
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, 2020

https://doi.org/10.5194/nhess-20-2857-2020

© Author(s) 2020. This work is distributed under

the Creative Commons Attribution 4.0 License.

Predictive modeling of hourly probabilities for

weather-related road accidents

Nico Becker1,2, Henning W. Rust1,2, and Uwe Ulbrich1

1Institut für Meteorologie, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
2Hans-Ertel-Centre for Weather Research, Berlin, Germany

Correspondence: Nico Becker (nico.becker@met.fu-berlin.de)

Received: 14 January 2020 – Discussion started: 9 March 2020

Revised: 31 July 2020 – Accepted: 9 September 2020 – Published: 29 October 2020

Abstract. Impacts of weather on road accidents have been

identified in several studies with a focus mainly on monthly

or daily accident counts. This study investigates hourly prob-

abilities of road accidents caused by adverse weather con-

ditions in Germany on the spatial scale of administrative

districts using logistic regression models. Including meteo-

rological predictor variables from radar-based precipitation

estimates, high-resolution reanalysis and weather forecasts

improves the prediction of accident probability compared

to models without weather information. For example, the

percentage of correctly predicted accidents (hit rate) is in-

creased from 30 % to 70 %, while keeping the percentage

of wrongly predicted accidents (false-alarm rate) constant at

20 %. When using ensemble weather forecasts up to 21 h in-

stead of radar and reanalysis data, the decline in model per-

formance is negligible. Accident probability has a nonlinear

relationship with precipitation. Given an hourly precipita-

tion sum of 1 mm, accident probabilities are approximately

5 times larger at negative temperatures compared to posi-

tive temperatures. The findings are relevant in the context

of impact-based warnings for road users, road maintenance,

traffic management and rescue forces.

1 Introduction

The road transport system is one of the most complex and

dangerous systems that people have to deal with on a daily

basis (Peden et al., 2004). In Germany, for example, road

accidents led to around 396 600 injuries and 3200 fatalities

per year in 2016 (BASt, 2017). Causes for road accidents

can be of a technical, behavioral or environmental nature.

According to a recent review paper on spatial approaches

in road safety studies (Ziakopoulos and Yannis, 2020), vari-

ables like traffic volume, speed limit or the number of lanes

are frequently considered in accident analyses. Theofilatos

and Yannis (2014) show that the impact of weather on road

accidents has also been addressed in several studies cover-

ing various temporal and spatial scales, focusing on differ-

ent weather parameters and applying different methods. They

find that the effect of precipitation is quite consistent and

generally leads to an increased accident frequency. On the

other hand, the impact of other weather parameters on road

safety is covered by fewer studies and is less consistent.

Two types of studies can be distinguished regarding the

temporal scales. One type of study aims to relate road acci-

dents to weather on a monthly or seasonal timescale (e.g.,

Fridstrøm et al., 1995; Shankar et al., 1995; Eisenberg, 2004;

Bergel-Hayat and Depireb, 2004; Stipdonk and Berends,

2008). The aim of these studies is to gain insight into poten-

tial policy measures against the effects of adverse weather

on road transport (Shankar et al., 1995). Due to the tem-

poral variability of weather on monthly timescales, such

studies can only account for aggregated effects by consid-

ering for example the number of days with precipitation or

the number of days with temperatures below the point of

freezing (e.g., Fridstrøm et al., 1995). Other studies focus

on daily timescales (e.g., Eisenberg, 2004; Keay and Sim-

monds, 2005; Caliendo et al., 2007; Brijs et al., 2008). On

such timescales, the link between accident counts and the ac-

tual weather conditions on a specific day can be established.

However, the largest variability of traffic volume and acci-

dent rates is observed on subdaily timescales, with peaks

during rush hours and low values during night time (Mar-
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tin, 2002). Weather conditions may also change dramati-

cally within hours. To take into account the combined ef-

fect of weather and traffic volume, a subdaily timescale is

necessary. Nevertheless, only few studies focus on subdaily

timescales (e.g., Hermans et al., 2006a), possibly due to the

lack of appropriate data sources. To establish robust relation-

ships between accidents and weather parameters on an hourly

timescale, a sufficient number of data are required at a high

spatial resolution. However, the analysis of highly resolved

accident data is often subject to restrictions due to data pro-

tection directives. The spatial scales covered by the different

studies vary from the national or state level (Hermans et al.,

2006a) down to the level of individual cities (Yannis and Kar-

laftis, 2010) or specific roads or road segments (Ahmed et al.,

2012).

Meteorological data used in accident studies are often de-

rived from measurement stations. Stations are either used in-

dividually (e.g., Knapp et al., 2000) or spatially aggregated

for the area of interest (e.g., Eisenberg, 2004). In both cases,

it is possible that not all relevant weather events are cap-

tured because they do not hit a station. Recent studies use

radar data to estimate the impact of precipitation on accidents

(e.g., Mills et al., 2019). Jaroszweski and McNamara (2014)

argue that radar data offer significant advantages over tradi-

tional station-based analyses, namely a better representation

of rainfall due to a high spatial and temporal resolution.

Different weather parameters with a significant impact

on road accidents have been identified. Depending on the

study’s modeling strategy and the specific formulation of

variables characterizing weather, magnitude and even the

sign of the weather impact can vary between different stud-

ies. The most important weather parameter considered in

most studies is precipitation. On wet roads the tire contact

force is reduced (Hays and Browne, 1974), which increases

the braking distance starting at 100 km h−1 by about 20 %

compared to dry roads (Cho et al., 2007). Also glare caused

by wet shining surfaces can lead to reduced visibility and in-

crease accident probabilities (Brodsky and Hakkert, 1988).

Hermans et al. (2006a) studied hourly accident counts in the

Netherlands within a 1-year period and found precipitation

to be the most important factor among 17 different variables

characterizing weather.

On a monthly basis, snowfall can lead to the reduction

in accident numbers, possibly due to indirect effects like re-

duced traffic volume or the adaption of driving habits (Frid-

strøm and Ingebrigtsen, 1991). On the other hand, on a daily

basis, the direct effect of snowfall was found to increase the

accident risk. For example, Knapp et al. (2000) find that free-

way accident rates increase by a factor of 13 in the case

of extreme snowstorms. Mills et al. (2019) find that injury

and noninjury collisions increase by 66 % and 137 %, respec-

tively, during winter storm events that were characterized by

factors like precipitation and low visibility. The winter storm

events were identified by using radar- and station-based ob-

servations. Malin et al. (2019) observe a sharp increase in

relative accident risk if road surface temperatures drop be-

low the freezing point.

