 119 GA/MLR 37 

2013 α/β 546α/137β kNN (STL & 
MTL) 

38 

2013 α 8147 SVM/RF 40 

2014 α/β 81 MLR 39 

 

Table 1: A sampling of QSAR studies on estrogen receptor interaction. 
 

Although there have been some promising results, there is increasing evidence that 

the applicability of these models is only limited to certain compounds.41,42 A fundamental 

problem with using structure-activity relationships to predict the performance of unknown 

compounds is the difficulty of predicting the behavior of chemical space beyond that of the 

known compounds. This is particularly challenging when a small change in biological 

mechanism can trigger wide-ranging organism-level effects.29 Compounds with similar 

structures may show significantly different activities, leading to prediction errors in QSAR 

models. These pairs of molecules are known as “activity cliffs” in QSAR studies.27 This 

term arises from looking at the structure-activity landscape as a graphical surface. When 

the structure and activity are closely related and change gradually together, the surface is 

smooth. However, when highly similar molecules exhibit markedly different activity, the 

surface becomes jagged.27,33 QSAR models predict the activity of compounds only based 

on their chemical structure information, but the presence of activity cliffs can lead to 

unavoidable prediction errors if there is no other information than chemical structures.43   
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The estrogen receptor has been the target of many modeling studies due to the 

effects of endocrine disruption that occur when a compound present in the environment or 

in a consumer product activates the receptor. There is a need for methods that can quickly 

and effectively screen a wide range of chemicals to identify potential EDC before a product 

is brought to market. The attempt to use QSAR models to fill this need has been hindered 

by the structural diversity of the estrogen receptor binders and has reached a bottleneck 

due to the existence of activity cliffs. Although this study focuses on activation of ERα 

only, there is a wide range of chemical structures that are able to activate this receptor due 

to its large ligand binding domain.6 The lack of experimental data, especially for active 

compounds (ERα binders), has resulted in activity cliffs in QSAR models based solely on 

chemical structures and limited the applicability of traditional QSAR modeling methods. 

Section 3: Research Goals 

 The goal of this thesis is to address the need for methods to predict the binding of 

novel chemical compounds to estrogen receptors in the body, particularly ERα. Since 

compounds that bind to ERα can interfere with the normal function of the endocrine 

system, causing deleterious effects on multiple systems in the body, novel compounds in 

pharmaceutical or other industries must undergo costly testing to ensure that they will not 

interfere with ERα. Cheminformatics tools can be used to screen compounds in a more 

cost-effective way, but the prevalence of activity cliffs in QSAR models can lead to 

unreliable results for certain compounds. 

 In this thesis, I developed and tested enhanced computational models for estrogen 

receptor binding agents using both QSAR approaches and a biosimilarity search, which is 

based on publically available bioassay data. This method incorporates both chemical 
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structure data via QSAR descriptors and biological activity data through bioassay 

responses. Using the resulting hybrid models, the new compounds can be directly predicted 

for their estrogen receptor binding potential. The incorporation of biosimilarity search 

based on extra bioassay data can address the activity cliffs issue of QSAR modeling and 

improve the prediction accuracy for new compounds. 
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CHAPTER TWO: Quantitative Structure-Activity Relationship Modeling of 

Estrogen Receptor Binding Affinity 

 

Section 1: Materials and methods 

 

Data curation  

The original dataset used in this study was obtained in two parts separately from 

the National Center for Advancing the Translational Science (NCATS) via the Tox21 

Challenge project. The dataset (PubChem assay AID 743077) consisted of the results of 

the quantitative High Throughput Screening (qHTS) to identify agonists of the ERα 

signaling pathway by measuring the expression of a beta lactamase reporter gene controlled 

by an ERα ligand binding domain (ER-LBD) fusion protein.44 This dataset was used as the 

training set in the Tox21 Challenge. This original dataset consisted of 8,753 compounds, 

of which 446 were categorized as active (ERα binders) and 8307 were categorized as 

inactive (non-binders). The compounds were processed by the CaseUltra® 

(www.multicase.com) structure checker tool to remove duplicates and inorganics, resulting 

in 5,647 unique organic compounds (259 actives and 5,388 inactives). Compounds with 

incorrect structures as well as mixtures were discarded in the process as well. All of the 

active compounds were selected for the training set and combined with a random selected 

259 inactive compounds to produce a balanced training set of 518 compounds. An 

additional but much smaller set of compounds not included in the original qHTS data was 

provided by the Tox21 Challenge project as an external test set to validate the resulting 

models. This external test set of 297 compounds (25 actives and 272 inactives) was also 

processed by the CaseUltra® structure checker to remove duplicates and inorganics, 

resulting in 264 unique compounds (24 actives and 240 inactives). 

 

http://www.multicase.com/
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Figure 3: The hybrid modeling workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical descriptors 

Once the datasets were curated, chemical descriptors were calculated using two 

commercial descriptor generators. A total of 192 2-D Molecular Operating Environment® 

(MOE) (www.chemcomp.com) descriptors were generated using MOE version 2013, 

which include physical properties, atom and bond counts, connectivity and shape indices, 

adjacency and distance matrix descriptors, etc. Dragon® (www.talete.mi.it/) version 6 was 

used to generate 1,259 descriptors including constitutional indices, drug-like indices, 

connectivity indices, functional group counts, etc. MOE descriptors were used as this 

standardized descriptor set provides a small but widely varied set of descriptors. Dragon 

descriptors were used as well in order to generate a wider pool of descriptors. The MOE 

http://www.chemcomp.com/


14 
 

 
 

descriptors were used to identify principal components and the training set underwent 

Principal Component Analysis (PCA) to ensure that all active and inactive compounds 

occupy intertwining chemical space.  

 

 

Figure 4: Principal Component Analysis of training set compounds. Red= active; Purple= 
inactive 
 

All descriptors were normalized to [0,1] and any redundant descriptors were 

removed by deleting those with low variance (standard deviation <0.01 for the whole 

training set) and randomly keeping one of any pairs of descriptors that had high correlation 

(R2>0.95 between two descriptor values for the training set compounds), leaving 132 

unique MOE descriptors and 594 unique Dragon descriptors for both data sets. In order to 

calculate the chemical similarity among compounds, MOE 2013 was used to calculate 166 

MACCS fingerprints of each compound. These fingerprints were used as descriptors to 

calculate the Tanimoto coefficient of each compound pair to determine their chemical 

similarity. The Tanimoto coefficient is a measure of the distance between the compounds 

in chemical space given as a value between [0,1]45  
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QSAR model development and model validation 

As shown in the hybrid modeling workflow (Figure 3), the assay and chemical 

descriptor data were then used to develop QSAR models via machine learning. Three 

machine learning algorithms were used to develop QSAR models: support vector 

machines (SVM), random forest (RF), and k nearest neighbor (kNN). SVM was 

originally developed by Vapnik46 as a method in which modeling set error and model 

complexity were incorporated into a loss function that was minimized to find the optimal 

balance of modeling set error and model complexity for predicting the test set. An 

advantage to using SVM is that it is particularly useful in high-dimensional space, 

although it becomes less effective if there are significantly more descriptors than 

compounds.30 In an SVM QSAR model, the chemical descriptors are mapped onto n-

dimensional space using kernel functions. The descriptors are mapped for optimal 

separation between the two different classes of input such that they lie on opposite sides 

of a dividing hyperplane. The test set compounds are then mapped onto the same space 

and a prediction is determined based on their location relative to the hyperplane.46  

For a RF model, the algorithm creates decision trees from randomly selected 

chemical descriptors. At the start, n samples are drawn to create n trees. For each data 

split, m variables are randomly selected and the best split from those m data points is 

kept. The trees are not pruned and the process repeats for a defined number of iterations 

and the outputs are combined for a final prediction. A benefit to RF modeling is that it is 

efficient for large databases and can detect variable interactions due to the use of 

bootstrapping during tree growth.47   
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A kNN model is based on the concept that compounds will have a similar activity 

to their nearest neighbors. It uses a classification algorithm method along with a variable 

selection technique. This model predicts the activity of a target compound by identifying 

the k most similar compounds within the chemical descriptor space and using their 

activity to predict that of the target compound. A variable selection procedure, in this 

case genetic algorithm, is used to define the nearest neighbors. The model is originally 

mapped onto a random selection of chemical descriptors. In genetic algorithm, as in the 

process of natural selection, descriptors are swapped and the resulting model is evaluated. 

