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Abstract: 35 

Lead (Pb) contamination continues to contribute to world-wide morbidity in all countries, 36 

particularly low- and middle-income countries. Despite its continued widespread adverse effects 37 

on global populations, particularly children, accurate prediction of elevated household dust Pb 38 

and the potential implications of simple, low-cost household interventions at national and global 39 

scales have been lacking. A global dataset (~40 countries, n = 1951) of community sourced 40 

household dust samples were used to predict whether indoor dust was elevated in Pb, expanding 41 

on recent work in the United States (U.S.). Binned housing age category alone was a significant 42 

(p < 0.01) predictor of elevated dust Pb, but only generated effective predictive accuracy for 43 

England and Australia (sensitivity of ~80%), similar to previous results in the U.S. This likely 44 

reflects comparable Pb pollution legacies between these three countries, particularly with 45 

residential Pb paint. The heterogeneity associated with Pb pollution at a global scale complicates 46 

the predictive accuracy of our model, which is lower for countries outside England, the U.S., and 47 

Australia. This is likely due to differing environmental Pb regulations, sources, and the paucity 48 

of dust samples available outside of these three countries. In England, the U.S., and Australia, 49 

simple, low-cost household intervention strategies such as vacuuming and wet mopping could 50 

conservatively save 70 billion USD within a four-year period based on our model. Globally, up 51 

to 1.68 trillion USD could be saved with improved predictive modeling and primary intervention 52 

to reduce harmful exposure to Pb dust sources. 53 

 54 

Keywords: Community science, Pb pollution, indoor dust, predictive modeling, Pb screening 55 
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1. Introduction 69 

 Lead (Pb) contamination affects millions of people adversely across the world, 70 

particularly children, because of their greater susceptibility to Pb poisoning due to their activities 71 

(i.e., hand-to-mouth behavior), developing bodies, and greater ability to absorb Pb relative to 72 

adults (e.g., Egendorf et al., 2020; Gundacker et al., 2021; Mielke et al., 1999). This has resulted 73 

in high global morbidity, evidenced through diminished IQ levels and other neurocognitive 74 

impairment (e.g., Meyer et al., 2008).  While blood lead levels (BLLs) have rapidly declined in 75 

many countries following the phase-out of leaded gasoline, particularly in developed/high-76 

income countries, BLLs continue to be elevated in many low- and middle-income countries 77 

(LMICs) and there is no known safe level of Pb exposure (e.g., Meyer et al., 2008, Ericson et al., 78 

2021a). 79 

Conservatively, nearly $1 trillion USD in potential life earnings is lost annually due to 80 

Pb-related IQ detriment in low- and middle-income countries (LMICs), with higher-income 81 

countries sharing less of the global Pb burden (Attina and Trasande, 2013). Lead sources also 82 

differ, with LMICs predominantly having BLLs influenced by Pb sources other than paint and 83 

leaded petrol, such as battery manufacturing or recycling (Ericson et al., 2021a). Recent 84 

estimates in the United States (U.S.) of potential lost income due to Pb exposure is around $46.2 85 

billion USD/year for the years 1999-2010 and is disproportionately shouldered by Black (non-86 

Hispanic) infants (Boyle et al., 2021). For example, Boyle et al. (2021) estimated a 46–55% 87 

greater amount of average grade school IQ points lost due to blood Pb exposure in Black infants 88 

relative to Hispanic or White infants based on cross-sectional National Health and Nutrition 89 

Examination Survey (NHANES) results in the U.S. Thus, in addition to uneven global Pb 90 

exposure, there can be disproportionate Pb exposure at the national scale as well. 91 

 To combat global Pb pollution an international collaboration of scientists came together 92 

to begin an initiative called “DustSafe” (also known as “360 Dust Analysis”) to measure and 93 

educate the community about everyday exposures and what they could do to reduce exposure. 94 

This initiative utilizes community scientists to collect household dust for trace metal(loid) 95 

screening (Isley et al., 2022). Results obtained through this program are used to better assess 96 

exposure sources and routes, and the results are communicated back to the community 97 

participants who supplied the samples. Participants are informed of any potential hazards and 98 

learn of steps they may take to reduce their trace metal exposure. In addition to informing 99 

community members, the collective results of this work have been used to inform researchers of 100 

similarities and dissimilarities in household dust pollution at national and global scales (Isley et 101 

al., 2022). Given that BLLs have been shown to relate strongly to household dust Pb (e.g., 102 