Since the first weather impact models for road accidents

(Scott, 1986), various types of models have been used in this

context. Most popular are generalized linear models (GLMs),

e.g., Poisson regression for accident counts or logistic regres-

sion for accident probabilities (e.g., Fridstrøm et al., 1995;

Caliendo et al., 2007; Keay and Simmonds, 2006), but other

methods like state-space (Hermans et al., 2006b) or autore-

gressive models (Brijs et al., 2008; Scott, 1986; Bergel-Hayat

and Depireb, 2004) have also been applied. Mostly, statisti-

cal models for weather impact on road accidents are used

in an inferential way; they test hypotheses for variable rela-

tions by means of statistical hypothesis testing for parameter

significance of prescribed predictor variables, also referred

to as explanatory modeling (Shmueli, 2010). This contrasts

with predictive modeling, where statistical models are used

for prediction of yet unobserved instances of the target vari-

able (e.g., accident counts or probabilities). In practice, pre-

dictive models are built and assessed using cross-validation.

This study follows the predictive modeling approach: we

build and assess the skill of logistic regression models for

hourly probabilities of weather-related road accidents at the

scale of administrative districts in Germany. The aim is to as-

sess model performance at small spatial and temporal scales

as well as identify relevant meteorological predictor vari-

ables for optimizing the predictive skill. We thus seek an ad-

equate functional relationship between hourly precipitation

and accident probability under different temperature condi-

tions and district characteristics. Instead of station-based ob-

servations, we use a gridded radar-based precipitation prod-

uct and a new high-resolution regional reanalysis. Addition-

ally, using ensemble weather forecasts, we assess the predic-

tive skill of the accident model for lead times of up to 21 h.

Section 2 describes data and preprocessing approaches.

Statistical models and associated verification methods are de-

scribed in Sect. 3. Results of model verification and the ap-

plication of the models in a case study of a snowfall event are

presented in Sect. 4, which is followed by a discussion and

conclusions in Sect. 5.

2 Data

2.1 Accident data

A data set with anonymized information from police reports

of all heavy road accidents in Germany from 2007 until 2012

is used (source: Research Data Centre of the Federal Sta-

tistical Office and Statistical Offices of the Länder, Statistik

der Straßenverkehrsunfälle, 2007–2012, own calculations).

Heavy road accidents include all accidents with injuries, fa-

talities or write-offs. Minor accidents are not included in the

data set. In total 2 392 329 accidents were reported during

the 6-year period under investigation. Most accidents were
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indicated by the police as being caused by driver behavior.

However, 7.7 % (184 201) of the accidents were indicated as

being caused by adverse road conditions, which includes a

wet, snowy or icy road but also mud or dirt on the road. This

class of accidents, which we refer to as weather-related ac-

cidents, is selected to generate the response variable used in

the logistic regression models. The location of the individual

accidents is available on the level of administrative districts

(Landkreise). Because of several territorial reforms during

the study period, all accidents are assigned to boundaries of

the 401 administrative districts as they existed in 2017. For

each district an hourly time series is created, which is one

if at least one accident happened within an hour and zero

otherwise. In total this results in 21 076 961 data points, of

which 0.80 % (168 404) contain at least one weather-related

accident.

2.2 Radar-based precipitation data

Gridded hourly precipitation sums derived from the

RADOLAN (Radar-Online-Aneichung) data set (Bartels

et al., 2004) are available from the German Meteorological

Service (DWD) at a spatial resolution of 1km × 1 km. The

RADOLAN combines radar reflectivity, measured by the 16

C-band Doppler radars of the German weather radar net-

work, and ground-based precipitation gauge measurements.

Because we cannot directly infer the precipitation amount at

the ground from radar reflectivity but only the amount of

reflection in the lower troposphere, observations from rain

gauges are used to calibrate the precipitation amounts esti-

mated from the radar reflectivity in an online procedure typ-

ically used for nowcasting. Before calibration, a statistical

clutter filtering is applied, and orographic shadowing effects

are corrected for. The RADOLAN project aims to combine

the benefits of high spatial resolution of the radar network

with the accuracy of gauge-based measurements.

2.3 Reanalysis data

A reanalysis produced by a novel convective-scale regional

reanalysis system for central Europe (COSMO-REA2; Wahl

et al., 2017) is used to generate meteorological predictor

variables for the logistic regression models. The reanaly-

sis results from the integration of COSMO-REA2 (a phys-

ical model for the atmosphere) with various heterogeneous

observational data assimilated. COSMO-REA2 was devel-

oped within the framework of the Hans-Ertel-Centre for

Weather Research (https://www.hans-ertel-zentrum.de, last

access: 28 October 2020). It contains different gridded atmo-

spheric and surface variables for central Europe at a spatial

resolution of 2 km and at hourly time steps. Deep convection

is explicitly resolved by the model, while shallow convection

is parameterized using the Tiedke scheme (Tiedtke, 1989).

In addition to conventional station-based observations, radar-

derived rain rates are assimilated using latent heat nudging.

On hourly to daily timescales, the assimilation of radar in-

formation substantially improves the parameterized precip-

itation compared to other reanalysis data sets (Wahl et al.,

2017).

2.4 Ensemble weather forecasts

Weather forecasts are used to study the predictability of ac-

cident probabilities based on weather forecasts with an en-

semble prediction system (EPS). We use the regional high-

resolution ensemble forecasting system COSMO-DE-EPS,

which runs operationally at the DWD before May 2018 with

a spatial resolution of 2.8 km for the area of Germany. The

COSMO-DE-EPS is initiated every 3 h, with a lead time

τ of up to 21 h. τ is the difference between the time the

model simulation is initialized and the time the forecast is

valid for. For example, if the model simulation is initial-

ized at 00:00 UTC, τ = 21 h corresponds to the forecast for

21:00 UTC. For each initialization time 20 ensemble mem-

bers are available, generated using different global model

forecasts as initial and lateral boundary conditions and vari-

ations in parameterizations for unresolved processes as de-

scribed in detail in Gebhardt et al. (2011) and Peralta et al.

(2012). The spread of the ensemble members allows an es-

timation of the forecast uncertainty. Similar to COSMO-

REA2, precipitation rates derived from radar observations

are assimilated at forecast initialization using latent heat

nudging (Stephan et al., 2008).