If the resulting model is better than the “parent” model, the original descriptor is 

discarded and the new descriptor is kept in its place. If the new model is not better, the 

original descriptor is kept. The best model after a defined number of iterations is then 

used to predict the test set activities.48,49 

In this study, the RF and SVM algorithms available in R® 3.0.2 using the 

packages “e1071” and “randomForest” were implemented.50 The SVM model was tuned 

to optimize performance. The kNN models were built using in-house modeling tools, also 

available at Chembench (chembench.mml.unc.edu).51 Each method was performed with 

both MOE and Dragon descriptors in the QSAR model development process, as shown in 

the modeling workflow in Figure 3. The six resulting models were averaged to give a 

consensus prediction, as described in previous publications.52,53 All models were 

validated using a five-fold cross validation. In this procedure, the training set was 

randomly split into five equal selected subsets. Four subsets (80%) were used as a 

training set and the compounds in the fifth subset (20%) were used as a test set. The 

training set was used to develop QSAR models and the resulting models were used to 
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predict the test set. This procedure was repeated five times until all compounds were used 

in the test set once.21,28 

Section 2: Results and Discussion 

The modeling set was used to develop six individual QSAR models and their 

predictions were averaged as a consensus prediction. The model performance was 

indicated by five-fold cross validation of the modeling set itself and external prediction of 

a set of 264 unknown compounds. The performance was evaluated by calculating the 

sensitivity, specificity, and CCR for all models, as shown in Figure 5.  

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) 

𝐶𝐶𝑅 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦2  

These results were compared in order to evaluate the model performance for all 

individual models as well as the consensus model. 
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Figure 5: The performance of all resulting models: a) cross-validation of the 518 training 
set compounds; b) external validation of 264 unknown compounds. 
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Among the five-fold cross-validation procedures, the predictivity was similar 

across all the models (CCR = 0.642-0.749). However, the external predictions of the 264 

unknown compounds showed a significant decrease in accuracy (CCR = 0.544-0.627), as 

observed in previous QSAR studies.30,53 Among the individual cross-validation models, 

the Dragon RF model gave the best performance while the SVM MOE model returned 

the lowed CCR. The individual models’ external predictions showed greater variety, with 

many of the models showing skewed performance toward sensitivity or specificity at the 

expense of the other. The kNN models had the lowest performance among the individual 

models, while the SVM Dragon model was shown to have the highest CCR (0.627).  

Compared to individual models, the consensus model gave similar performance to 

the best individual models for both five-fold cross validation (sensitivity = 0.730, 

specificity = 0.704, and CCR = 0.717) and external predictions (sensitivity = 0.500, 

specificity = 0.683, and CCR = 0.592). In an attempt to improve the predictive ability of 

the QSAR model, an applicability domain was applied. An applicability domain consists 

of assessing the similarity of the target compound to its nearest neighbor. In this case, the 

Tanimoto coefficient was used to determine the similarity between compounds. When the 

distance between the compound and its nearest neighbor exceeds the set parameter, the 

activity of that target compound is not predicted.30,54 Applying an applicability domain to 

both validation procedures did not show an improvement in predictive ability, so all 

predictions (100%) were retained when analyzing the QSAR models. 

 The cross-validation of the QSAR training set showed acceptable predictive 

ability, but the external prediction returned poor predictivity. In particular, some of the 

individual models showed unacceptably skewed results for the external prediction, with 
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the SVM Dragon and kNN MOE giving high numbers of false positives (low specificity) 

and the Random Forest models giving high numbers of false negatives (low sensitivity). 

Although the consensus model shows relatively stable performance, its sensitivity of 

external test set prediction is much lower than cross validation due to the high proportion 

of false negatives. These results suggest the presence of activity cliffs within the data that 

may be addressed by the addition of biological response data to the computational model. 
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CHAPTER THREE: Biosimilarity Calculation and Hybrid Model Development 

Section 1: Methods 

Bioassay profiling similarity calculation 

 An in-house profiling tool55 was used to extract relevant bioassay data from 

PubChem for each compound in the both the training and test sets. This tool identified each 

bioassay in PubChem for which the compound had an active, inactive, or inconclusive 

response and sorted the information into a matrix assigning values of 1, -1, or 0 for the 

possible responses. The two profiles were sorted and screened and all assays that were not 

present in both the training set and test set profiles were discarded. The PubChem assays 

in the profile were ranked by the numbers of active responses for the compounds in the 

training and test sets and filtered, as shown in the modeling workflow (Figure 3), to 

identify the most relevant bioassay profiles. The resulting PubChem bioassay profile 

consisted of 44 bioassays (shown in Table 2), which contain the largest number of active 

responses. The bioassay profile was screened to remove the original data set (AID 743077) 

so as to prevent redundancy in the similarity calculation. Bioassays were also removed if 

they did not contain useful experimental data or if they were redundant to another linked 

assay. 

Table 2.  PubChem bioassays used to create the bioprofile. 

PubChem Bioassay Description Active 

Responses 

Inactive 

Responses 

AID 410 
An assay for inhibitors and substrates of 
CYP1A2. 77 54 

AID 686978 
A screen to directly identify novel TDP1 
inhibitors active in a cellular environment 
in the absence of CPT. 

77 146 

AID 1851 
This assay detected inhibitors and 
substrates of various human cytochrome 
p450 (CYP450) isozymes 

76 53 
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AID 504332 
A qHTS assay for inhibitors of histone 
lysine methyltransferase G9a. 76 206 

AID 686979 
A screen to directly identify novel TDP1 
inhibitors active in a cellular environment 
in the presence of CPT. 

66 163 

AID 884 
An assay for inhibitors and substrates of 
CYP3A4. 60 131 

AID 893 
A qHTS assay for inhibitors of 
hydroxysteroid (17-beta) dehydrogenase 4 
(HSD17B4) 

35 188 

AID 1030 
A qHTS assay for inhibitiors of aldehyde 
dehydrogenase 1 (ALDH1A1) 35 186 

AID 720532 
A screen to identify small molecule 
inhibitors that block VSV-MARV 
(Marburg virus) binding or entry into cells 

35 189 

AID 899 
An assay for inhibitors and substrates of 
CYP2C19. 34 88 

AID 1490 
A validation of the developed Sfp-PPtase 
assay that detects inhibition of Sfp-PPTase 33 210 

AID 1883 
An assay to identify inhibitors of malarial 
growth. 33 33 

AID 504847 
This HTS-compatible enzymatic assay that 
was developed to measure the inhibition 
between VDR and coregulator peptide 
SRC2-3 exerted by small molecules 

33 311 

AID 886 
A qHTS assay for inhibitors of 
hydroxylacyl- coenzyme A dehydrogenase 
type II (HADH2) 

29 163 

AID 1460 
An assay that screens for inhibitors of  tau 
fibril formation 28 170 

AID 891 
An assay used for inhibitors and substrates 
of CYP2D6. 24 80 

AID 894 
A qHTS assay for inhibitiors of 15-
hydroxyprostaglandin dehydrogenase 
(HPGD) 

24 204 

AID 883 
An assay for inhibitors and substrates of 
CYP2C9. 23 97 

AID 743244 
A qHTS assay to identify gametocytocidal 
compounds which are capable of killing 
late stage P. falciparum gametocytes 

23 211 

AID 1996 
This assay measures aqueous solubility of 
small molecule compounds. 22 7 

AID 2147 
A qHTS assay for inhibitors of human 
jumonji doma containing 2E (JMJD2E) 21 151 

AID 2551 
A qHTS assay to detect small molecule 
inhibitors of ROR gamma activity 20 245 

AID 887 
A qHTS assay for inhibitors of 15-human 
lipoxygenase 19 198 
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AID 588590 
A high throughput replication assay to 
identify small molecule inhibitors of 
polymerase iota. 