Lanphear et al., 1996; Gulson and Taylor, 2017; Rhoads et al., 1999), these dust data can assist 103 

with direct intervention to reduce potentially elevated BLLs. For example, a simple logistic 104 

regression model based on “DustSafe” Pb data in North America (predominantly the U.S.) was 105 

able to correctly classify elevated (≥ 80 mg/kg) or low (< 80 mg/kg) dust Pb samples 75% of the 106 

time, with a sensitivity of 82% (Dietrich et al., 2022). This model was then incorporated into an 107 

interactive online app (Dietrich et al., 2022) so the general public can more easily participate in 108 

the “DustSafe” program and take intervention steps if necessary. 109 
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 This work sought to expand this model to the much larger global dust dataset to evaluate 110 

if and where it would be effective, and whether adjusting the model would be more effective in 111 

particular regions such as those with similar or differing legacies/sources of Pb pollution 112 

worldwide (e.g., Ericson et al., 2021a). Predictive modeling of indoor dust Pb concentrations in 113 

general has been sparse (Dietrich et al., 2022). A growing number of predictive models for Pb 114 

have appeared for different environmental media, such as soil (e.g., Obeng-Gyasi et al., 2021; 115 

Schwarz et al., 2013), BLLs and water infrastructure (e.g., Gibson et al., 2020; Mulhern et al., 116 

2022), and even predictive models for BLLs based on spatial and spatiotemporal data (e.g., 117 

Potash et al., 2020). However, many predictive models are complex and require extensive 118 

datasets with multiple variables for input. Several models also require complex machine-learning 119 

techniques for the best outcomes (e.g., Obeng-Gyasi et al., 2021; Potash et al., 2020). Our recent 120 

work has shown that a simple model with only a few key variables performs well at predicting 121 

elevated Pb in household dust (Dietrich et al., 2022), which may help to inform risk analysis and 122 

interventions.  123 

To assess the usefulness of a global predictive indoor dust Pb model, we: (1) tested the 124 

U.S. based model (Dietrich et al., 2022) on global dust Pb data to determine its efficacy; (2) 125 

identified modifications required to improve predictive ability; (3) determined differences in 126 

model accuracy based on different country groupings; and (4) estimated the potential effects of 127 

low-cost household intervention based on modeling results. The purpose of this work was not to 128 

determine exact sources of Pb and make exposure estimates, but to use crowd-sourced 129 

environmental data to help better understand risk factors for indoor dust Pb in multiple countries. 130 

  131 

2. Methods 132 

2.1 Sampling collection and analysis 133 

 The DustSafe sampling and data protocols were subject to ethical review and approval at 134 

Macquarie University, Australia (project #2446); Indiana University, U.S. (project 135 

#1810831960); and Northumbria University, U.K. (project #2598). All dust samples were 136 

provided by community participants via post between 2018-2021 from 39 countries (Table 1; n = 137 

1951), predominantly England and Australia (n = 1524), following the emptying of household 138 

vacuum cleaner contents into a clean, polyethylene bag. Participation was promoted through 139 

campaigns online, such as twitter and email, as well as via radio and open house days.  140 

Household dust samples are representative of composite household dust and uniform instructions 141 

for sampling were provided to all participants. Community participants also completed an online 142 

questionnaire (e.g., https://www.360dustanalysis.com/soil/get-started) that collected household 143 

data on potentially influencing factors (e.g., recent renovations, age of home, occupation, etc.). 144 

Household dusts were sieved to < 250 μm using either a pre-cleaned stainless-steel sieve or 145 

single-use polypropylene mesh. Pb concentrations were determined with X-ray fluorescence 146 

spectrometry (portable (pXRF) and energy-dispersive (ED-XRF)) for all samples except for a 147 

small subset of samples from China (inductively coupled plasma atomic emission spectrometry 148 

(ICP-AES)), outlined in Isley et al. (2022). Additionally, a small subset of samples from China 149 

https://www.360dustanalysis.com/soil/get-started
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were sieved to 150 μm instead of 250 μm, and the limit of detection (LOD) for Pb ranged from 150 

0.1-2 mg/kg depending on the country conducting the analysis (Isley et al., 2022). Additional 151 

details on analytical procedures and quality control are provided in Isley et al. (2022). U.S. data 152 

were also collected following the same method as reported in Dietrich et al. (2022) and Isley et 153 

al. (2022), with 23 additional samples reported for this work (4 of the 365 samples are from 154 