For our study, a postprocessed product of the archived

COSMO-DE-EPS forecasts for the years 2011 and 2017 was

provided by the DWD. Instead of archiving the forecast data

on the original model grid, area averages of 21 × 21 grid

boxes (56km × 56 km) around 758 DWD-owned gauge sta-

tions are stored. This drastically reduces the large number of

data, which facilitates their processing.

3 Methods

3.1 Data preparation

We aggregate the different meteorological variables to

the level of administrative districts. For the station-based

COSMO-DE-EPS forecasts a weighted mean of all available

stations in the vicinity of the districts was calculated using

the probability density function of a bivariate circular sym-

metric normal distribution as the weighting function. A stan-

dard deviation of 25 km proved to be most appropriate as it

corresponds well to the average district area.

For a fair comparison of RADOLAN and COSMO-REA2

with COSMO-DE-EPS forecasts, the same aggregation is ap-

plied to the gridded RADOLAN and COSMO-REA2 prod-

ucts: the areal averages around the 758 gauge stations are

computed as described in Sect. 2.4, and the data are aggre-

gated to the district level by applying the weighting function,

as described above.
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3.2 Logistic regression

Logistic regression models are used to model the probability

of a certain event based on independent predictor variables

(e.g., Menard, 2002). Here, we model hourly accident prob-

abilities. If Pt is the probability that an accident occurs in a

1 h time interval (t − 1h, t], the logistic model equation is

Pt = 1/{1 + exp[−(α + Xt β)]} , (1)

where α is the intercept term, Xt = (Xt1, . . .Xtn) is the set

of n predictor variables, and β = (β1, . . .,βn) are the corre-

sponding parameters. α and βi are estimated using maximum

likelihood. If the effects of the two predictor variables Xt i

and Xtj are not additive (i.e., the effect of Xt i on Pt depends

on the state of Xtj ), interaction terms can be added to the

model equation. If Xt i and Xtj are continuous variables, for

example, this can be achieved by adding βij Xt i Xtj to the

linear term in Eq. (1), with βij quantifying the combined ef-

fect of Xt i and Xtj . For a more detailed description of inter-

actions, see Wood (2017).

The parameters of the logistic regression model can be

easily converted to the odds ratio OR = expβi . The odds ra-

tio for a given term Xt i describes the change in the odds that

the event will occur in the case of a unit change in Xt i .

3.3 Assessing model performance

Parameter estimates β̂i associated with individual predictor

variables Xt i can be tested for being significantly different

from 0 using the p values of a two-tailed z test (Dobson and

Barnett, 2008).

Different logistic models are compared with information

criteria. The most popular is the Akaike information criterion

(AIC; Akaike, 1974), defined as

AIC = 2k − 2log(L̂) , (2)

where k is the number of parameters used in the model, and

L̂ is value of the likelihood at its maximum. Fitted to the

same data the model with a lower AIC is to be preferred.

The AIC penalizes models with more parameters to prevent

overfitting.

The Brier score (BS) is a proper score to measure accuracy

of probabilistic forecasts for binary events as they result from

a logistic regression model. Based on Brier (1950) the BS can

be defined as

BS =
1

N

N∑

t=1

(ft − ot )
2 , (3)

where ft is the forecast probability, ot is the observed out-

come of the event (ot ∈ {0,1}), t labels the events, and N is

the total number of events. However, Benedetti (2010) has

shown that the Brier score may not be suitable when fore-

casting very rare (or very frequent) events. He suggests the

use of the logarithmic score (LS; or absolute score)

LS = a
1

N

N∑

t=1

(ot lnft + (1 − ot ) ln(1 − ft )) , (4)

where a = −(2ln2)−1 is simply a scaling factor, making LS

comparable in size to BS. The LS is frequently used in the

field of statistical mechanics and information theory and ful-

fills three basic desiderata (i.e., additivity, exclusive depen-

dence on physical observations and strictly proper behavior).

By defining a threshold u, a probabilistic forecast (0 ≤

ft ≤ 1) can be transformed into a binary forecast, which

is either positive (accident) or negative (no accident) if the

forecast probability falls above (f ≥ u) or below the thresh-

old (f < u), respectively. The true positive rate (TPR, or hit

rate) is the number of correctly predicted positive events di-

vided by the total number of positive events. The false pos-

itive rate (FPR, or false-alarm rate) is the number of incor-

rectly predicted negative events divided by the total num-

ber of negative events. The receiver operating characteris-

tic (ROC) curve is a common way to illustrate the perfor-

mance of a logistic regression model as a binary classifier

by plotting the TPR against the FPR for various thresholds

0 < u < 1 (Hanley and McNeil, 1982). The area under the

ROC curve (AUC) is frequently used for measuring the abil-

ity of a model to discriminate between positive and negative

events. The AUC ranges between 0.5 and 1, which compares

to random guessing and perfect discrimination, respectively.

For a given FPR the corresponding TPR can be identified

based on the ROC curve. In this study, we compare the TPR

of different models while selecting u so that the FPR is kept

constant at 0.2.

A skill score SS is a relative measure of how much a fore-

cast Sf outperforms a reference forecast Sr, defined as

SS = (Sf − Sr)(Sp − Sr)
−1 , (5)

where Sp is the score of a perfect forecast. In this study we

use the BS to compute the Brier skill score (BSS; Sp,BS = 0),

the LS to compute the logarithmic skill score (LSS; Sp,LS =

0) and the AUC to compute a skill score based on the ROC

curve (AUCSS; Sp,AUC = 1).

Cross-validation is a technique where the performance of

a statistical model is tested using independent data that have

not been used for estimating the model coefficients. Here,

we use a yearly cross-validation approach. Model parameters

are estimated on a data set with 1 year of data left out, and

scores are calculated for this respective year. This is repeated

several times until a score has been estimated for all years.

The score is then averaged over all years and used for model

comparison.

To understand the behavior of the model, the predicted ac-

cident probabilities of the regression models can be com-

pared to nonparametric estimates for accident frequencies

within bins of specific parameter ranges. For example, a pre-

dicted accident probability for negative temperatures and a
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precipitation amount of 1 mm h−1 at 07:00 local time can be

compared to the relative accident frequency for all time steps

that showed negative temperatures and precipitation amounts

in an interval of 1 ± 0.1 mm at 07:00. The uncertainty of

model probability forecasts is estimated by computing the

95 % confidence interval based on asymptotic standard er-

rors. The uncertainty related to the nonparametric estimates

of the accident frequency is estimated by using a bootstrap-

ping approach. The observed accident frequency is computed

10 000 times after drawing random samples with replace-

ment from the available data. The range between the 0.025

and 0.975 quantile of the resulting distribution of values can

be used to construct a 95 % confidence interval around the

average observed accident frequency.