19 163 

AID 720533 
An assay to identify small molecule 
inhibitors that block VSV-LV binding or 
entry into cells 

19 194 

AID 589 
A qHTS assay for spectroscopic profiling 
in the 4-MU spectral region 17 108 

AID 590 
A qHTS assay for spectroscopic profiling 
in the A-350 spectral region 17 107 

AID 2549 
A validation assay for inhibitors of Rec-Q-
like DNA helicase 1 (RECQ1) 17 282 

AID 504832 
A qHTS for delayed death inhibitors of the 
malaria parasite plastid 16 130 

AID 588579 
A qHTS for inhibitors of DNA polymerase 
kappa 16 331 

AID 588795 
A qHTS for inhibitors of human flap 
endonuclease 1 (FEN1) 16 237 

AID 1463 
A counterscreen qHTS for inhibitors of tau 
fibril formation 15 188 

AID 504339 
A qHTS assay for inhibitors of JMJD2A-
tudor domain 15 111 

AID 596 
A qHTS assay for tau filament binding 

14 181 

AID 485314 
A qHTS for inhibitors of DNA polymerase 
beta 14 127 

AID 902 
A cytotoxicity assay to identify small 
molecular compounds that selectively 
target mutant p53-containing cancer cells 

13 216 

AID 880 
A qHTS assay to identify inhibitors of the 
RGS:GPCR interaction 12 274 

AID 915 
A qHTS assay for the identification of 
small molecule antagonists for the hypoxia 
response element (HRE) signaling 
pathway 

12 78 

AID 2546 
A counterscreen qHTS assay for inhibitors 
of ROR gamma transcriptional activity 12 242 

AID 924 
A cytotoxicity assay to identify small 
molecular compounds that selectively 
target mutant p53-containing cancer 
cells at the permissive temperature 

11 221 

AID 2472 
Coupling assay counterscreen for a qHTS 
assay for inhibitors of fructose-1,6-
bisphosphate aldolase from Giardia 
lamblia 

11 186 

AID 485317 
HTS assay for inhibitors of augmenter of 
liver regeneration (ALR) 11 110 

AID 1476 
A qHTS assay for inhibitors of cruzain 

10 226 
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AID 2517 
A qHTS assay for inhibitors of human 
apurinic/apyrimidinic endonuclease 
(APE1) 

10 161 

 

 The final profile was then used to calculate the biosimilarity between pairs of two 

compounds, as shown in the modeling workflow (Figure 3). This was done using the 

following WEBS formula: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑊𝐸𝐵𝑆) =  ∑(𝑝 + (𝜔)𝑛)∑(𝑝 + (𝜔)𝑛 + 𝑑) 

where p is the number of assays in which both compounds show active results, n is the 

number of assays in which both compounds show inactive results, and d is the number of 

assays in which the two compounds show opposite results. Inconclusive or missing data 

were not considered in the calculation. The negative response data (inactives) are weighted 

less than positive responses (actives) in the biosimilarity calculation. This is done because 

the positive (active) responses provide more useful information about biological similarity, 

since compounds may have inactive results for drastically different reasons. In this study, 

the weight parameter ω was given the value of 0.06. The resulting WEBS values range 

from 0-1 and were used to determine the nearest neighbors in the training set for each test 

set compound.  

Each WEBS score was also assigned a confidence value which compared the 

number of assays included in the comparison with the total number of assays in the profile. 

This confidence value was used to prioritize compounds with matching WEBS scores when 

determining the biological nearest neighbors of a target compound. In determining the 

confidence value, as in the WEBS calculation, a shared active data point was given more 

weight than a shared inactive data point. Any compound with WEBS similarity score over 
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0.6 was considered as a potential nearest neighbor for the target compound. The ERα 

binding activities of up to the top five nearest neighbors were used to calculate the predicted 

activity of the relevant test set compound. The resulting predictions were rounded to assign 

a score of 0 (inactive) or 1 (active) to the test set compounds. When fewer than five nearest 

neighbors existed within the training set, all nearest neighbors were used. If there were no 

nearest neighbors (compounds with a WEBS score of at least 0.6) defined in the training 

set, no prediction was returned for that test set compound. 

Hybrid Model Development 

 In order to form a hybrid model, the raw biosimilarity prediction was averaged with 

the QSAR consensus prediction for each compound, as shown in the modeling workflow 

(Figure 3).  𝐵𝑖𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑄𝑆𝐴𝑅 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠2 = ℎ𝑦𝑏𝑟𝑖𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

For compounds which were not able to be predicted by the biosimilarity tool due to missing 

data, the QSAR consensus prediction was used as the predicted value. Compounds with 

strongly diverging results from the QSAR consensus model and bioprediction were 

considered as inconclusive and removed.  This method returned a prediction for 192 of the 

264 test set compounds. 

Section 2: Results 

Bio-assay profile and predictions 

Previous studies have shown improvements of QSAR models by incorporating 

biological data as extra descriptors into the modeling procedure. Relevant bioassay activity 

has been shown to be useful for improving the activity predictions when combined with 

QSAR methods.52,56-58 Most recently, Wang et. al.57 found that integrating specific 
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biological activity descriptors into a hybrid model improved the predictive power. 

However, the lack of available bioassay data prevented this study from fully integrating 

the bioprofile from PubChem into the hybrid model. In this study, the in-house profiling 

tool was used to extract and optimize a biological profile containing 44 PubChem assays 

for 518 modeling set and 261 test set compounds. Using the WEBS score to calculate the 

biological similarity of each two compounds, those most similar compounds with WEBS 

scores over the nearest neighbor cut-off were identified for each test set compound and 

then used to predict the ERα binding potential. When combining the biosimilarity search 

with the QSAR consensus model as a hybrid model, the cross validation demonstrated a 

significant improvement of the accuracy over traditional QSAR modeling based only on 

chemical descriptors. Compared to the QSAR consensus model, the sensitivity, specificity 

and CCR of the hybrid model increased from 0.730 to 0.963, from 0.704 to 0.925, and from 

0.717 to 0.939, respectively (Figure 5).  

The external test set was also predicted using up to five of the most biosimilar 

compounds in the training set and the results combined with the consensus model to form 

a hybrid model. These predictions showed a noticeable improvement over the QSAR based 

solely on chemical descriptors. The external test set predictions returned a sensitivity = 

0.813, specificity = 0.540, and CCR = 0.676 with a coverage of 73% (192 out of 264), an 

improvement over the QSAR prediction for which the consensus model had a sensitivity = 

0.500, specificity = 0.683, and CCR = 0.592 (Figure 5). The increase of sensitivity in both 

cross validation and external predictions brings a considerable benefit when prioritizing 

potential EDCs for experimental testing.  
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Section 3: Discussion 

Considering the cross validation of the training set, the QSAR models all showed 

acceptable predictivity. However, the external prediction of 264 unknown compounds had 

significantly decreased prediction accuracy, especially for individual models. Table 3 

displays examples of compounds that were consistently incorrectly predicted by all QSAR 

models. The first active compound, N-[3-[cyclohexylidene(1H-imidazol-5-

yl)methyl]phenyl]ethanesulfonamide (PubChem CID 6603710), an α-1D-adrenoceptor 

antagonist, is an ERα binder that was incorrectly predicted as inactive by all QSAR models. 

