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Abstract: 

Purpose: Three of the most commonly identified hamstring strain injury (HSI) risk factors are 

age, previous HSI and low levels of eccentric hamstring strength. However, no study has 

investigated the ability of these risk factors to predict the incidence of HSI in elite Australian 

footballers. Accordingly, the purpose of this prospective cohort study was to investigate the 

predictive ability of HSI risk factors using machine learning techniques. Methods: Eccentric 

hamstring strength, demographic and injury history data were collected at the start of pre-season 

for 186 and 176 elite Australian footballers in 2013 and 2015 respectively. Any prospectively 

occurring HSIs were reported to the research team. Using various machine learning techniques, 

predictive models were built for 2013 and 2015 within-year HSI prediction and between-year 

HSI prediction (2013 to 2015). The calculated probabilities of HSI were compared to the injury 

outcomes and area under the curve (AUC) was determined and used to assess the predictive 

performance of each model. Results: The minimum, maximum and median AUC values for the 

2013 models were 0.26, 0.91 and 0.58 respectively. For the 2015 models, the minimum, 

maximum and median AUC values were, correspondingly, 0.24, 0.92 and 0.57. For the between-

year predictive models the minimum, maximum and median AUC values were 0.37, 0.73 and 

0.52 respectively. Conclusion: While some iterations of the models achieved near perfect 

prediction, the large ranges in AUC highlight the fragility of the data. The 2013 models 

performed slightly better than the 2015 models. The predictive performance of between-year HSI 

models was poor however. In conclusion, risk factor data cannot be used to identify athletes at an 

increased risk of HSI with any consistency.  

 

Key words: Injury prediction, machine learning, eccentric hamstring strength, hamstring injury 

risk. 
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INTRODUCTION 

Hamstring strain injuries (HSIs) are the most common injury in elite Australian football (1) and 

can have significant physical (2-4) and financial consequences for an athlete and their sporting 

organization (5). As such, risk factors for HSI have received much attention (6-12). The most 

common risk factors identified in Australian footballers are a history of HSI and increasing age 

(9). More recently, work has focused on factors that can be targeted through intervention to 

potentially reduce the risk of HSI. Previous work reported that elite Australia footballers with 

levels of eccentric hamstring strength (assessed during the Nordic hamstring exercise) below 256 

N at the start of pre-season were 2.7 times more likely to sustain a HSI that season (10). 

However, this cutoff was determined retrospectively from the data it was applied to and while 

deductive methodologies such as this are able to establish a link between a factor such as 

eccentric hamstring strength and injury risk, they cannot be used to predict injury (13). Recent 

commentary has highlighted the need to estimate the predictive ability of risk factors by applying 

a predetermined cutoff to different samples (13). Injuries such as HSI, however, are typically the 

result of the interactions between multiple factors and univariate cutoff values are likely to 

display poor predictive capacity (14, 15).  

While multivariate relationships between HSI risk factors have been examined previously, these 

investigations typically employ a linear approach to identifying the interactions between these 

variables (15, 16). These interactions, however, are more likely to be non-linear (14-16). It has 

been suggested that moving away from the identification of univariate risk factor cutoffs and 

instead towards injury pattern recognition will improve the ability to predict and ultimately 

prevent injury (14). Supervised learning techniques, which are a type of machine learning, have 

been proposed as appropriate methodologies to account for the complex, non-linear interactions 

between risk factors and to recognise patterns that lead to injury (14). Supervised learning is the 

process by which a data set with a known outcome variable (i.e. injured or uninjured), referred to 
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as training data, is used to identify patterns and predict the unknown outcome variable of an 

independent data set, referred to as testing data (17). No study has developed supervised learning 

models, using data from multiple teams measured across multiple seasons, to predict the 

occurrence of HSI. Studies identifying risk factors and their associated cutoffs can provide 

important information regarding the aetiology of injuries (18). Research of this nature can 

ultimately help to inform injury prevention practices and guide risk mitigation strategies (19). 

However, investigations employing supervised learning techniques are needed to determine the 

predictive ability of previously reported HSI risk factors such as eccentric hamstring strength, 

age and previous HSI. 

Therefore, the aim of the current study was to investigate whether supervised learning techniques 

could be used to predict the occurrence of HSI, using risk factor and demographic data measured 

across multiple seasons as predictor variables. 