3.4 Model description

3.4.1 Models without weather information

The models NULL and HOUR predict the accident proba-

bilities for each district without using weather information

(see Tables 1 and 2 for a detailed description of predictor

variables and models, respectively). The simplest model is

the NULL model, using only the intercept and the time av-

erage accident probability P for each district as a predictor.

P is transformed into P
′

using the inverse logistic function.

By using P
′

in the logistic regression equation, a linear re-

lationship between P and the hourly accident probability is

established. By introducing P
′

we can distinguish between

different districts using a single model parameter. Alterna-

tively, we could include an individual intercept parameter for

each district. However, this would require the estimation of

401 parameters. By adding interaction terms, the number of

parameters would increase even more, making the model in-

applicable.

The model HOUR includes an additional categorical vari-

able H specifying the time of day in hours (local time),

which describes the diurnal cycle additionally to the aver-

age accident probability of each district. These two models

are used as reference models to assess the benefit of adding

weather information.

3.4.2 Models using radar and reanalysis data

Accident, radar and reanalysis data overlap in time for the

years from 2007 to 2012. For this time period, a binary pre-

dictor variable with hourly resolution for the near-surface

temperature TREA (temperature at 2 m height) is derived from

COSMO-REA2, which distinguishes between temperatures

above and below 0 ◦C. Furthermore, a continuous variable

PrRAD with the hourly precipitation sum in millimeters per

hour is used. In the model RAD the model HOUR is ex-

tended by adding TREA and (PrRAD)0.2 as direct effects. Dif-

ferent combinations of exponents have been tested to trans-

form the precipitation, but 0.2 leads to the best results in

terms of model skill. In the model RAD_INT the two-point

interaction terms between P
′
, H , TREA and (PrRAD)0.2 are

added to the model equation. Model parameter estimates re-

sult from using data from all districts simultaneously. How-

ever, the skill scores are calculated for each district individu-

ally within the cross-validation procedure. This allows us to

compare the performance of the model in different districts.

Additionally, we fit the models to the individual districts,

yielding models RAD_IND and RAD_INT_IND1, respec-

tively. On the one hand, these models capture the district-

specific characteristics; on the other hand, the number of

available data points for each model is strongly reduced,

which complicates the estimation of model parameters, in

particular for districts with low accident numbers. These

models are used to quantify the benefit of having one model

for all districts.

3.4.3 Models using weather forecast data

The overlapping time period of accident data and COSMO-

DE-EPS data are the years 2011 and 2012. For this time pe-

riod temperature and precipitation are aggregated to the dis-

trict level as before for all 20 ensemble members. This is

done separately for all forecast lead times τ , ranging between

1 h after forecast initialization and 21 h after initialization.

The COSMO-DE-EPS provides hourly forecast data but is

initialized only every 3 h. Therefore, not all hours are avail-

able for all lead times. For example, a lead time of 6 h is

only available at 00:00, 03:00, 06:00, 09:00, 12:00, 15:00,

18:00 and 21:00 UTC, while a lead time of 7 h is only avail-

able at 01:00, 04:00, 07:00, 10:00, 13:00, 16:00, 19:00 and

22:00 UTC. Furthermore, the logistic regression model uses

local time, which has to take into account daylight savings

time. Both effects complicate an explicit use of the hour as

a predictor variable in combination with COSMO-DE-EPS

data. Therefore, to facilitate the incorporation of a diurnal

cycle in the model, a two-step procedure is applied. First,

the model HOUR is used to forecast the average diurnal cy-

cle of accident probabilities PH for each district. Second,

PH is transformed into P ′
H using the inverse logistic func-

tion. Then, P ′
H is used to replace the terms P

′
+H (compare

HOUR and EPS_HOUR in Table 2, for example).

Three different ways to incorporate the ensemble informa-

tion in the models are used.

1. Deterministic forecasts: in the case of the model

EPS_MEMi_INT, an individual set of parameters is es-

timated for each ensemble member and each lead time.

Skill scores are calculated for each of the resulting

sets of parameters separately, thus treating the ensem-

ble members as single deterministic forecasts.

1INT refers to the use of interaction terms in the model equation,

while IND refers to estimating model parameters for each district

individually.
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Table 1. Descriptions of predictor variables used in different logistic regression models for hourly probabilities of weather-related road

accidents in German administrative districts.

Name Description

P Temporal average of accident probability of in an administrative district

P
′
= − log(1/P ) − 1 P transformed using the inverse logistic function

H A categorical variable for the hour of the day

PrRAD Hourly precipitation in millimeters from RADOLAN data aggregated to district level

PrEPS,i Hourly precipitation in millimeters from ith ensemble member of COSMO-DE-EPS aggregated to district

level

PrEPS,m Ensemble mean of hourly precipitation in millimeters calculated from COSMO-DE-EPS ensemble mem-

bers aggregated to district level

TREA A binary variable indicating whether the COSMO-REA2 near-surface temperature aggregated to district

level is above or below 0 ◦C

TEPS,i As TREA but derived from the ith ensemble member of COSMO-DE-EPS

TEPS,m As TREA but derived from the ensemble mean of COSMO-DE-EPS

PH Accident probability as predicted by the model HOUR (see Table 2) based on P and H

PH
′ = − log(1/PH ) − 1 PH transformed by the inverse logistic function

Table 2. Description of different logistic regression models for hourly probabilities of weather-related road accidents in German administra-

tive districts and their degrees of freedom (Df). Formulas are written using the statistical formula notation system as used in programming

languages like R and Python, with colons indicating interaction terms. See Table 1 for a definition of variables.