Canada and are included in the “U.S. Model”). As the majority (n = 1524) of samples were from 155 

England and Australia, there are spatial limitations associated with this dataset. However, over 156 

200 house dust samples were collected from an additional 30+ countries, which provides a useful 157 

and spatially diverse dataset to analyze. 158 

 A detailed longitudinal study in one home within England was conducted to evaluate 159 

month to month (March 2020-October 2021) variability of reported indoor dust Pb 160 

concentrations using this sampling and analysis protocol. However, due to initial monthly 161 

reporting indicating elevated Pb concentrations, a washable doormat was placed at the main 162 

doorway/entry threshold into the home, replacing the previous non-washable doormat, to test 163 

how a simple intervention could influence bulk Pb vacuum cleaner dust concentrations. Greater 164 

emphasis was also placed on shoe removal upon entrance into the home. The same vacuum 165 

cleaner was used throughout the study, used across all rooms within the home each month, the 166 

initial doormats were never vacuumed but shaken outside, and no “do-it-yourself” or internal 167 

home improvements were undertaken during the longitudinal study. The replacement washable 168 

door mats were cleaned and changed every 1-3 weeks and not vacuumed. 169 

2.2 Metadata analysis 170 

Metadata were provided via an online questionnaire (e.g., 171 

https://www.360dustanalysis.com/soil/get-started). Slight differences in questionnaires based on 172 

location are described in more detail in Isley et al. (2022). Participant data of hobbies related to 173 

metal exposure, such as fishing, shooting, and metalwork were omitted because of the large 174 

number of hobby types (n = 8), and lack of data provided for most hobby types [Isley et al. 175 

(2022)—Supplementary Fig. 9.7 (n is < 40 for all but 2 hobby types in global data)]. 176 

All “Yes” responses were converted to “1,” and all “No” responses were converted to “0” 177 

(Table S1). Housing age data was converted into binned housing age categories based on 178 

Dietrich et al. (2022), and ages were calculated assuming a sampling date of 2019, as this was 179 

when most samples were collected and the date of actual sample collection was not directly 180 

available. They were reclassified as numeric variables of 0, 1, 2, 3 for the responses, “1980-181 

Present,” “1960-1979,” “1940-1959,” and “Pre-1940,” respectively (Table S1). These groupings 182 

of housing age were selected based on the common phase-out history of Pb paint in countries 183 

such as the U.S., England and Australia, and because the binned categories make it easier for 184 

community engagement when developing this variable into a predictive, interactive model/app. 185 

While these housing age categories do not necessarily follow Pb regulatory practices in many 186 

LMICs, we elected to base our model originally on these categories because it has been shown to 187 

be effective in the U.S. (Dietrich et al., 2022) and the bulk (> 50%) of studies included in this 188 

work were collected in countries with similar Pb regulatory legacies to the U.S. (England and 189 

Australia). Thus, if these housing groupings are found not to be effective in other country 190 

https://www.360dustanalysis.com/soil/get-started
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groupings, this would suggest closer examination of the nuances associated between housing age 191 

and Pb sources in other countries for future work, as the exploratory breakdown of best housing 192 

age categories by individual country is beyond the scope of this work. 193 

2.3 Logistic regression modeling 194 

 Predictive logistic regression modeling was performed in RStudio (R Core Team, 2021) 195 

using the glm() function and the general equation:  196 

log [
𝑝

1−𝑝
] = 𝑏0 + 𝑏1 ∗  𝑥1 + 𝑏2 ∗ 𝑥2 … + 𝑏𝑛 ∗  𝑥𝑛                                                          (1) 197 

Where p is the probability of an event occurring, b0 is the intercept, bn is the regression beta 198 

coefficient, and xn is a given predictor variable. 199 

A stepwise algorithm to help identify best logistic regression models was run using the 200 

stepAIC() function in R, based on the MASS package (Venables and Ripley, 2002). Modeling 201 

was based on classifying samples as “Elevated” or “Low” Pb, with the cutoff as ≥ 80 mg/kg for 202 

“Elevated” Pb. This is based on California’s (U.S.) human health screening level for soil Pb, 203 

which albeit more conservative, is more preventative than outdated Pb guidelines such as the 204 