This compound’s chemical nearest neighbor in the training set is the inactive compound 

sulfamethoxazole (PubChem CID 5329). Dimethoxynaphtoquinone (PubChem CID 3136) 

is also an active ERα binder that was incorrectly predicted by the QSAR consensus model. 

Its chemical nearest neighbor dichlofop-methyl (PubChem CID 39985) is an inactive 

compound in this assay. Similarly, the compound N-methyl-2,3-diphenyl-1,2,4-thiadiazol-

5-imine (PubChem CID 682802) is an inactive compound. But its chemical nearest 

neighbor, dichlorodiphenyltrichloroethane (DDT) (PubChem CID 3036), in the training set 

is an ERα binder (active response). In each case, as expected, the QSAR model made a 

determination of activity based on compounds with similar chemical descriptors. However, 

for each of these examples, the most similar chemical compounds does not display the 

same biological activity. These prediction errors cannot be avoided if only chemical 

structure information is used for modeling. 
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The prediction of the test set improved when biosimilarity results were combined 

with the QSAR consensus model as a hybrid model. In particular, the sensitivity of the 

external test set prediction increased from 0.500 for the QSAR consensus model alone to 

0.813 for the hybrid model. This indicates that the hybrid model was better able to correctly 

identify active compounds. The biological nearest neighbors, as determined by WEBS 

score, provide more useful information for the predictions of external compounds.  For 

example, the biological nearest neighbor in the training set of N-[3-[cyclohexylidene(1H-

imidazol-5-yl)methyl]phenyl]ethanesulfonamide (PubChem CID 6603710), an ERα 

binder, is toxaphene (PubChem CID 5284469), also an active compound (Table 3). The 

WEBS similarity score between these two compounds was 1.00. For the other external test 

set compounds in Table 3, their biological nearest neighbors show the same ERα binding 

activities as the relevant target compounds. Furthermore, the WEBS scores for these test 

set compounds show dissimilarity to their chemical nearest neighbors. For example, the 

inactive compound N-methyl-2,3-diphenyl-1,2,4-thiadiazol-5-imine (PubChem CID 

682802) has a biological nearest neighbor (WEBS=1.00), malathion (PubChem CID 4004), 

a widely used insecticide that also showed inactive response in the ERα binding assay. Its 

chemical nearest neighbor, DDT (PubChem CID 3036), which is a now-banned insecticide, 

has a very low biosimilarity (WEBS =0.0169) to N-methyl-2,3-diphenyl-1,2,4-thiadiazol-

5-imine. Seven PubChem assays, which have testing data for both compounds, show 

opposite results between these two compounds. The above analysis indicates that these 

pairs are activity cliffs, chemically similar compounds with different biological effects (in 

this case, ERα binding). However, the hybrid model, using biosimilarity as additional 
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information in the modeling process, was able to correctly assign the appropriate activity 

to each test set compound.   

 

Table 3: Three test set compounds (the first compound in each group) with their chemical 
nearest neighbor (the second compound) and biological nearest neighbor (the third 
compound).  
 
 Compound Activity WEBS 

Score 
Bioprofiles* 

1 

 
CID= 6603710 

Active --       
* 

 
CID= 5239 

Inactive 0.117       
 

 
CID= 5284469 

Active 1.00       
 

2 

 
CID= 3136 

Active --       
** 

 
CID= 39985 

Inactive N/A N/A 

 
CID= 7188 

Active 1.00       
 

3 

 
CID=682802 

Inactive --        
*** 

 
CID= 3036 

Active 0.0169        
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CID= 4004 

Inactive 1.00        
 

* In the selected bioprofiles, the red color indicates active response, blue color indicates 
inactive response and white color indicates no data available. 
The bioprofiles only consist of the assays out of 44 PubChem assays that have the data for 
the three compounds in each group: 
First group bioprofile assays: PubChem AID 410, 883, 884, 893, 504832, 686978 
Second group bioprofile assays: AID 410, 884, 504847, 686978, 686979, 743244 
Third group bioprofile assays: AID 884, 886, 887, 893, 504847, 686978, 686979 
N/A indicates there is no data available for this compound within these assays. 
 

The bioassay response profile of the compounds shows promising potential to 

improve traditional QSAR models. Furthermore, when examining the PubChem assays 

used in the profile of this study, many targets of the assays regulate or are regulated by 

ERα. The highest ranked assay, which consists of the highest number of active responses 

for our training set compounds, was used to screen potential inhibitors of histone lysine 

methyltransferase G9a (PubChem AID 504332). This assay acts as a co-regulator in the 

estradiol-induced activation or repression of gene transcription by ERα.59,60 Several other 

assays used in this profile specifically target enzymes in the cytochrome P450 (CYP450) 

family. The cytochrome P450 family consists of heme-containing oxidase enzymes, many 

of which are well-studied due to their involvement in the metabolism of many drugs. These 

assays include screening inhibitors for CYP1A2 (PubChem AID 410) and CYP3A4 

(PubChem AID 884), and a composite screening results for various CYP450 inhibitors 

(PubChem AID 1851). These proteins modulate ERα signaling by helping to maintain the 

androgen/estrogen balance61. Through analyzing the bioassays within the response profile, 

it indicates the future direction of gathering useful data for evaluating potential ERα 

binders. 
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Section 4: Future Work and Conclusion 

The biosimilarity methodology used in this project shows a promising way to 

improve the predictivity of traditional QSAR modeling. However, since many compounds 

may not have been tested and have no data available in public resources, the usefulness of 

biosimilarity is limited by its coverage. A potential strategy to address the limitation of 

missing data is by using “read-across” methods 62 to fill gaps in bioassay data for unknown 

compounds. While there are certain sources of uncertainty inherent in “read-across” 

methods, recent developments in “read-across” methods have moved toward the 

development of frameworks that allow for more certainty in gap filling. Another pitfall of 

using the public data is the prevalence of experimental errors and the redundancy between 

various assay results.23,24 The model is only as good as the data used to develop it, and 

errors in database curation can lead to models with limited predictive utility. The next step 

in the development and refinement biosimilarity search tool will be to develop novel data 

mining approaches to which anticipate and address such issues.  

The second current limitation lies in seamlessly incorporating chemical data with 

biological data. For many compounds, chemical descriptors are adequate for predicting 

activity. In fact, for a limited number of compounds, QSAR with chemical descriptors 

alone provided a better prediction than the hybrid model. In order to effectively incorporate 

bioassay profiling into QSAR predictions without severely limiting the applicable range of 

compounds, it is necessary to predict when chemical structure should be given more 

influence in the prediction and when that influence should be shifted to the biological 

profile. The integration of a biological profile alongside chemical descriptors is an 

important target for further study. 
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In this study, I first developed QSAR models for the qHTS assay data, which 

identify agonists for the ERα signaling pathway, provided in the Tox21 challenge. The 

external test set prediction of all QSAR models, including the consensus model, is lower 

than the cross validation results of the training set. However, by combining the 

biosimilarity search using the bioassay response profile automatically extracted from 

PubChem with the QSAR consensus predictions, a hybrid model was created. The resulting 

hybrid model showed a noticeable improvement in both cross-validation and external 

prediction results compared to QSAR models only based on chemical descriptors. This 

result demonstrated that integrating extra biological data in the modeling process can 

improve traditional QSAR models when predicting ERα binding potentials for unknown 

compounds. This strategy can be used to develop enhanced models to evaluate other types 

of toxicity for compounds of interest.  
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Supplemental Tables 

Supplemental Table 1: The training set compounds identified by PubChem CID 
number along with their provided experimental activity, consensus prediction as 
determined by QSAR, prediction as determined by biosimilarity, and hybrid model 
prediction. Activity of 0 = inactive (nonbinder); activity of 1 = active (ERα binder); 
“--" indicates no prediction for the compound. 
 