Name Formula Df

Models using radar and reanalysis data (2007–2012)

NULL y ∼ 1 + P
′

2

HOUR y ∼ 1 + P
′
+ H 25

RAD y ∼ 1 + P
′
+ H + TREA + (PrRAD)0.2 27

RAD_INT y ∼ 1 + P
′
+ H + TREA + (PrRAD)0.2 + P

′
: H + P

′
: TREA + P

′
: (PrRAD)0.2 + H : TREA

+H : (PrRAD)0.2 + TREA : (PrRAD)0.2
99

RAD_IND As RAD but without P
′
, fitted to all 401 districts individually 401 × 29

RAD_INT_IND As RAD_INT but without P
′
, fitted to all 401 districts individually 401 × 73

Models using radar, reanalysis and weather forecast data (2011–2012)

EPS_HOUR y ∼ 1 + P ′
H

2

EPS_RAD_INT y ∼ 1 + P ′
H

+ TREA + (PrRAD)0.2 + P ′
H

: TREA + P ′
H

: (PrRAD)0.2 + TREA : (PrRAD)0.2 6

EPS_MEMi_INT y ∼ 1 + P ′
H

+ TEPS,i + (PrEPS,i)
0.2 + P ′

H
: TEPS,i + P ′

H
: (PrEPS,i)

0.2 + TEPS,i : (PrEPS,i)
0.2 6

EPS_MEAN_INT y ∼ 1+P ′
H

+TEPS,m + (PrEPS,m)0.2 +P ′
H

: TEPS,m +P ′
H

: (PrEPS,m)0.2 +TEPS,m : (PrEPS,m)0.2 6

EPS_PMEAN_INT As EPS_MEMi_CON_INT but using ensemble mean probabilities for verification 20 × 6

2. Meteorology-averaged ensemble: in the case of the

model EPS_MEAN_INT, the parameters are estimated

using the ensemble mean of the meteorological vari-

ables, which results in a single set of parameters for

each lead time.

3. Probability-averaged ensemble: in the case of the

model EPS_PMEAN_INT, accident probabilities are

predicted using the models EPS_MEMi_INT for the in-

dividual ensemble members, but the ensemble mean of

the predicted probabilities is calculated before using it

to compute the scores in the cross-validation procedure.

The models EPS_HOUR and EPS_RAD_INT correspond to

the models HOUR and RAD_INT but are fitted separately to

the data available for each lead time to allow a direct com-

parison to the models using COSMO-DE-EPS data.
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Figure 1. Distribution of the cross-validated area under receiver

operating characteristic curve skill score (AUCSS) of 401 admin-

istrative districts is shown for different logistic regression models

for weather-related accident probabilities. The probability density

is smoothed by a kernel density estimator (shading). The median is

indicated by vertical dashed lines.

4 Results

4.1 Models using radar and reanalysis data

The time-averaged hourly probability that at least one

weather-related accident occurs in an administrative district

is referred to as P . It ranges from less than 0.001 for smaller

districts with few inhabitants to more than 0.05 for densely

populated cities. The NULL model simply gives P for each

district and serves as a reference model. As expected, the

AUC is 0.5, indicating that the model is not able to distin-

guish between accident and nonaccident cases (Table 3).

In the model HOUR all parameters of the categorical vari-

ables H are significantly different from 0, with p values be-

low 0.001, indicating that the diurnal cycle is an important

aspect of the accident characteristics. The average AUC of all

districts is 0.62, indicating that the introduction of the hour

as a predictor improves the model.

The introduction of temperature and precipitation as direct

effects in the model RAD leads to a further improvement of

the scores compared to NULL and HOUR. With an AUC of

about 0.81 and an AUCSS of 0.49 (HOUR as reference), tem-

perature and precipitation can be considered useful in terms

of binary classification of accident events. The TPR increases

from 0.3 for HOUR to 0.7 for RAD. The interaction terms in

RAD_INT slightly improve all scores except for the TPR.

Figure 1 shows that the variability of the AUCSS values

of the different districts is relatively large compared to the

differences between the models. However, there is no evident

systematic relationship between the skill of the model and

the geographic location of the district or the district-specific

topography (not shown).

Figure 2 shows the modeled accident probabilities (solid

lines) predicted by the RAD (panels a, c, e) and RAD_INT

(panels b, d, f) versus precipitation (panels a and b), hour

(panels c and d) and P (panels e and f) together with the

95 % confidence intervals estimated from the standard errors

(shaded). Additionally, the accident probabilities estimated

nonparametrically (number of time steps with accidents di-

vided by total number of time steps) are shown (markers) to-

gether with the 95 % confidence intervals estimated using a

bootstrapping approach (vertical lines). Model and nonpara-

metric probabilities are shown for positive (red) and negative

(blue) temperatures.

The modeled accident probabilities as a function of PrRAD

are shown for 07:00 local time for a district with an av-

erage probability for weather-related accidents of P = 0.01

(Fig. 2a and b). Nonparametric probability estimates are cal-

culated for precipitation bins with a width of 0.1 mm h−1 in-

cluding only districts with P = 0.01 ± 0.002. In general, ac-

cident probabilities are lowest at PrRAD = 0 and show a steep

increase with increasing precipitation and a decreasing slope

at higher precipitation rates. Probabilities are higher at tem-

peratures below 0 ◦C. At PrRAD = 1 mm h−1, probabilities

are about 5 times higher if temperatures are below 0 ◦C. For

RAD the modeled probabilities fit well to the nonparamet-

ric probability estimates at PrRAD < 0.5 mm h−1 but overes-

timate probabilities at higher precipitation rates. In contrast,

the model RAD_INT shows reduced probabilities, which fit

much better to the nonparametric probability estimates. The

curved shape of the functional relationship between precip-

itation and probability is realized by taking precipitation to

the power of 0.2. The value 0.2 was found to be the best

choice after testing a series of different exponents; other

functional relationships, for example log(1 + Pr); and cate-

gories of precipitation.

The modeled probabilities as a function of H are

shown for PrRAD = 0 mm h−1 (solid lines) and PrRAD =

0.5 mm h−1 (dashed lines) for P = 0.01 (Fig. 2c and d).

Nonparametric probability estimates are calculated using

time steps with PrRAD = 0 mm h−1 (circles) and PrRAD =

0.5 ± 0.25 mm h−1 (triangles) including only districts with

P = 0.01 ± 0.002. In general, accident probabilities show a

pronounced diurnal cycle with maximum probabilities dur-

ing morning and afternoon rush hours. RAD overestimates

the observed probabilities in particular during the morning

hours with precipitation at negative temperatures. The model

RAD_INT is able to capture the observed diurnal cycle more

precisely.