U.S. EPA’s 400 mg/kg residential soil standard (e.g., Gailey et al., 2020) and almost certainly 205 

represents an anthropogenic source of Pb in most areas, as average Pb in upper continental crust 206 

is only ~17 mg/kg (Rudnick and Gao, 2003). All data input into the modeling is freely available, 207 

including essential variables used for the best predictive modeling from the U.S. dataset (Table 208 

S1). 209 

 Given that Australia and England have similar Pb legacies and regulatory practices over 210 

the past century and comprised the majority of our DustSafe data, our predictive Pb logistic 211 

regression models were evaluated both on the collective global dataset, as well as a subset of 212 

Australian and English data to determine whether there were significant differences worth 213 

noting. We began with the U.S.-based predictive model (Dietrich et al., 2022) for evaluation, 214 

then, based on those results, refined our models based on the global dataset. Only samples with 215 

metadata responses were used in the modeling. 216 

2.4 Online app development 217 

 The online mobile app for Pb screening built upon the previous version in Dietrich et al. 218 

(2022) for the U.S. The goal was to provide an easily accessible, user-friendly way for people to 219 

evaluate likelihood for elevated dust Pb in their home, while also learning about Pb in the 220 

environment. The application was built using the shiny, shinydashboard, shinydashboardPlus, 221 

and shinyjs packages in R (Attali, 2020; Chang et al., 2021; Chang and Borges Ribeiro, 2018; 222 

Granjon, 2021). 223 

 224 

3. Results/Discussion 225 

3.1 Modeling results 226 
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 The Pb dust predictive model from the U.S. (Dietrich et al., 2022) resulted in a mean 227 

predictive accuracy of 73% Elevated/Low correct classification of Pb dust concentrations 228 

(probability threshold of 0.85) and a sensitivity of 80% on the global dataset (n = 1653; not 229 

including the U.S.). When omitting Australia and England, the model performed at 64% 230 

accuracy with a sensitivity of 39% (n = 267, 0.8 probability threshold). England alone (n = 132) 231 

had 75% predictive accuracy with the model and 92% sensitivity (0.85 probability threshold). 232 

Australia alone (n = 1254) had a 76% predictive accuracy and 82% sensitivity (0.85 probability 233 

threshold). England and Australia combined (n = 1386) had a predictive accuracy of 76% and 234 

sensitivity of 83% (probability threshold of 0.85). Summary outputs from all scenarios are 235 

available in the Supplement (Supplementary Text S1). 236 

 When utilizing global, non-England/Australia, and England/Australia data for training 237 

and testing datasets, no additional significant (p < 0.05) predictor variables could be identified 238 

besides housing age category, which alone provided the best modeling outcomes (i.e., based on 239 

overall predictive accuracy, sensitivity, area under the ROC curve (AUC)). The 240 

English/Australian testing dataset (n = 421; based on 0.7 training/0.3 testing data ratio) produced 241 

a predictive accuracy of 76% and sensitivity of 80% with a probability threshold of 0.55 based 242 

on the housing age model and English/Australian training dataset (Table 2). For non-English and 243 

Australian countries, the housing age predictive model based on the training dataset predicted 244 

accurately 74% of Elevated vs. Low Pb classification (probability threshold of 0.5), but with a 245 

sensitivity of only 38% (n = 84; Table 2). 246 

 Modifying the logistic model from Dietrich et al. (2022) (based predominantly on U.S. 247 

housing dust data with 23 samples added to the Dietrich et al. (2022) dataset) to include only the 248 

housing age category as a predictive variable improved the predictive accuracy slightly and 249 

maintained sensitivity of the model, even though interior peeling paint was a highly significant 250 

variable (p < 0.01) in the original model (Table S2). Overall model predictive accuracy on the 251 

testing dataset (n = 109) slightly increased to 85%, while sensitivity remained at 82% 252 

(probability threshold of 0.8). This modified equation became: 253 

𝑙𝑜𝑔 [
𝑝

1−𝑝
] =  2.5632 − 0.9551  (𝐻𝑜𝑢𝑠𝑖𝑛𝑔)       (2) 254 

Where “Housing” is the housing age category (model output in Supplementary Text S2). 255 

Applying this model to all English/Australian data (n = 1386) resulted in a predictive accuracy of 256 

75% and sensitivity of 81% (probability threshold of 0.85) (Table 2). Usage of the model on non-257 

English/Australian data (n = 269) produced a predictive accuracy of 70%, with a sensitivity of 258 