 

METHODS 

Study design 

Data for this prospective cohort study was collected during the 2013 and 2015 Australian 

Football League (AFL) seasons. The 2013 study period was conducted from November 2012 to 

September 2013 and the 2015 study period was conducted from November 2014 to September 

2015. The authors would like to note that data collected during the 2013 study period has been 

previously published (10). Demographic and lower limb injury history data for each athlete were 

provided to the research team at the beginning of the 2013 and 2015 study periods. Eccentric 

hamstring strength was assessed at start of pre-season training for 2013 (November 2012) and 

2015 (November 2014). Throughout the study periods, any prospectively occurring HSIs were 

reported to the research team. This study was approved by the Queensland University of 

Technology Human Research Ethics Committee (approval number: 1100001116). 
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Participants 

Seven teams (39% of the total competition) competing in the AFL participated in at least one of 

the study periods. Three of these teams participated in both the 2013 and 2015 study periods. 

Four teams only participated in either the 2013 or 2015 study period. Each athlete was provided 

with a plain language statement outlining the study and provided informed written consent. In 

total, 186 and 176 elite Australian footballers agreed to participate in the 2013 and 2015 study 

periods respectively. Although data for 210 athletes were previously reported (10), eccentric 

hamstring strength was only assessed at the start of pre-season for 186 athletes during the 2013 

study period. Due to de-identification of the data, it was not possible to determine which athletes 

provided data for both study periods. 

 

Demographic and injury history data 

Demographic data for each athlete were provided to the research team at the beginning of each 

study period. This included age (years), stature (cm), mass (kg) and primary playing position 

(forward, back, midfield or ruck (11)). The medical staff for each of the participating teams also 

completed a questionnaire detailing the lower limb injury history of each athlete prior to the 

2013 and 2015 seasons. This included history of HSI within the preceding 12 months and history 

of anterior cruciate ligament (ACL) injury at any stage during the athlete’s career. 

 

Eccentric hamstring strength assessment 

The assessment of eccentric knee flexor strength during the Nordic hamstring exercise has been 

previously reported (10, 20, 21). The participants knelt on a padded board with their ankles 

secured superior to the lateral malleolus by ankle straps. These straps were attached to custom 

made uniaxial load cells (Delphi Force Measurement, Gold Coast, Australia) with wireless data 

acquisition capabilities (Mantracourt, Devon, United Kingdom). Following a warm up set of 
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three submaximal repetitions, participants were asked to perform three maximal repetitions of 

the Nordic hamstring exercise. The participants were instructed to lean forwards as slowly as 

possible whilst maximally resisting this movement with both limbs, keeping the trunk and hips 

neutral throughout. The athletes were encouraged to perform maximally on every repetition. The 

assessment took place within a week of each individual athlete’s return to pre-season training for 

the 2013 and 2015 seasons. Data were transferred to a computer at a 100 Hz through a wireless 

USB base station (Mantracourt, Devon, United Kingdom). The peak forces (measured in N) from 

each limb and repetition were averaged to determine athletes’ eccentric hamstring strength. The 

absolute difference in the average force (N) between limbs was determined to be the between-

limb imbalance. 

 

Reporting of prospective HSIs 

A prospectively occurring HSI was defined as acute pain in the posterior thigh that resulted in 

disruption of the hamstring fibres, as confirmed by magnetic resonance imagining (MRI) (10). 

For all injuries that fulfilled these criteria, the relevant team doctor or physiotherapist completed 

a standard injury report form which detailed the limb that was injured, the location of the injury 

(i.e. proximal muscle-tendon junction, mid muscle belly etc.), mechanism of injury (i.e. high-

speed running, jumping etc.), severity of the injury determined from MRI and the number of 

days taken to return to full training (10). 

 

Modelling approaches 

Two approaches were taken when selecting variables to include as input data for the predictive 

models. The first approach only included eccentric hamstring strength, age and previous HSI as 

predictors for future HSI. The second approach included eccentric hamstring strength, age, 

previous HSI, between-limb imbalance, previous ACL injury, stature, mass and primary playing 
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position. Both years (2013 and 2015) were first analysed individually to predict within-year HSI. 

The modelling approach taken for within-year HSI prediction can be found in Figure 1A. 

Between-year HSI prediction was then explored by allocating the 2013 data as training data and 

the 2015 data as testing data (Figure 1B). To account for any variance caused by random 

sampling, data pre-processing and cross-validation, 10,000 iterations of each modelling approach 

were performed. All analyses were performed using the R statistical programming language (22). 