The modeled probabilities as function of P are shown for

PrRAD = 0 mm h−1 (solid lines) and PrRAD = 0.5 mm h−1

(dashed lines) at H = 7 h (Fig. 2e and f). Nonparametric

probability estimates are calculated using time steps with

PrRAD = 0 mm h−1 (circles) and PrRAD = 0.5±0.25 mm h−1

(triangles) including districts with P = 0.01±0.002. In gen-

eral, the probabilities show a monotonic increase with P ,

which justifies the introduction of P as a predictor to dis-

tinguish between different districts. The predictions of RAD

and RAD_INT are relatively similar and lie mostly within

the confidence intervals of the observed probabilities.

For more detailed insight into the modeling results, we

provide the full model coefficients, standard errors and p

https://doi.org/10.5194/nhess-20-2857-2020 Nat. Hazards Earth Syst. Sci., 20, 2857–2871, 2020



2864 N. Becker et al.: Predictive modeling of hourly probabilities for weather-related road accidents

Table 3. Verification measures for models using radar and reanalysis data. Akaike information criterion (AIC), area under receiver operating

characteristic curve (AUC), true positive rate (TPR), logarithmic score (LS) and Brier score (BS). Scores computed in a yearly cross-

validation approach for each administrative district are shown as an average of all districts. Skill scores of AUC, LS and BS are computed

with the model HOUR as reference (see Table 2). The best value of each score is written in bold.

Model NULL HOUR RAD RAD_INT RAD_IND RAD_INT_IND

AIC 1 885 238 1 856 974 1 629 688 1 624 719 – –

AUC 0.5000 0.6157 0.8056 0.8097 0.7977 0.7740

TPR – 0.3252 0.6715 0.6707 0.6644 0.6366

LS 0.0324 0.0319 0.0280 0.0279 0.0282 0.0302

BS 0.0079 0.0079 0.0077 0.0077 0.0077 0.0077

AUCSS −0.3053 0.0000 0.4923 0.5033 0.4714 0.4095

LSS −0.0147 0.0000 0.1194 0.1211 0.0969 −0.0144

BSS −0.0012 0.0000 0.0205 0.0208 0.0203 0.0124

values of the models NULL, HOUR, RAD and RAD_INT

in the Supplement. In the case of RAD, which has 27 coef-

ficients, almost all model coefficients have p values below

0.001, and we can reject the null hypothesis that the coeffi-

cients are 0. Only 1 of the 23 coefficients of the categorical

variable HOUR is not significant. In the case of RAD_INT,

which has 99 coefficients due to the introduction of inter-

action terms, 34 coefficients have p values below 0.001; 29

have p values greater than 0.1 and are thus not significantly

different from 0. These nonsignificant coefficients all belong

to the categorical variable HOUR or are included in an in-

teraction term with this variable. This might indicate that the

diurnal cycle could be modeled sufficiently with fewer than

the 23 coefficients used here. However, we do not expect a

large impact of such a reduction on the metrics that have been

discussed earlier.

Next, we compare the models RAD and RAD_INT,

which are fitted to all districts simultaneously, to the mod-

els RAD_IND and RAD_INT_IND, which are fitted to all

districts individually. Figure 3 shows the difference of the

AUCSS between RAD and RAD_IND (red) and between

RAD_INT and RAD_INT_IND (black) as a function of P . P

provides direct information about how many accident cases

were available in the time series used for training the mod-

els. In general, the AUCSS differences are mostly negative,

indicating that the models fitted to each district individu-

ally perform poorer than the models including all districts.

The AUCSS differences decrease with increasing P , i.e., in-

creasing accident numbers. Furthermore, the AUCSS differ-

ences are larger for the more complex models with interac-

tion terms. The results are similar for the LSS (not shown).

Based on the results of this section, we can conclude that

RAD_INT should be preferred over RAD since it achieves

the best scores and better represents the functional relation-

ship between probability and precipitation as well as the di-

urnal cycle. Furthermore, RAD_INT preforms better than

RAD_INT_IND, which is fitted to each district individually.

4.2 Models using weather forecast data

The model RAD_INT showed the best performance among

the models predicting accident probability using radar and

reanalysis data (Sect. 4.1). In this section the model formu-

lation of RAD_INT is modified to allow the use of COSMO-

DE-EPS ensemble weather forecasts. To facilitate the mod-

eling procedure, the variables H and P are combined into

a single variable P ′
H by using the model HOUR, which ef-

fectively results in a district-specific diurnal cycle of acci-

dent probabilities (see Sect. 3.4.3 for details). P ′
H , precip-

itation and temperature are used as predictor variables, in-

cluding their interaction terms. For each lead time from 1 to

21 h, a new set of model parameters is estimated using only

those time steps where COSMO-DE-EPS data are available

for the specific lead time. For a small number of forecasts the

COSMO-DE-EPS data are missing or incomplete.

The model EPS_RAD_INT uses TREA and PrRAD and

serves as a reference, representing the best available

model based on reanalysis and radar data. The AUCSS of

EPS_RAD_INT as a function of lead time shows a 3-hourly

cyclic pattern with maximum values of around 0.5 at lead

times 1, 4, 7, etc. and 0.47 in between (Fig. 4, orange line).

This cyclic pattern occurs because hourly data are used in

the statistical models, but COSMO-DE-EPS is only initial-

ized every 3 h (00:00, 03:00, 06:00 UTC, etc.). Consequently,

EPS_RAD_INT for lead times of 1, 4, 7 h, etc. includes only

data at 01:00, 04:00, 07:00 UTC, etc.; the lead times 2, 5, 8 h,

etc. include only 02:00, 05:00, 08:00 UTC, etc.; and the lead

times 3, 6, 9 h, etc. include only 00:00, 03:00, 06:00 UTC,

etc. As a consequence, there are three sets of lead times that

are associated with different sets of hours of the day, which

correspond to the repetitive 3-hourly pattern in the AUCSS.

Apparently, the model performs differently for these three

sets of hours, possibly due to different traffic characteristics

during the specific hours.

The model EPS_MEMi_INT is estimated for each of the

20 ensemble members individually, which therefore results
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Figure 2. Comparison of modeled probabilities of weather-related road accidents with nonparametric probability estimates. Probabilities

(lines) and 95 % confidence intervals based on standard errors (shading) of the model RAD (a, c, e) and RAD_INT (b, d, f) are displayed as a

function of hourly precipitation (a, b), hour of the day (c, d) and the temporal average accident probability of the administrative district (e, f)

for different parameter settings (see legends for details). Nonparametric estimates of probabilities (markers) and 95 % confidence intervals

based on bootstrapping (vertical lines) are shown for corresponding parameter ranges.

in 20 deterministic forecasts with 20 individual AUCSS val-

ues per lead time. The AUCSS drops from 0.48 at lead

time 1 h to below 0.45 at lead time 21 h (gray lines).