CID 
Experimental 
Activity 

QSAR Consensus 
Prediction BioPrediction 

Hybrid 
Prediction 

30951 1 0.738 1 1 
6702 1 0.546 1 1 
2256 0 0.543 0 0 
8425 0 0.779 1 1 
6623 1 0.916 1 1 
2347 1 0.767 1 1 
7184 1 0.851 1 1 

31404 0 0.112 0 0 
16043 0 0.138 0 0 
7768 0 0.453 0 0 
6129 0 0.759 0 -- 
573 0 0.543 -- -- 
289 1 0.279 1 1 

8371 1 0.186 1 -- 
15910 1 0.405 1 -- 
15331 0 0.508 0 0 
4211 1 0.842 1 1 
3036 1 0.644 1 1 

76 1 0.925 -- 1 
540877 1 0.818 -- 1 

7070 1 0.541 1 1 
15122 0 0.167 0 0 
7069 0 0.264 0 0 
949 0 0.524 0 0 

4537 1 0.970 -- 1 
450 1 0.978 -- 1 

3285 1 0.977 -- 1 
12967 0 0.029 0 0 
72060 0 0.453 0 0 
3304 1 0.882 -- 1 
3468 1 0.451 -- -- 

522636 0 0.426 -- -- 
12089 0 0.108 0 0 
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3640 0 0.547 -- -- 
7638 1 0.841 1 1 
8017 0 0.193 0 0 

20240 1 0.839 1 1 
5280863 1 0.909 1 1 

4004 0 0.265 0 0 
4080 1 0.967 -- 1 

13709 0 0.036 0 0 
13622 1 0.210 1 -- 
9958 1 0.206 1 -- 
7543 0 0.844 0 -- 

21694 1 0.567 1 1 
9074 1 0.758 1 1 
7526 0 0.205 0 0 

541197 1 0.887 -- 1 
6419 0 0.091 0 0 

16741 0 0.525 0 0 
8249 0 0.857 -- 1 
7103 1 0.713 1 1 
4937 0 0.348 0 0 
4947 1 0.542 1 1 

5280343 1 0.760 1 1 
5054 0 0.392 0 0 
7276 0 0.317 0 0 
5391 0 0.172 0 0 

10544 0 0.460 -- -- 
8765 1 0.762 1 1 

5284469 1 0.397 1 -- 
165628 1 0.878 -- 1 

3787925 1 0.960 -- 1 
10793 1 0.370 1 -- 
8256 1 0.649 1 1 

13530 1 0.401 1 1 
6619 1 0.581 1 1 
335 0 0.172 0 0 

7284 0 0.054 0 0 
7321 0 0.056 0 0 
7504 0 0.278 0 0 
8609 1 0.736 1 1 
8914 0 0.790 0 -- 

61163 0 0.122 0 0 
13254 1 0.723 1 1 

5354198 1 0.825 1 1 
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24874 0 0.190 0 0 
5280961 1 0.923 1 1 
5281708 1 0.933 1 1 
5280378 1 0.909 1 1 

22283 1 0.690 -- 1 
6025 1 0.512 1 1 
5408 1 0.890 -- 1 

13089 1 0.468 1 1 
8814 1 0.481 1 1 

15 1 0.947 -- 1 
3269 1 0.931 -- 1 
698 1 0.973 -- 1 

3606 1 0.935 -- 1 
3049 1 0.944 -- 1 

5280443 1 0.928 1 1 
4788 1 0.892 1 1 

5280373 1 0.924 1 1 
5281607 1 0.928 0 -- 

4632 1 0.746 1 1 
8572 1 0.822 1 1 
6626 1 0.683 1 1 

69150 1 0.911 0 -- 
66166 1 0.911 1 1 
12111 1 0.931 1 1 
66030 1 0.530 1 1 
3405 0 0.798 -- 1 

14138 1 0.858 1 1 
107377 1 0.641 1 1 

7180 1 0.749 1 1 
7175 1 0.543 1 1 

11742 1 0.827 1 1 
2040 1 0.805 1 1 
2096 1 0.889 -- 1 
3698 0 0.452 0 0 

223407 1 0.939 -- 1 
2524 0 0.245 -- 0 

10580 1 0.403 -- 0 
430461 1 0.848 0 0 

2769 0 0.535 0 0 
16351 0 0.548 0 0 
2913 0 0.059 0 0 
2949 1 0.871 -- 1 

4659180 1 0.926 -- 1 
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3159 1 0.533 -- -- 
3262 1 0.942 -- 1 
3263 1 0.961 -- 1 
3265 1 0.871 -- 1 

3590886 1 0.967 -- 1 
3267 1 0.972 -- 1 
699 1 0.212 -- 0 

3288 1 0.898 -- 1 
3415 1 0.299 -- 0 

628035 1 0.920 -- 1 
3647 0 0.216 0 0 
3728 0 0.066 0 0 
3735 1 0.300 1 1 
3961 0 0.626 0 0 

522463 1 0.899 -- 1 
4197 0 0.840 0 -- 
4240 0 0.697 -- 1 

220503 1 0.915 -- 1 
4432 1 0.929 -- 1 
4435 1 0.936 -- 1 
4536 1 0.979 -- 1 
4567 0 0.231 0 0 
5407 1 0.785 -- 1 
5434 0 0.466 -- -- 
5470 1 0.898 -- 1 
5472 1 0.796 1 1 
5479 1 0.792 1 1 

4659569 0 0.459 0 0 
5611 0 0.442 -- -- 
4638 1 0.781 -- 1 

36324 0 0.096 0 0 
8413 1 0.484 1 1 
8076 0 0.161 0 0 

37517 0 0.370 0 0 
31368 0 0.275 0 0 
29732 0 0.764 1 1 
12901 0 0.470 0 0 
26124 0 0.791 1 1 
5543 0 0.173 0 0 

10907 0 0.315 0 0 
6846605 0 0.155 -- 0 

2202 0 0.771 0 -- 
542762 0 0.270 0 0 
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7236 0 0.687 0 0 
7374 0 0.124 0 0 

73773 1 0.833 1 1 
7258 1 0.112 1 -- 
7411 0 0.127 0 0 
6641 1 0.614 1 1 
6777 0 0.058 0 0 

409778 1 0.420 1 1 
7993 0 0.348 0 0 
6589 0 0.486 0 0 

11764 0 0.100 1 -- 
66666 0 0.149 0 0 
3220 1 0.658 1 1 

12994 1 0.459 -- -- 
22463 1 0.830 1 1 
7546 1 0.892 1 1 
8430 0 0.038 0 0 

25711 0 0.247 0 0 
13195 0 0.097 0 0 
16097 0 0.041 0 0 
6753 1 0.150 1 -- 

11876 0 0.262 0 0 
6829 0 0.159 0 0 

3543259 0 0.127 0 0 
4761 0 0.453 -- -- 
7013 1 0.647 1 1 

10129 0 0.164 0 0 
1057 1 0.286 -- 0 
1070 1 0.352 -- 0 
5297 0 0.145 -- 0 
5329 0 0.423 0 0 
6618 1 0.378 1 -- 
6895 0 0.532 0 0 