 

Algorithms 

Five different supervised learning techniques were used to build predictive models (see table, 

Supplemental Digital Content 1, A brief description of each machine learning algorithm and all 

relevant parameters, http://links.lww.com/MSS/B163). These were: 

 Naïve Bayes. 

 Logistic regression. 

 Random forest. 

 Support vector machine. 

 Neural network. 

Explaining the mathematical functions of each of these models is beyond the scope of this paper. 

However, naïve Bayes and logistic regression algorithms were chosen for their simple 

probabilistic classification, whereas random forest, support vector machine and neural network 

algorithms were chosen for their ability to model complex, non-linear interactions amongst 

multiple predictor variables. 

 

Data pre-processing 

All continuous data (age, eccentric hamstring strength, stature and mass) were standardised prior 

to building the predictive models. Standardisation is common practice when implementing 
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supervised learning techniques as some models may be sensitive to the vastly different ranges 

and magnitudes of predictor variables (17). This involves transforming the data so that the mean 

is equal to zero and the standard deviation is equal to one. Data were standardised using the 

following equation: 

          

Where   equals the original value,    equals the standardised value,    equals the mean and   
equals the standard deviation. 

The input data for within-year HSI prediction were standardised to the relevant year (i.e. 2013 or 

2015). The training data (2013) and the testing data (2015) for between-year HSI prediction were 

standardised independently. Another challenge when using statistical learning techniques, 

particularly to predict injury, is class imbalance (23). Although HSI is the most common injury 

in elite Australian football (1), uninjured athletes still outnumber athletes who sustain a HSI. In 

cases of class imbalance, supervised learning algorithms can achieve high accuracy by always 

predicting the more frequently occurring class (24). However, this high accuracy is only 

reflective of the underlying class distribution. Synthetic minority over-sampling techniques 

(SMOTE) were developed to address the problem of having imbalanced classes (24). SMOTE is 

a combination of under-sampling and synthetic over-sampling techniques (24). Under-sampling 

is the process by which observations from the over-represented class are randomly removed, 

whereas synthetic over-sampling creates observations of the under-represented class that have 

similar features to already existing observations (24). In the current study, the uninjured 

observations were randomly under-sampled by 50% and the injured observations were 

synthetically over-sampled by 100%. Predictive models were built using SMOTE and no 

SMOTE to compare performance. 
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Cross-validation and parameter tuning 

Supervised learning algorithms have a number of parameters (see table, Supplemental Digital 

Content 1, A brief description of each machine learning algorithm and all relevant parameters,  

http://links.lww.com/MSS/B163) which can be tuned to determine how an algorithm interacts 

with the training data (25). The aim of supervised learning is to select the parameters that 

optimise an algorithm’s ability to perform on the testing data (25). The most common method of 

finding the optimal parameter combination is by performing a grid search that considers all 

parameter combinations (25). One potential issue with this method however, is overfitting, which 

occurs when the parameters selected are too closely fit to the training data from which they were 

derived (26). This reduces generalisability and the ability of an algorithm to perform on the 

testing data (26). A solution to overfitting is cross-validation (25). Ten-fold cross-validation 

splits the training data into 10 equal subsets. One of the subsets is withheld and the remaining 

nine subsets are used to perform a grid search for the optimal parameter combination. The 

selected parameters are then validated using the withheld subset. This process is repeated 10-

fold, with each subset being withheld once as the validation subset. The parameter combination 

that performs the best across each fold is then selected for the final model. Ten-fold cross 

validation was used in the current study to select the optimal parameter combination for each 

algorithm. 

 

Performance outcomes 

Accuracy can be a poor indicator of performance when attempting to predict injury incidence 

(24). Cohen’s kappa coefficient is an alternative to accuracy that accounts for the base rate of 

expected accuracy due to random chance. However, both accuracy and kappa are calculated 

based on the number of correct and incorrect binary classifications and do not take into account 

the estimated probability of an observation belonging to one class or the other. For example, if 
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Athlete A has a 49% probability of HSI and Athlete B has 1% probability of HSI, both these 

athletes are predicted to remain uninjured. Accuracy and kappa do account for the fact that 