The spread between the AUCSS of the different ensemble

members increases with increasing lead time. The model

EPS_MEAN_INT is based on the ensemble mean of the me-

teorological variables (meteorology-averaged ensemble) and

shows a slightly higher AUCSS (solid black line) than all the

deterministic forecasts.

The model EPS_PMEAN_INT, which is based on the en-

semble mean of the accident probabilities of the 20 versions

of EPS_MEMi_INT (probability-averaged ensemble), shows

again a slightly higher AUCSS (dashed black line) than the

meteorology-averaged ensemble. As expected, the AUCSS

values of all models based on weather forecast data are lower

than the AUCSS of EPS_RAD_INT based on radar and re-

analysis data. However, the differences are relatively small.
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Figure 3. Differences in area under receiver operating charac-

teristic curve skill score (AUCSS) values between the models

RAD_IND and RAD (red) and RAD_INT_IND and RAD_INT

(black). AUCSS differences are shown for each of the 401 adminis-

trative districts vs. the average accident probability P of the respec-

tive districts (dots).

Figure 4. Area under receiver operating characteristic curve skill

score (AUCSS) values of different models for hourly probabili-

ties of weather-related road accidents using radar, reanalysis and

weather forecast data from 2011 to 2012 as a function of lead time.

The LSS shows a similar behavior regarding the lead time

dependence as the AUCSS (not shown).

4.3 Case study

The models RAD_INT and EPS_PMEAN_INT are used in a

case study with adverse winter weather conditions on 3 De-

cember 2012. At temperatures below the freezing point the

fronts of a low-pressure system lead to snowfall in large parts

of Germany. These weather conditions lead to a total number

of 280 accidents classified by the police as caused by road

condition. The majority of the accidents occurred in south-

ern and western Germany.2

2Due to regulations regarding anonymization and data protec-

tion we are not allowed to show accident counts less than three,

For the district of Stuttgart, which was located within

the affected area, the RADOLAN data show low precipita-

tion amounts in the early morning and higher precipitation

amounts of up to 0.3 mm h−1 in the afternoon (Fig. 5a). The

COSMO-DE-EPS forecast, which was initialized on 3 De-

cember 2012 at 00:00 UTC (02:00 LT, local time), shows en-

semble mean precipitation amounts of more than 0.6 mm h−1

in the afternoon and a large spread between the ensemble

members.

The temperature in COSMO-REA2 is below 0 ◦C until

19:00 LT and then changes to warmer conditions (Fig. 5b).

All ensemble members of COSMO-DE-EPS predict the

change to positive temperatures 2 h earlier than observed.

The accident probability of EPS_RAD_INT shows the

combined effect of the average diurnal cycle, RADOLAN

precipitation and COSMO-REA2 temperature (Fig. 5c). It

shows a peak of 0.07 in the morning during rush hour at

low precipitation amounts at freezing temperatures; a drop

to 0.02 at noon, when RADOLAN shows no precipitation;

and a maximum peak of 0.22 in the afternoon, when pre-

cipitation is strongest. In general, the accident probability

of EPS_PMEAN_INT matches well with EPS_RAD_INT.

However, it slightly overestimates the morning peak and

overestimates the afternoon peak due to the too intense and

persistent precipitation.

The hourly accident probability P is useful for authorities

to assess how likely the occurrence of an accident is in a cer-

tain district at a certain point in time. However, it does not

reflect the risk of an individual road user as it does not distin-

guish whether P changes due to weather-related effects, due

to a change in traffic density along the diurnal cycle or due

to the district characteristics. For example, a road user trav-

eling from a district with a high average accident probability

P to a district with a low P would observe a decrease in P

even if the weather conditions remain the same. Therefore, to

estimate the impact on an individual road user, we compare

P to P0, the probability under conditions without precipi-

tation and with positive temperatures (Fig. 5c, dotted line).

The fraction P/P0 gives the amplification of the actual pre-

dicted probability P compared to warm and dry conditions

(Fig. 5d). In the case of the forecast for 3 December 2012,

the amplification factor ranges between 50 in the afternoon,

when the precipitation amount is high, and 5 around noon,

when the precipitation amount is low. This factor could be a

potential weather impact forecast product.

On 3 December 2012 at 17:00 LT, the COSMO-DE-EPS

overestimates the precipitation amount in large parts of west-

ern and southern Germany compared to RADOLAN (Fig. 6).

The area with temperatures below 0 ◦C is captured relatively

well compared to COSMO-REA2. The accident probabil-

ity P is largest where high precipitation amounts and freez-

ing temperatures occur. Spatially, P is relatively inhomoge-

which prevents us from showing accident counts for single hours or

days at the district level.
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Figure 5. Application of the models EPS_RAD_INT and EPS_PMEAN_INT to an adverse winter weather event on 3 December 2012. Time

series are shown for the district of Stuttgart using the COSMO-DE-EPS forecast initialized at 00:00 UTC. (a) Hourly precipitation aggregated

to district level, (b) percentage of ensemble members with temperatures below 0 ◦C, (c) probability of weather-related road accidents and

(d) relative accident probability.

neous, which reflects the large differences in average acci-

dent probability between the individual districts. P/P0, rep-

resenting the increase in accident probability of individual

drivers, is spatially more homogeneous.

5 Summary, discussion and conclusions

Police reports of heavy road accidents in Germany were used

to construct hourly time series based on weather-related ac-

cidents caused by adverse road conditions for German ad-

ministrative districts. Different meteorological data sets ag-

gregated to the district level were used in logistic regres-

sion models to predict hourly accident probabilities. Models

of different complexity were compared after calculating dif-

ferent skill scores using a yearly cross-validation approach.