18725 0 0.202 0 0 
111037 0 0.790 0 -- 

6934 0 0.086 0 0 
736 0 0.104 -- 0 

7104 0 0.190 1 -- 
7355 0 0.063 0 0 
7412 0 0.543 0 0 
7495 1 0.209 1 -- 
8663 1 0.319 1 1 

68191 0 0.051 0 0 
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11369 0 0.133 0 0 
12388 0 0.174 0 0 
12573 0 0.291 0 0 
70400 1 0.786 1 1 
19165 0 0.314 0 0 
78501 0 0.620 0 0 
21984 0 0.056 0 0 
22206 1 0.162 1 -- 
64819 1 0.460 1 1 
23284 1 0.311 0 0 
93079 0 0.351 0 0 
26295 1 0.735 1 1 
27423 1 0.522 1 1 
28777 0 0.152 0 0 
87323 1 0.188 1 -- 
62530 1 0.213 1 -- 

171144 1 0.352 1 1 
91604 0 0.162 0 0 
64865 0 0.178 0 0 

4128060 1 0.334 1 1 
338733 1 0.384 1 1 

7112 1 0.918 1 1 
7344 0 0.401 0 0 
8858 0 0.086 0 0 

75103 0 0.103 0 0 
74000387 0 0.651 -- 1 

86583 0 0.268 0 0 
22833454 0 0.170 0 0 

320760 0 0.451 -- -- 
13551 0 0.086 0 0 
12251 0 0.047 0 0 
5056 1 0.883 -- 1 
6527 0 0.680 1 1 
3031 0 0.163 0 0 

123626 0 0.053 -- 0 
43226 1 0.892 1 1 
86398 1 0.788 1 1 
31099 0 0.166 -- 0 
92421 0 0.052 0 0 

213031 1 0.862 1 1 
91731 1 0.764 1 1 
39985 0 0.153 0 0 
11432 0 0.454 0 0 
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2160 0 0.670 0 0 
2683 0 0.432 -- 0 
2958 1 0.767 -- 1 

12324 0 0.050 -- 0 
91649 0 0.740 1 1 
4160 1 0.870 -- 1 
3408 1 0.707 -- 1 

4092426 1 0.949 -- 1 
15546 0 0.308 0 0 
29025 0 0.542 -- -- 
4542 1 0.922 -- 1 

439222 1 0.665 -- 1 
5410 1 0.914 -- 1 
1027 1 0.764 1 1 
2681 0 0.782 -- 1 

25146 1 0.829 1 1 
90571 1 0.633 1 1 
73864 1 0.653 1 1 
70837 1 0.755 1 1 
31208 1 0.893 1 1 
21804 1 0.744 1 1 
8208 0 0.847 0 -- 

92387 1 0.854 1 1 
8570 1 0.805 1 1 

69785 1 0.553 1 1 
11442 0 0.388 0 0 
8861 0 0.310 0 0 
3752 0 0.485 -- -- 

13783 1 0.284 1 1 
32490 0 0.700 0 0 
5513 1 0.302 1 1 
4745 0 0.438 -- -- 
3686 0 0.216 1 -- 
3430 0 0.544 -- -- 

9934458 0 0.633 0 0 
3054 1 0.959 1 1 

86705 1 0.867 -- 1 
3454 0 0.260 0 0 
4456 0 0.762 -- 1 

14896 0 0.148 0 0 
107080 1 0.790 1 1 

8571 1 0.884 1 1 
1066 0 0.229 0 0 
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15325 1 0.516 1 1 
83268 0 0.032 0 0 
77328 1 0.353 1 1 
13345 0 0.239 0 0 

100524 1 0.558 1 1 
40520 1 0.893 1 1 
3435 1 0.706 -- 1 

80900 0 0.614 0 0 
91683 1 0.889 1 1 
62556 1 0.575 1 1 
17435 0 0.276 0 0 
4090 0 0.301 -- 0 
3341 1 0.895 1 1 
8096 0 0.189 0 0 
2678 0 0.539 -- -- 
7738 0 0.616 0 0 

96359 0 0.070 0 0 
69311 0 0.663 0 0 
14127 1 0.683 1 1 
67005 1 0.281 1 -- 
25622 1 0.137 1 -- 

3482402 0 0.190 0 0 
86607 1 0.857 1 1 
75282 1 0.231 1 -- 

6785831 0 0.064 -- 0 
92667 0 0.386 0 0 
7388 0 0.491 -- -- 

22628 0 0.364 0 0 
8420 0 0.680 0 0 

103005 1 0.639 1 1 
243274 1 0.844 1 1 
73852 1 0.860 1 1 
75557 0 0.128 0 0 
75576 1 0.887 1 1 

117640 1 0.748 1 1 
170286 1 0.764 1 1 
93312 0 0.133 0 0 
1923 1 0.935 1 1 

409069 1 0.879 -- 1 
6729 0 0.101 -- 0 
3158 0 0.874 -- 1 
3676 0 0.628 0 0 
5154 1 0.798 1 1 



41 
 

 
 

2310 0 0.594 0 0 
4641 0 0.807 1 1 
5156 0 0.495 -- -- 
3243 1 0.655 -- 1 
5531 0 0.348 0 0 
3326 0 0.425 0 0 
4912 0 0.220 0 0 
4857 0 0.304 -- 0 

73342 0 0.433 -- -- 
2356 0 0.777 -- 1 
1302 0 0.197 -- 0 
3066 0 0.115 -- 0 
2120 0 0.303 0 0 

65854 0 0.126 0 0 
5278 0 0.070 0 0 

33925 0 0.690 0 0 
71350 0 0.556 -- -- 

424631 0 0.373 -- 0 
5244 0 0.325 -- -- 
3344 0 0.085 -- -- 
3780 0 0.267 -- -- 
4868 0 0.145 -- -- 
3362 0 0.703 0 0 
3748 1 0.724 -- 1 

13675140 1 0.973 -- 1 
2158 0 0.455 -- -- 

56208 0 0.292 -- 0 
666418 0 0.130 0 0 

6293 1 0.600 1 1 
2806 1 0.804 -- -- 

4432690 1 0.182 -- 0 
61574 0 0.115 0 0 
2474 0 0.142 -- 0 

31477 1 0.618 1 1 
120081 0 0.419 0 0 
41287 0 0.288 -- 0 
32593 0 0.794 0 -- 
28718 0 0.648 0 0 
10832 0 0.205 0 0 
65630 0 0.607 0 0 

517915 1 0.887 -- 1 
4398807 1 0.822 -- 1 

4901 1 0.770 -- -- 
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67686 0 0.815 1 1 
1236 0 0.177 0 0 

262961 1 0.773 -- 1 
10275 0 0.353 0 0 
71874 0 0.042 -- 0 
28554 0 0.798 0 -- 
68770 0 0.645 0 0 
68733 1 0.820 -- 1 
60867 0 0.577 -- -- 
4006 0 0.147 0 0 
2999 1 0.982 -- 1 

65947 1 0.792 1 1 
3033226 0 0.559 0 0 

23674 1 0.532 1 1 
863 1 0.682 1 1 

5771 1 0.854 -- 1 
1451 1 0.894 -- 1 
4971 1 0.875 -- 1 
3977 1 0.180 -- 0 
8230 1 0.763 -- 1 