31% (probability threshold of 0.8) (Table 2).  259 

 The most effective logistic regression model contains only one variable. While we still 260 

contend this is a predictive model by convention (i.e., an equation that makes the prediction of an 261 

outcome based on sample data), it essentially boils down to a housing age threshold for 262 

determining whether house dust is likely to be elevated in Pb or not. Basically, any sample that 263 

falls in a housing age bin earlier than 1980-Present will result in a predictive outcome of elevated 264 

dust Pb. As discussed later, this corresponds with Pb regulatory history in the U.S., England, and 265 

Australia, where Pb paint was largely outlawed/reduced for home application in the 1970s.  266 
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 267 

3.2 Modelling usefulness and effectiveness 268 

 While the metadata questionnaire response to interior peeling paint was a significant 269 

predictive variable (p < 0.01) in our North American dataset (Dietrich et al., 2022), inclusion of 270 

this variable was not significant at the global level (p > 0.05), even with countries relatively 271 

analogous (economically and regarding Pb regulatory history) to the U.S., such as England and 272 

Australia. Furthermore, our work revealed that although this interior peeling paint variable was 273 

highly significant (p < 0.01) in our North American model (Dietrich et al., 2022), omission of the 274 

variable and inclusion of only housing age category slightly improved overall predictive 275 

accuracy (but not sensitivity) with predominantly the same testing dataset as used in Dietrich et 276 

al. (2022).  277 

 At the global level, housing age category was the most (and only) significant predictive 278 

factor, resulting in a predictive accuracy ≥ 75% and sensitivity ≥ 80% in grouped English and 279 

Australian data (Table 2)—this is the case when using both the modified model developed from 280 

predominantly U.S. data [Equation (2)] and a model based on a training dataset of English and 281 

Australian data (Supplementary Text S3). This is similar to the predictive accuracy of the 282 

housing category only model [Equation (2)] used on the predominantly Dietrich et al. (2022) 283 

testing dataset (n = 109), which resulted in a sensitivity of 82% and predictive accuracy of 85%. 284 

Graphing the distributions of Pb indoor dust data by housing age category demonstrates this, 285 

particularly in England and Australia (Fig. 1). This illustrates that housing age category alone 286 

can provide helpful information regarding which homes in the U.S., Australia, and England 287 

contain indoor dust Pb ≥ 80 mg/kg. The importance of housing age and Pb concentrations has 288 

been well-established in the literature for both soils (e.g., Taylor et al., 2021, Yesilonis et al., 289 

2008) and house dusts (e.g., Isley et al., 2022; Rasmussen et al., 2011). Chance alone would 290 

result in a sensitivity and predictive accuracy of ~50% for the logistic regression model, but by 291 

just knowing relative housing age (not even the exact housing age), we can improve average 292 

predictive accuracy to ~75% and sensitivity to ~80% (Table 2). 293 

 The housing age category is less useful when grouping together results from countries 294 

outside of the U.S., Australia and England. Sensitivity drops to < 40% when both types of 295 

housing age models (U.S.-based and non-English and Australian-based) are used (Table 2), 296 

greatly reducing any real-world usefulness of the models. This is because this results in false-297 

negative rates of > 60%, where many homes with actual dust Pb ≥ 80 mg/kg will be incorrectly 298 

classified as “Low” Pb. In fact, this would be detrimental from an intervention standpoint, 299 

because the probability by pure chance of correctly classifying elevated versus low Pb homes 300 

would be greater, at 50%.  301 

Because of small sampling size (i.e., n < 15) of paired Pb data and questionnaire 302 

responses in most countries outside of the U.S., Australia, and England, we could not effectively 303 

examine the nuances between countries grouped together as non-English and Australian data. 304 

Logistic regression requires large datasets, and we wanted to avoid making extrapolations of 305 

predictive accuracy on any sampling subsets where n < 100, as even our testing dataset in 306 



9 

 

Dietrich et al. (2022) (n = 102) was subject to sampling size effects depending on the random 307 

subset of testing data chosen. The data analyzed thus far suggests that housing age is not as 308 

important of a determinant of elevated household dust Pb in countries outside the U.S., England, 309 

and Australia, and that alternative sources typically not associated with housing age may be 310 

responsible for interior dust Pb concentrations.  311 

A recent literature review compiled by Ericson et al. (2021a) supports this contention, as 312 

they found in LMICs that most studies of BLLs attributed predominant Pb sources to non-Pb 313 

paint sources, such as industrial emissions. Specifically, non-Pb paint sources also included 314 

examples such as battery manufacturing or recycling, electronic waste, metal mining and 315 

processing, ceramics, automobile repair, diet, and bullets (Ericson et al., 2021a).This was further 316 

backed in a commentary reply by Ericson et al. (2021b), where they reemphasized the role of 317 

industrial-related Pb as a main source of elevated BLLs in LMICs, with only 1.5% of their study 318 