The best model with respect to these scores included district-

specific average accident probability, the hour of the day,

hourly precipitation and temperature, and their interaction

terms. The model reached a hit rate (TPR) of 0.7 when the

false-alarm rate (FPR) was fixed at 0.2. With the same false-

alarm rate, a model without meteorological parameters only

reached a hit rate of 0.3. It was shown that the probability

of weather-related accidents increases nonlinearly with in-

creasing hourly precipitation. Given an hourly precipitation

of 1 mm, the accident probability is approximately 5 times

higher at negative temperatures compared to positive tem-

peratures. In a case study it was shown that the model is

able to reasonably capture the spatial and temporal develop-

ment of accident probabilities during adverse winter weather

conditions. When using ensemble weather forecasts to pre-

dict accident probabilities, the skill of the logistic regression

model remains almost constant for a forecast lead time of up

to 21 h. Furthermore, the use of ensemble forecasts leads to a

higher skill compared to a setting where ensemble members

are treated as individual deterministic forecasts. These find-

ings are in line with the results of Pardowitz et al. (2016),

who show that the use of ensemble information improves

predictions of storm damage probabilities.
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Figure 6. Model results for adverse winter weather conditions on 3 December 2012 at 17:00 LT based on models EPS_RAD_INT (top) and

EPS_PMEAN_INT using the COSMO-DE-EPS forecast with a lead time of 16 h initialized at 00:00 UTC (bottom). From left to right: hourly

precipitation at district level, fraction of ensemble members with temperatures below 0 ◦C, probability of weather-related road accidents and

relative accident probability.

The target variable of this study was weather-related road

accidents. The accidents included in the analysis were indi-

cated by the police as being caused by adverse road condi-

tions, which includes a wet, snowy or icy road but also mud

or dirt on the road. Thus, the categorization of the accident

cause is based on the subjective decision of the police at the

location of the accident. This might introduce a bias to the

results whose direction or extent is hard to estimate. For ex-

ample, a large number of accidents that occur during adverse

weather conditions are likely to be unrelated to the weather

but are caused only by inattention of the driver. Police offi-

cers might still categorize these accidents as being weather-

related in unclear situations. It should be kept in mind that

this could lead to an overestimation of weather-related acci-

dent probabilities in the models developed in this study.

It is known that the main parameters affecting accident

probability are traffic flow and density. In an optimal case

one would use measurements of these variables as a model

predictor for accident probability. However, traffic measure-

ments are not continuously available for all administra-

tive districts. Additionally, measurements of traffic flow are

mainly available for highways and federal roads and might

not be representative for municipal roads, where the major-

ity of the accidents occur. Furthermore, in an operational set-

ting, where the model is applied for predicting future ac-

cident probabilities, traffic measurements are not available.

Therefore, we decided not to directly include traffic mea-

surements in the models. Instead, the hour of the day was

used as a categorical predictor variable to capture the aver-

age diurnal cycle of accident probability. It was shown that

this approach is able to reasonably represent the inner-day
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variability of accident probability. The introduction of addi-

tional factors like on weekends or holidays did not lead to a

significant improvement of the model.

It is a challenging task to combine accident data, which

are available for the area of administrative districts, with me-

teorological data, which are usually available in the form

of point observations or gridded data. Different ways of

aggregating meteorological data to the district level were

tested, and the approach based on distance-weighted averag-

ing, which is presented in this study, showed the best results.

The temperature at 2 m height was used in this study to

include the effect of negative temperatures in the statisti-

cal model in a relatively simple approach. It has the benefit

that the temperature at 2 m height is a well-established me-

teorological parameter, which is measured at most stations

and available in all weather forecasting models. However, it

might not reflect the conditions at the road surface, which can

deviate from the conditions at 2 m height. Also, the choice

of 0 ◦C as a fixed threshold is a simplified approach since

ground frost or snowfall could also occur at higher 2 m tem-

peratures. By using nonlinear approaches like generalized

additive models (Wood, 2017) a smooth transition between

positive and negative temperatures could be established in

future studies. Furthermore, it might be detrimental that area

averaged temperatures are used, which does not fully repre-

sent topographic variations within the area of a certain dis-

trict. A more complex approach could make use of a road

surface model, which includes the combined effects of pre-

cipitation, evaporation, and road surface temperatures in a

more sophisticated way (e.g., Juga et al., 2013).

In addition to the weather parameters presented in this

study, other parameters like snow fall amount or combined

measures of cloud cover and sun angle to describe the impact

of sun glare were tested as potential predictor variables. Fur-

thermore, advanced predictor selection techniques like ge-

netic algorithms (Calcagno and de Mazancourt, 2010) and

the least absolute shrinkage and selection operator (Tibshi-

rani, 1996) were applied to find optimal combinations of pa-

rameters. However, none of the results were able to signifi-

cantly improve the skill of the best models presented in this

study, as measured by the cross-validation approach.

We found that the probability of weather-related accidents

depends on hourly precipitation to the power of 0.2. This ex-

ponent should not be understood as a universal relationship.

Instead, it is likely to depend on different aspects of the road

system (e.g., how fast the water is able to leave the road sur-

face) or the average car characteristics (e.g., the share of cars

equipped with assistance systems or the type of tires). It may

even change in time as road and car qualities improve.

In this work we showed two ways of modeling probabili-

ties in different districts: first, by creating a model that distin-

guishes between different districts based on their average ac-

cident probability and, second, by creating a model for each

district individually. We found that the first approach leads

to higher skill scores, particularly for districts with low acci-

dent numbers. Including additional district-specific parame-

ters describing the characteristics of the road network or to-

pographic conditions could help to further refine the model.

This study shows that a skillful relationship between mete-

orological parameters and weather-related road accidents can

be established. Forecasts of probabilities of weather-related

road accidents, as presented in this study, might be useful

for authorities (traffic management, police or emergency ser-

vices) on the one hand and road users on the other hand.

However, it is reasonable to provide the information about

accident risk in different, user-specific formats, which are in-

troduced in Sect. 4.3. Authorities might be primarily inter-

ested in aggregated risk information for their region of in-

terest, e.g., the occurrence probability of accidents in an ad-

ministrative district. On the other hand, road users are rather

interested in their individual risk. The individual risk is better

reflected through an amplification of risk compared to certain

reference conditions (e.g., warm and dry weather).

It was shown that impact-based warning can lead to better

actions of the recipients (Weyrich et al., 2018). Furthermore,

Hemingway and Robbins (2019) state that information about

weather impacts can be helpful for operational meteorolo-

gists when issuing weather warnings. This was found using

a prototype impact model for predicting the risk of road dis-

ruption due to the wind-induced overturning of vehicles. In

this context, the accident model presented in this study can

be considered a useful tool for reduction in road traffic risk.
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