60651 0 0.446 0 0 
4619 1 0.917 -- 1 

540766 1 0.893 -- 1 
2624 0 0.111 -- 0 

53394893 1 0.256 -- 0 
4237 0 0.836 1 1 
4089 1 0.772 -- 1 

14883207 1 0.890 -- 1 
11622909 0 0.441 -- -- 
53461729 1 0.878 -- 1 

85823 1 0.918 -- 1 
3148 0 0.363 -- 0 

76513276 0 0.172 -- 0 
248862 0 0.242 -- 0 
457814 0 0.238 -- 0 

2759 0 0.324 -- 0 
266651 0 0.565 -- -- 
13916 1 0.273 1 -- 
13118 1 0.753 1 1 
3416 1 0.780 -- 1 

6426711 0 0.496 -- -- 
89386 1 0.878 -- 1 

11723708 1 0.856 1 1 
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27211 1 0.820 1 1 
75346 0 0.231 -- 0 
9025 0 0.293 0 0 

17166 0 0.078 -- 0 
70917 0 0.163 0 0 

521196 0 0.378 0 0 
8542 1 0.846 -- 1 

13132266 0 0.176 0 0 
6873 0 0.582 0 0 
8834 1 0.021 1 -- 

31353 1 0.542 1 1 
31954 0 0.229 0 0 

44568380 0 0.091 -- 0 
9885850 0 0.883 1 1 

22661774 0 0.326 -- 0 
10233356 1 0.630 1 1 
53931237 1 0.593 -- 1 
72679334 0 0.147 -- 0 
9909677 1 0.907 1 1 

53316387 0 0.090 -- 0 
3247 1 0.951 -- 1 

96088 1 0.528 1 1 
42504 0 0.808 0 -- 
75547 1 0.535 1 1 
61384 0 0.057 0 0 
61950 0 0.068 -- 0 
10229 1 0.206 1 -- 

833466 0 0.870 0 -- 
7921 0 0.083 0 0 

18522 0 0.388 0 0 
3685 1 0.763 1 1 

411697 0 0.597 -- 1 
13505 1 0.309 0 0 
83050 1 0.659 1 1 
87250 1 0.760 1 1 

586708 1 0.811 1 1 
56638112 1 0.827 1 1 

23019 1 0.917 1 1 
608116 1 0.946 1 1 

8633 1 0.643 1 1 
919792 1 0.823 1 1 
14642 1 0.781 1 1 
17570 1 0.916 1 1 
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123504 1 0.917 1 1 
7563 1 0.821 1 1 

232446 1 0.924 1 1 
79717 1 0.507 1 1 

12472902 1 0.835 1 1 
5993 1 0.270 1 1 

190373 0 0.118 -- 0 
9824345 0 0.080 -- 0 
516981 0 0.020 -- 0 
69144 0 0.444 0 0 
82703 1 0.267 1 -- 

9884915 1 0.590 1 1 
3425 1 0.417 -- -- 

12940545 0 0.143 -- 0 
4641498 1 0.845 -- 1 
3033538 1 0.451 -- -- 

32603 0 0.345 -- -- 
562114 1 0.899 -- -- 

7188 1 0.540 1 1 
65632 0 0.072 0 0 
2227 1 0.769 -- 1 

53315588 1 0.523 -- -- 
11338777 0 0.481 -- -- 
76007663 0 0.074 -- 0 

1999 0 0.353 0 0 
6179 0 0.363 -- 0 
4921 1 0.671 1 1 

13324 1 0.950 -- 1 
107786 0 0.720 1 1 
19527 0 0.093 -- 0 
31331 0 0.152 1 -- 
15129 0 0.196 -- 0 
62380 0 0.102 -- 0 
15686 1 0.711 -- 1 

156414 1 0.832 1 1 
10127622 1 0.845 0 -- 

3268 1 0.595 -- 1 
975 1 0.521 -- -- 

4079 1 0.673 -- 1 
3266 1 0.971 -- 1 

65388 0 0.084 -- 0 
19961652 1 0.828 -- 1 

3510 0 0.064 -- 0 
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4893 0 0.612 0 0 
8446 0 0.054 0 0 

26204 0 0.858 0 -- 
27435 0 0.191 -- 0 
9164 0 0.503 1 1 

3510569 0 0.282 -- 0 
3014138 0 0.047 0 0 
387179 0 0.839 1 1 
11796 1 0.597 1 1 

2737408 1 0.324 1 1 
71593 0 0.381 0 0 

44373822 0 0.982 0 -- 
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Supplemental Table 2: The test set compounds identified by PubChem CID 
number along with their provided experimental activity, consensus prediction as 
determined by QSAR, prediction as determined by biosimilarity, and hybrid model 
prediction. Activity of 0 = inactive (nonbinder); activity of 1 = active (ERα binder); 
“--" indicates no prediction for the compound. 

 

CID 
Experimental 
Activity 

QSAR 
Consensus 
Prediction BioPrediction 

Hybrid 
Prediction 

1868 0 0.402 0 0 
2020 0 0.364 0.25 0 

241893 0 0.451 0.5 -- 
6604918 0 0.529 0.5 -- 

1793 0 0.361 0.75 1 
9572720 0 0.522 -- -- 

5131 0 0.457 -- -- 
4498 0 0.210 0.5 0 
903 0 0.523 0.5 -- 

1795 1 0.412 0.75 1 
2259 0 0.601 1 1 
1367 0 0.305 0.25 0 

6603710 1 0.411 0.75 1 
1150 0 0.340 0 0 
1720 0 0.430 0.33333333 0 
2207 0 0.272 0.75 -- 
3857 0 0.307 0.75 -- 

173615 0 0.418 -- 0 
1725 0 0.328 0.25 0 
1820 0 0.421 0.75 1 
2039 0 0.257 1 1 
1564 0 0.405 -- 0 

97587 0 0.244 0.25 0 
1365 0 0.370 0.25 0 
469 0 0.252 -- 0 

4615193 0 0.414 0.75 1 
1579 0 0.455 -- -- 

10061214 0 0.628 0.5 1 
70547 0 0.379 0.25 0 

11401613 0 0.622 0.5 1 
2071 0 0.384 0.75 1 

4043357 0 0.373 -- 0 
1961 0 0.682 -- 1 
1232 0 0.215 -- 0 

https://pubchem.ncbi.nlm.nih.gov/compound/9572720
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1908 0 0.386 0.75 1 
2252 0 0.438 -- 0 

5149739 0 0.533 -- -- 
73153239 0 0.611 -- 1 
6603998 0 0.358 0.5 0 

15186066 0 0.323 -- 0 
6603717 0 0.585 0.25 0 

56965900 1 0.587 -- 1 
5372720 0 0.392 0.25 0 

73153241 0 0.504 -- -- 
5024764 1 0.487 0.5 -- 

73153243 0 0.467 -- -- 
1248 0 0.444 -- 0 
1858 0 0.411 0.5 -- 

3519541 0 0.493 0.25 0 
2302 1 0.514 -- -- 

16219010 0 0.499 -- -- 
89105 0 0.444 0.75 1 
2491 0 0.502 -- -- 
2419 0 0.408 0.25 0 
4217 0 0.452 0.75 1 

108107 0 0.401 0.75 1 
73153244 0 0.488 -- -- 

5016 0 0.603 -- 1 
21157 0 0.333 0.5 0 

2921148 0 0.418 0.5 -- 
53421694 0 0.354 -- 0 
4059895 0 0.518 0.75 1 

2703 1 0.569 1 1 
5097 0 0.411 -- 0 

4545575 0 0.385 -- 0 
108042 0 0.701 -- 1 
119376 0 0.379 0.25 0 
291704 1 0.469 -- -- 