(Ericson et al., 2021a) subsamples reporting lead-paint as a likely exposure source. In high-319 

income countries such as the U.S., Australia, and England, Pb paint is likely still a large 320 

contributor of current household dust Pb because it still resides in many older homes and soils 321 

(e.g., Dietrich et al., 2022), which explains why housing age category alone remains a significant 322 

predictor variable. Additionally, it is important to note that Pb paint can end up in household dust 323 

from both inside or outside the home, as exterior peeling paint may also be tracked in from 324 

outdoor soils/dusts. These outdoor soils/dusts may also contain Pb from gasoline/industry 325 

sources, and it is noted that there is likely some covariance with housing age and sourcing of Pb 326 

from historic gasoline in soils that are trekked inside. Previous research examining Pb sources in 327 

house dust indicates mixing of indoor and outdoor sources. House dust Pb in the U.S. was 328 

identified as originating from interior house paint (Dietrich et al., 2022), outdoor soils, and street 329 

dust (Adgate et al., 1998), while house dust Pb in Australia was also sourced from soil and/or Pb 330 

paint (e.g., Doyi et al., 2019; Laidlaw et al., 2014). 331 

While not all our non-English and Australian samples were from LMICs (i.e., Ireland, 332 

Greece, New Zealand), many were, such as China, Bangladesh, Iran, India, and Mexico, and 110 333 

(41%) of our non-English and Australian paired housing age and Pb concentration samples (used 334 

in modeling) were from countries also included in the Ericson et al. (2021a) metanalysis of 335 

LMICs. Thus, it is reasonable to conclude that there are significant differences of controls on 336 

household dust Pb concentrations in homes based on country, particularly in LMICS where Pb 337 

pollution legacy often differs from countries such as England, the U.S., and Australia. 338 

 339 

3.3 Online app update for Pb screening and potential application and development 340 

 Our previous modeling based on indoor vacuum dust Pb concentrations in predominantly 341 

U.S. household dust samples led to the development of an interactive online app (for computers 342 

or mobile devices; https://iupui-earth-science.shinyapps.io/IUPUI-LeadRiskApp/) where users 343 

could input information about their home (housing age, interior peeling paint) and our model 344 

would then let the user know whether their home was likely to contain elevated (≥ 80 mg/kg) Pb 345 

in indoor dust (Dietrich et al., 2022). The app links to the “MapMyEnvironment” website 346 

https://iupui-earth-science.shinyapps.io/IUPUI-LeadRiskApp/
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(https://www.mapmyenvironment.com/), which contains a link to the “360 Dust Analysis” 347 

project page (where users could register for our free testing program) as well as links to other 348 

free testing programs for environmental media such as soil and water. Based on its success in 349 

predicting elevated Pb in English and Australian house dust samples (Table 2), we have 350 

expanded the app to now include these countries. Additionally, because the response of interior 351 

peeling paint was deemed not sufficiently significant in predictive power, this question was 352 

eliminated for users. While the previous model contained an option of “not sure” regarding 353 

housing age category, we have also elected to remove it from the app, as it was not a significant 354 

individual predictor in the U.S.-based model (p = 0.12) and none of the English nor Australian 355 

samples contained this response. The logistic regression model currently used in the app is based 356 

on Equation (2). The results page of the app now links directly to the 360 Dust Analysis page as 357 

well as the MapMyEnvironment sampling map. While still in early roll-out, the binned housing 358 

age categories should make it relatively easy for users to determine which category to select, 359 

even if they are unsure of their exact home age. This is particularly important for renters, who 360 

often have less knowledge of building information. Future work will evaluate whether the binned 361 

housing age categories are sufficient for the best user participation through examination of 362 

mobile app data and post-hoc survey responses from users who complete the community science 363 

process from start to finish. 364 

 While the predictive modeling for countries outside of the U.S., Australia, and England 365 

did not perform effectively enough to warrant inclusion into an interactive app for Pb screening 366 