Athlete A was 48% more likely to sustain a HSI than Athlete B. Area under the curve (AUC) of 

a receiver operator characteristic (ROC) curve measures the probability that a positive case will 

be ranked higher than a negative case. An AUC of 0.5 indicates prediction no better than random 

chance, with a value of 1.0 indicating perfect prediction (13). In the current study, predicted 

injury probabilities were used to construct a ROC curve, and AUC was used to measure the 

likelihood that the observations with a higher probability of injury were actually the injured 

observations. As AUC is calculated using predicted injury probabilities and not the number of 

correct and incorrect binary classifications, it can be a more sensitive measure of performance 

than accuracy or kappa (27). Accordingly, the AUC of each algorithm was calculated and was 

used to compare predictive performance as well as to select the optimal parameter combination 

for each model. 

 

RESULTS 

Cohort and prospective injury details 

2013 

One-hundred and eighty six athletes (age 23.2 ± 3.6 years, stature 188.0 ± 7.1 cm, mass 87.6 ± 

7.5 kg) participated in the 2013 study period. Of these, 27 sustained a prospective HSI (age 23.8 

± 3.6 years, stature 185.3 ± 6.3 cm, mass 84.4 ± 5.6 kg) and 159 did not (age 23.1 ± 3.6 years, 

stature 188.4 ± 7.2 cm, mass 88.1 ± 7.7 kg). High-speed running was the most common 

mechanism of injury (59%) and biceps femoris long head was the most commonly injured 

muscle (78%). Five injuries occurred during the pre-season period and 22 occurred during the in-

season period. The average eccentric hamstring strength and between-limb imbalance of the 

injured athletes was 260 ± 79 N and 45 ± 46 N respectively. For the uninjured athletes, the 
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average eccentric hamstring strength and between-limb imbalance was 301 ± 84 N and 49 ± 56 

N respectively. 

 

2015 

During the 2015 study period, 176 athletes participated (age 25.0 ± 3.4 years, stature 187.6 ± 7.5 

cm, mass 87.0 ± 8.6 kg). Twenty six athletes sustained a HSI (age 25.2 ± 3.4 years, stature 187.8 

± 7.3 cm, mass 87.1 ± 8.3 kg) and 150 did not (age 25.1 ± 3.5 years, stature 187.7 ± 7.8 cm, mass 

87.0 ± 8.9 kg). The most common mechanism of HSI was high-speed running (50%) and the 

most commonly injured muscle was biceps femoris (92%). Nine injuries occurred during the pre-

season period and 17 occurred during the in-season period. The average eccentric hamstring 

strength and between-limb imbalance of the injured athletes was 341 ± 80 N and 30 ± 21 N 

respectively. For the uninjured athletes, the average eccentric hamstring strength and between-

limb imbalance was 341 ± 78 N and 34 ± 30 N respectively. 

 

Within-year predictive performance 

2013 

The median AUC for all 2013 within-year predictive models was 0.58. There were no large 

differences between the predictive performance of models built using all variables as predictors 

(median AUC of 0.57) and models built using only the three variables as predictors (median 

AUC of 0.59). Using SMOTE and no SMOTE input data did not improve predictive 

performance, with both sets of models resulting in a median AUC of 0.58 and 0.59 respectively. 

For all 2013 within-year predictive models, AUC ranged from 0.26 to 0.91. Naïve Bayes was the 

best performing algorithm, with a median AUC of 0.60. The performance of each individual 

algorithm for 2013 within-year predictive models built using three variables and all variables can 

be found in Figure 2A and 2B respectively. 
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2015 

For all 2015 within-year predictive models, the median AUC was 0.57. Similar to 2013, there 

was no difference in the predictive performance of models built using all variables as predictors 

and only the three variables as predictors, with both sets of models resulting in a median AUC of 

0.57. The case was the same for models using SMOTE and no SMOTE input data (median AUC 

of 0.57). The range in AUC for the 2015 models was slightly larger than the 2013 models (0.24 

to 0.92). The equal best performing algorithms were random forest and support vector machine, 

with a median AUC of 0.58. The performance of each individual algorithm for 2015 within-year 

predictive models built using three variables and all variables can be found in Figure 3A and 3B 

respectively. 