8743 0 0.350 0.5 0 
5126051 0 0.468 -- -- 

26532 0 0.386 -- 0 
1959 0 0.504 -- -- 

73153248 0 0.419 -- 0 
5280569 0 0.539 1 1 

2692 0 0.374 0.75 1 
5685 0 0.388 -- 0 
1551 0 0.256 -- 0 
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11957508 0 0.443 -- 0 
1774 0 0.243 0.25 0 
1548 1 0.465 -- -- 
3068 1 0.515 -- -- 
1335 0 0.215 -- 0 

11957516 0 0.574 0.5 -- 
1271 0 0.278 -- 0 
1329 0 0.406 0 0 
501 0 0.280 -- 0 

4687 0 0.273 0.5 0 
1225 0 0.609 0.75 1 
1902 0 0.430 -- 0 
4278 0 0.284 0.5 0 
3136 1 0.411 0.75 1 
4712 0 0.612 0.75 1 

5353574 0 0.418 0.75 1 
1734 0 0.364 0.5 0 
547 0 0.446 0.5 -- 

3153 0 0.465 0.75 1 
161713 0 0.346 0.5 0 

73153253 0 0.530 -- -- 
161930 0 0.521 0.5 -- 
30137 0 0.645 -- 1 
1242 0 0.643 0.5 1 

108137 0 0.537 0.25 0 
1609 0 0.451 0.25 0 

6603792 0 0.515 0.75 1 
6412645 0 0.383 0.75 1 
132496 0 0.538 0.75 1 

5019 0 0.683 0.75 1 
1317 0 0.249 0.25 0 

4474781 0 0.769 0 0 
6603827 0 0.459 0.25 0 

275 0 0.317 0.5 0 
6603857 0 0.498 0.5 -- 

5034 0 0.625 1 1 
11623092 0 0.576 -- 1 

612745 0 0.406 -- 0 
3213 1 0.648 1 1 
4375 0 0.441 0.25 0 

6603849 1 0.423 0.5 -- 
2105 0 0.308 -- 0 

1126109 0 0.444 0.5 -- 
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9819328 0 0.588 -- 1 
3423 0 0.561 0.75 1 
3456 0 0.473 1 1 
5425 0 0.264 0.5 0 
1742 0 0.391 0.25 0 
3532 0 0.229 0.5 0 

107812 0 0.215 0.75 -- 
6422124 0 0.491 -- -- 

3585 0 0.424 0.75 1 
6603882 0 0.387 0.75 1 

1221 0 0.384 0.75 1 
11957563 0 0.409 -- 0 

4266 0 0.321 0.5 0 
94945 0 0.417 -- 0 
1245 0 0.481 -- -- 
1745 0 0.229 0.75 -- 
5202 0 0.503 0.5 -- 

2817242 0 0.633 0.75 1 
9572720 0 0.500 -- -- 

1219 0 0.535 -- -- 
3615 0 0.209 -- 0 

128018 0 0.478 0.75 1 
4529080 0 0.527 -- -- 

4182 0 0.402 -- 0 
262093 1 0.502 1 1 

6603884 0 0.538 0.33333333 0 
3538 0 0.573 0.5 -- 
1738 0 0.477 0.75 1 

107794 0 0.490 0.75 1 
54722180 0 0.697 -- 1 

1220 0 0.537 0.5 -- 
4216 0 0.461 0.75 1 
3802 0 0.396 0.5 0 

73153258 1 0.540 -- -- 
1352 0 0.403 -- 0 

824226 0 0.593 0.75 1 
6272 0 0.485 -- -- 
3667 0 0.547 -- -- 
3668 1 0.393 -- 0 
425 1 0.791 -- 1 

1719 0 0.391 -- 0 
4203080 0 0.408 -- 0 

14973220 0 0.365 -- 0 
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10729 0 0.370 0 0 
3845 0 0.490 0.25 0 
3885 0 0.556 1 1 

9907994 0 0.407 -- 0 
5281672 0 0.728 1 1 
133633 0 0.513 0.75 1 

1222 0 0.381 0.75 1 
9837540 0 0.597 -- 1 

3614 0 0.217 0.75 -- 
1869 0 0.362 -- 0 

74339046 0 0.451 -- -- 
123679 0 0.429 0.75 1 
155806 0 0.351 0 0 

6603928 0 0.295 0.75 -- 
10035933 0 0.420 0.5 -- 
24906282 1 0.601 -- 1 
17756950 1 0.599 0.66666667 1 

4376 0 0.225 0.5 0 
6843761 0 0.504 -- -- 

16759251 0 0.390 0.25 0 
107982 0 0.525 0.5 -- 

3661570 0 0.608 0.75 1 
5311200 0 0.477 0.75 1 

16118 0 0.294 -- 0 
6603828 0 0.427 0.25 0 

4023 0 0.546 -- -- 
4533 0 0.610 -- 1 

2856102 0 0.587 -- 1 
3514 0 0.423 -- 0 

4420320 0 0.441 -- 0 
93004 0 0.304 0.25 0 
1390 0 0.203 0 0 

11957638 0 0.487 -- -- 
5129 0 0.455 -- -- 
1893 0 0.377 0.25 0 

2378095 0 0.629 -- 1 
5079496 0 0.227 -- 0 

1237 0 0.435 -- 0 
4108 0 0.470 1 1 

1894361 0 0.540 0.75 1 
5353329 0 0.456 0.75 1 
132787 0 0.465 0.75 1 

4431 0 0.431 0.75 1 
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4813 1 0.783 -- 1 
3644637 0 0.487 -- -- 
126402 0 0.449 0.5 -- 

6811971 0 0.515 -- -- 
24906273 0 0.460 -- -- 

1641 0 0.413 0.5 -- 
1585 1 0.386 -- 0 
5309 0 0.400 -- 0 

23643664 0 0.557 0.75 1 
4814 0 0.403 0.25 0 
3674 1 0.460 -- -- 
2301 1 0.435 -- 0 

71367729 1 0.727 -- 1 
1960 0 0.431 0.75 1 
5117 0 0.533 -- -- 
1209 0 0.337 -- 0 

9799515 0 0.455 -- -- 
3495594 0 0.543 1 1 
2779853 1 0.398 1 1 

11983295 0 0.455 -- -- 
123981 0 0.362 0.25 0 
443751 0 0.538 -- -- 
692413 0 0.526 -- -- 

-- 0 0.490 -- -- 
313280 0 0.662 -- 1 

1103 0 0.307 0.5 0 
682802 0 0.509 0.25 0 

4205032 0 0.451 -- -- 
4564402 0 0.421 0.5 -- 

10220536 0 0.656 0.75 1 
5282 0 0.319 0.75 -- 
4389 0 0.345 -- 0 
3135 0 0.463 -- -- 

10336538 0 0.486 -- -- 
2055 0 0.645 -- 1 

92409 0 0.454 -- -- 
6849066 0 0.635 -- 1 

1218 0 0.661 0.75 1 
44828493 0 0.443 0.75 1 

327653 0 0.364 1 1 
14032955 0 0.374 -- 0 

2056 0 0.589 -- 1 
44287897 0 0.466 -- -- 
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73153275 0 0.696 -- 1 
398148 0 0.366 0.75 1 

5637 0 0.554 -- 1 
5714 0 0.444 0.75 1 

4518925 0 0.630 -- 1 
5631 0 0.634 -- 1 
3862 0 0.370 0.5 0 
2940 0 0.494 -- -- 

15897 0 0.412 -- 0 
3725 0 0.676 -- 1 

62824 0 0.319 1 1 
2057 0 0.727 -- 1 
5619 0 0.438 -- 0 

521106 0 0.763 0.75 1 
5640 0 0.395 0.25 0 
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