(sensitivity < 50%; Table 2), we envision that through continued sampling and assessment of 367 

results from these countries, there may eventually be enough data to tailor specific predictive 368 

models that contain variables other than housing age. A key component of this may be different 369 

survey questions for specific countries, such as distance to metal smelters, distance to battery 370 

recycling plants, distance to mining sites, etc., as these industrial Pb sources are more common in 371 

LMICs (Ericson et al., 2021a). Continued global partnerships with LMIC communities are key to 372 

addressing these current knowledge gaps, particularly because those in LMICs are the ones 373 

mostly adversely affected by elevated BLLs (e.g., Attina and Trasande, 2013, Ericson et al., 374 

2021a). 375 

 Although the study data were predominantly sourced from three countries (U.S., 376 

England, and Australia), the analytical outcomes provide a framework for future research 377 

endeavors to partner with community participants to better understand what the main predictors 378 

of household Pb contamination are. While our sample size in LMICs was small, we have clearly 379 

illustrated the need for more sampling and analyses in these countries to better decipher the 380 

complex nuance in Pb contamination between countries with differing past and present 381 

environmental regulations. 382 

 383 

3.4 Potential economic impact of simple, low-cost household interventions based on 384 

modeling results 385 

https://www.mapmyenvironment.com/
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 One of the key objectives of our international DustSafe collaboration is to provide 386 

participants with information on how they can reduce their Pb exposure (Isley et al., 2022), 387 

which is particularly relevant where no government remediation services are provided. The 388 

online app provides an easy way to participate in DustSafe, and model results can provide users 389 

with key data they need for intervention without waiting for formal dust Pb analysis.  390 

 Using the geometric mean Pb dust concentration of all our global dust samples ≥ 80 391 

mg/kg (225 mg/kg; Fig. 2), and assumptions of initial BLLs based on that mean, effects of 392 

household intervention on children’s (< 5 years) BLLs can be estimated (Table 3). Based on our 393 

estimations, which we deem conservative because of using U.S. baseline BLLs instead of global 394 

baseline BLLs, the effects of household intervention (e.g., wiping, high filter vacuuming) such as 395 

that done in Rhoads et al. (1999) in multiple homes could result in up to $70 billion USD saved 396 

within a four-year cohort within England, Australia, and the U.S. (Table 3). Rhoads et al. (1999) 397 

was used to estimate effects of simple, low-cost, household interventions, because they include 398 

multiple homes and children (n = 46 children) and a range of conventional intervention 399 

techniques such as wiping and mopping of floors. Our cost savings estimate arises if every 400 

family with children < 5 years old uses our current model [Equation (2)] at a sensitivity of 80% 401 

and acts on the results (Table 3). These cost savings are based on the prevention of IQ points lost 402 

due to Pb poisoning, which adversely affects lifetime earnings potential (e.g., Attina and 403 

Trasande, 2013; Boyle et al., 2021). If our model worked at the global scale with the same 404 

sensitivity of ~80%, the earnings potential saved could be up to $1.68 trillion USD within a four-405 

year cohort following household intervention (Table 3). 406 

 Household interventions are a temporary solution to environmental Pb exposures, as 407 

cleaning, removal of outdoor footwear at entrances, and door mats do not necessarily remove the 408 

ultimate sources of Pb in the environment (internal and external), and Pb can persist in the home 409 

at elevated concentrations even following intervention (Fig. S1). Although this short-term 410 

solution may reduce the individual household Pb burden, effective remediation at the primary 411 

source of Pb (i.e., paint, outdoor soils, mining sites, etc.) is what will ultimately prevent 412 

childhood Pb exposure and poisoning. Nevertheless, simple household efforts can reduce overall 413 

household Pb dust concentrations. Our case study example in England (~270-year-old home) 414 

demonstrates this (Fig. S1), as the geometric mean monthly indoor dust Pb concentration was 415 

437.5 mg/kg (n = 4) prior to the use of washable door mats. Using washable door mats and 416 

greater emphasis on removing outdoor footwear resulted in household vacuum dust Pb 417 

concentrations dropping by an average of 55.1% to a geometric mean of 196.5 mg/kg (n = 12), 418 

albeit there was about a two-month lag before the reduced Pb concentrations stabilized (Fig. S1; 419 