 

Between-year predictive performance 

The performance of the between-year predictive models was poorer than the within-year 

predictive models, with a median AUC of 0.52. The median AUC was 0.52 and 0.53 for models 

built using all variables and three variables respectively. Similar to the within-year predictive 

models, using SMOTE input data did not significantly improve performance, with these models 

resulting a median AUC of 0.53 compared to a median AUC 0.52 for models built using no 

SMOTE input data. There was little variation in AUC for the independent algorithms as each 

iteration was performed using the same training and testing data. Across all the between-year 

predictive models, AUC ranged from 0.37 to 0.73. Naïve Bayes was the best performing 

algorithm, with a median AUC of 0.54. The performance of each individual algorithm for 

between-year predictive models built using three variables and all variables can be found in 

Table 1. 

 

DISCUSSION 

The aim of the current study was to investigate whether the application of various supervised 

learning techniques, using risk factor and demographic data collected over two seasons, could be 

Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

A
C
C
E
P
T
E
D



 

 

used to predict the occurrence of HSI. The main finding of this study was that eccentric 

hamstring strength, age and previous hamstring strain injury data cannot be used to identify 

athletes at an increased risk of HSI with any consistency. While some iterations of the within-

year predictive models achieved near perfect performance (maximum AUC of 0.92), others 

performed worse than random chance (minimum AUC of 0.24). 

The large discrepancy in AUC is indicative of the fragility of the data. Although each iteration 

was performed using the same data, small changes in the randomly sampled training and testing 

data vastly influenced the performance of the within-year predictive models. This not only 

demonstrates the sensitivity of AUC to sampling, but also suggests that larger datasets are 

needed when investigating the predictive ability of injury risk factors. Collecting more data will 

likely result in an increase in the number of observed injuries and consequently a more robust 

dataset. This will in turn improve the ability of supervised learning techniques to identify 

patterns with more consistency, should such patterns exist. In addition to within-year predictive 

performance, this study also investigated the performance of between-year predictive models. As 

the training data (2013 data) and testing data (2015 data) were the same for every iteration, the 

resulting AUC ranges were much smaller than within-year predictive models, with any 

variability in AUC only caused by cross-validation and SMOTE. Despite less discrepancy, the 

performance of between-year predictive models was poor, with a median AUC of 0.52.  

The etiology of HSI is multifactorial and injuries typically occur as a result of the interactions 

between numerous variables (28, 29). The poor predictive performance displayed by between-

year predictive models may be due to differing contributing factors between the 2013 and 2015 

injuries, specifically the role of eccentric hamstring strength. In 2013, the injured athletes were, 

on average, 42 N weaker than the uninjured athletes. In 2015 however, there was no difference in 

the average eccentric hamstring strength between the injured and uninjured athletes. Overall, the 

2015 cohort was stronger than the 2013 cohort. Despite this, the percentage of players that 
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sustained a HSI was identical in both seasons (15%), which suggests that eccentric hamstring 

strength was less of an influencing factor in the HSIs that occurred in 2015, as opposed to 2013. 

Previous work, which investigated eccentric hamstring strength and HSI risk, found that weaker 

rugby union players were no more likely to sustain a HSI than stronger players (20). The authors 

of this study (20) suggest that the conflicting results with previously published work (10) may be 

due to the rugby union players investigated (20) being considerably stronger than the previously 

investigated Australian footballers (10). It is also suggested that athletes with high levels of 

eccentric hamstring strength may not see any additional protective benefit from further increases 

in strength (10, 20). This hypothesis aligns with the current findings that eccentric hamstring 

strength may not play as large a role in HSI risk in a stronger cohort (2015) compared to a 

weaker cohort (2013). 

The current study investigated whether the inclusion of data that have not been directly linked to 

HSI risk in Australian footballers, in addition to previously reported HSI risk factors, improved 

predictive performance. The inclusion of between-limb imbalance, previous ACL injury, stature, 

mass and playing position, in addition to eccentric hamstring strength, age and previous HSI, did 

not improve predictive performance (Figures 2 and 3). In some cases these data may have 

confounded predictive performance, with the majority of the 2013 within-year predictive models 

performing better when built using only previously reported HSI risk factors (Figure 2). The 

results of the current study are comparable to the findings of prior work, which attempted to 

predict all injuries using workload data from a single AFL team (30). This study observed a 

mean AUC of 0.65 when predicting all non-contact injuries. Hamstring related injuries were 

predicted with a mean AUC of 0.72, however these injuries were not specifically HSIs (30). 

Earlier work has observed an association between high-speed running distances and HSI risk (8, 

11), however it was concluded that these measures examined in isolation are poor predictors of 

HSI and should be examined in concert with other variables (11). The results of previous work 
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(8, 11, 30) suggest that the inclusion of workload data, in addition to other HSI risk factors, may 

improve the ability to predict HSI occurrence, however this is yet to be examined. 

Imbalanced classes have previously been highlighted as a limitation of injury prediction research 

(30). This study compared the performance of predictive models built using SMOTE and no 

SMOTE. Using SMOTE to under-sample the uninjured observations and over-sample the injured 

observation did not improve predictive performance for within-year predictive models (Figures 2 

and 3) or between-year predictive models (Table 1). These results are in contrast to prior work, 

which observed increases in predictive performance when SMOTE were used to build support 

vector machine models (30). It is possible that SMOTE is only beneficial when used to 

synthetically reproduce predictor variables from a complex data set, such as workload derived 

from global position systems data. In the current study, the uninjured observations were 

randomly under-sampled by 50% and the injured observations were synthetically over-sampled 

by 100%. However, these values were chosen arbitrarily and it is unknown whether a different 

percentage of under- and over-sampling would impact predictive performance. 

The current study has a number of limitations that may have influenced predictive performance. 

The data used as predictor variables in the current study were only collected at the beginning of 

pre-season training for each study period. It is unknown whether more frequent measures of 

variables such as eccentric hamstring strength would have improved predictive performance. It is 

also unknown whether the magnitude of change in eccentric hamstring strength across a season 

may be a more sensitive measure than absolute strength. While eccentric hamstring strength, age 

and previous HSI are purported as HSI risk factors (9, 10, 12, 29, 31), there are a number of 

other factors not included in this study which have been linked to the risk of HSI. The inclusion 

of further HSI risk factors, such as workload (8, 11) and biceps femoris fascicle length (21), may 

improve the ability to predict HSI. 
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Furthermore, there is a lack of literature regarding the application of supervised learning 

techniques in injury prediction research. The proportions of data used as training and testing 

data, as well as the proportions of data under- and over-sampled, were chosen arbitrarily and it is 

unknown whether different proportions would have influenced predictive performance. There are 

a number of different supervised learning techniques and while some of the techniques applied in 

the current study have been applied in previous work (30), it is unknown how different 

techniques would have impacted predictive performance. Lastly, the current findings relate to 

HSIs that fulfilled the criteria of acute pain in the posterior thigh that resulted in disruption of the 

hamstring fibres, as confirmed by MRI (10). Cases that were MRI negative but clinically positive 

were not included in this study and it is difficult to determine how the inclusion of these injuries 

would have impacted the findings. In addition to this, other injury types are certain to occur and 

these should be accounted for by including them as competing risks in the modelling approach 

(32). 

In conclusion, eccentric hamstring strength, age and previous HSI data cannot be used to identify 

Australian footballers at an increased risk of HSI with any consistency. Despite suggestions that 

the ability to predict injury with prospectively collected data is limited, the application of 

supervised learning techniques in elite sport still warrants further investigation. It is unclear 

whether injury probabilities calculated by predictive models can be used to identify at risk 

athletes and guide risk mitigation strategies to ultimately reduce injury incidence. With the 

previously discussed considerations in mind, future research is needed to determine what, if any 

improvements can be made in injury prediction performance. 
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Figure captions: 

Figure 1. The modelling approaches for A) within-year hamstring strain injury prediction (used 

to analyse 2013 data and 2015 data independently), and B) between-year hamstring strain injury 

predictions (used to analyse 2013 data and 2015 data collectively). The performance outcome 

used was area under the curve. Ten thousand iterations of each modelling approach were 

performed. SMOTE, synthetic minority over-sampling techniques. 

 

Figure 2. The individual performance of 2013 within-year hamstring strain injury prediction 

models built using A) eccentric hamstring strength, age and previous hamstring strain injury as 

input data, and B) eccentric hamstring strength, age, previous hamstring strain injury, between-

limb imbalance, previous anterior cruciate ligament injury, stature, mass and primary playing 

position as input data. The solid horizontal line indicates the expected performance due to 

random chance and the dotted horizontal line represents the median area under the curve of all 

models. SMOTE, synthetic minority over-sampling techniques. 

 

Figure 3. The individual performance of 2015 within-year hamstring strain injury prediction 

models built using A) eccentric hamstring strength, age and previous hamstring strain injury as 

input data, and B) eccentric hamstring strength, age, previous hamstring strain injury, between-

limb imbalance, previous anterior cruciate ligament injury, stature, mass and primary playing 

position as input data. The solid horizontal line indicates the expected performance due to 

random chance and the dotted horizontal line represents the median area under the curve of all 

models. SMOTE, synthetic minority over-sampling techniques. 
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Supplemental digital content 

Supplemental Digital Content 1.docx 

A brief description of each machine learning algorithm and the parameters that can be tuned for 

each algorithm using the R statistical programming language. 
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Table 1. Descriptive statistics summarising the individual performance of between-year HSI 

prediction models built using 2013 data for training and 2015 data for testing. Performance is 

measured as area under the curve.    

Algorithm 

 Area under the curve 

 
Group 1

* 
Group 2

# 

 
No SMOTE SMOTE No SMOTE SMOTE 

Naïve Bayes Minimum 0.49 0.41 0.47 0.42 

 

Lower 

quartile 
0.54 0.53 0.47 0.52 

 
Median 0.54 0.55 0.47 0.55 

 

Upper 

quartile 
0.54 0.56 0.47 0.57 

 
Maximum 0.54 0.65 0.57 0.65 

      Logistic regression Minimum 0.54 0.45 0.53 0.43 

 

Lower 

quartile 
0.54 0.48 0.53 0.50 

 
Median 0.54 0.54 0.53 0.52 

 

Upper 

quartile 
0.54 0.54 0.53 0.54 

 
Maximum 0.54 0.58 0.53 0.62 

      Random forest Minimum 0.48 0.42 0.45 0.41 

 

Lower 

quartile 
0.51 0.50 0.52 0.51 

 
Median 0.51 0.52 0.53 0.53 

 

Upper 

quartile 
0.52 0.54 0.54 0.55 

 
Maximum 0.54 0.65 0.57 0.65 

      Support vector 

machine 
Minimum 0.43 0.41 0.45 0.41 

 

Lower 

quartile 
0.49 0.51 0.48 0.50 

 
Median 0.51 0.53 0.52 0.52 

 

Upper 

quartile 
0.52 0.55 0.52 0.55 

 
Maximum 0.61 0.68 0.54 0.66 

      Neural network Minimum 0.44 0.37 0.45 0.40 

 

Lower 

quartile 
0.50 0.50 0.50 0.50 

 
Median 0.51 0.52 0.50 0.52 

 

Upper 

quartile 
0.54 0.54 0.51 0.54 

 
Maximum 0.65 0.65 0.57 0.73 

*
Group 1; models built using eccentric hamstring strength, age and previous hamstring strain 

injury as input data. 
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#
Group 2; models built using eccentric hamstring strength, age, previous hamstring strain injury, 

between-limb imbalance, previous anterior cruciate ligament injury, stature, mass and primary 

playing position as input data. 

SMOTE, synthetic minority over-sampling techniques. 

 

  

Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

A
C
C
E
P
T
E
D



 

 

 

Supplementary Digital Content 1. A brief description of each machine learning algorithm and the parameters that can be tuned for each algorithm using the R 

statistical programming language. 

 

 
Algorithm Description Parameters Parameter description 

Naïve Bayes A probabilistic classifier based on 

Bayes’ theorem and conditional 
probabilities 

Laplace correction A technique used to smooth categorical data and 

prevent the high influence of zero probabilities 

   

 Distribution type Specifies whether a kernel density estimator is used or 

not 

   

 Bandwidth adjustment Specifies the bandwidth size. Only relevant when a 

kernel density estimator is used 

   

Logistic regression Used to develop a regression 

equation from the log odds 

No tuning parameters  

    

Random forest An ensemble learning method that 

operates by constructing multiple 

decision trees 

Number of randomly 

selected predictors 

Specifies the number of variables available to be used 

to split the data at each tree node 

    

Support vector 

machine 

Used to construct a non-linear, 

multidimensional separating 

hyperplane for classifying 

observations 

Sigma Specifies the flexibility of the decision boundary 

   

 Cost Specifies the cost of incorrect classification 

   

 Weight Allocates a weighting to a preferential class 

   

Neural network A network of connected artificial 

neurons which transmit information 

and learn from correct or incorrect 

classifications 

Number of hidden units Number of hidden units used to apply functions to the 

input data 

   

 Weight decay Specifies the cost of allocating large weights to input 

units 
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