Table S3). This illustrates, albeit on only one home, how simple, low-cost interventions can be 420 

effective in reducing the backtracking of Pb-laden dust into the home and how regular washing 421 

can also reduce an exposure hazard from the mat itself. 422 

 423 

4. Conclusions 424 
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 Lead pollution persists globally, and adversely affects children. In analogous high-425 

income countries such as the U.S., England, and Australia, similarities in Pb pollution legacy and 426 

sources enable simplistic predictive modeling to accurately assess which homes likely contain 427 

elevated dust Pb based on housing age. However, this does not necessarily work well in other 428 

countries, particularly LMICs because of differing Pb sources such as mining and industry. Thus, 429 

although household intervention based on usage of our predictive model could potentially save 430 

trillions of USD throughout the world, more refined data is needed in countries outside the U.S., 431 

England, and Australia to develop more effective predictive models of country specific 432 

household indoor dust Pb. Additionally, paired household indoor dust, outdoor soil, and house 433 

paint data in future community science projects along with important metadata such as housing 434 

age will further help elucidate ultimate sources of Pb in household environments throughout the 435 

world. 436 

 437 
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Figure 1 Embedded boxplots within violin plots for housing age categories used in the predictive models, 

as well as N/A housing age values (no survey responses). The boxes represent the interquartile range (IQR) 

of 25th-75th percentiles of data, the solid horizontal line is the median, and the whiskers represent 1.5 times 

the IQR. Unpaired Mann-Whitney test associated p-values between housing age categories are provided. 

The y-axis is transformed on a log10 scale, and the dashed red line represents California’s human health 

screening level of 80 ppm for soil Pb. 
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 506 

 507 

Figure 2 Proportion of global DustSafe samples ≥ 80 mg/kg Pb [North America (Dietrich et al., 

2022; 23 additional samples with survey responses in this study, and all samples analyzed without 

survey responses as well), and Nigeria (Isley et al., 2022)], with the corresponding smoothed 

density plot on a log10 scale x-axis. The dotted vertical line denotes 80 mg/kg. 

Global DustSafe Samples 
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Table 1: Summary data (sample size (n), median and interquartile range (IQR) of Pb 508 

concentrations and housing age) of DustSafe samples with complete or nearly complete 509 

questionnaire responses to accompany Pb concentration measurements. United States samples 510 

and modeling results are presented in Dietrich et al. 2022, with an additional 19 U.S. samples 511 

presented in this work (n = 361 total with survey data and Pb concentrations) and 4 Canadian 512 

samples (n = 15 total). 513 

Country n Median 

Pb 

(mg/kg) 

IQR Pb Median House 

Age 

IQR 

House Age 

Australia 1254 125 239 1966 60 

U.S. 361 31 46 1985 45 

England 132 113 124 1939 46 

China 49 76 49 2004 13 

New Zealand 42 79 149 1969 40 

Greece 35 57 58 1993 23 

Mexico 33 13 27 1989 26 

Croatia 27 61 20 1979 23 

Canada 15 54 26 1993 33 

Ghana 14 62 53 2007 14 

Scotland 5 83 84 1943 30 

Wales 5 40 116 1929 30 

France 4 102 52 1958 51 

Bangladesh 3 159 48 1999 
 

Belgium 3 178 94 1889 73 

Cyprus 3 56 17 2004 13 

Estonia 3 69 27 1979 53 

Germany 3 65 55 1889 69 

Iran 3 68 67 2001 14 

Malaysia 3 51 9 2007 4 

N. Ireland 3 83 48 1990 71 

Nepal 3 101 23 1993 14 

Netherlands 3 179 200 1904 51 

South Korea 3 60 13 1992 10 

Barbados 2 87 28 1992 13 

Czech 

Republic 

2 38 16 1997 8 

Switzerland 2 742 372 1929 30 

India 1 55 
 

1998 
 

Italy 1 272 
 

1994 
 

Northern 

Ireland 

1 43 
 

1934 
 

Slovakia 1 50 
 

2017 
 

Thailand 1 109 
 

2007 
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Table 2: Confusion matrix output results for Pb household dust predictive models using the 514 

housing age category variable only. Grey highlighted outputs are based on models from training 515 

datasets of data from this study, while non-highlighted outputs are based on Equation (2). 516 

Testing dataset of 

England and 

Australia data (n = 

421) 

Actual 

Elevated Pb 

Actual Low 

Pb 

Sensitivity Mean Proportion 

Predicted Correctly 

Predicted 

Elevated Pb 

243 42  

0.80 

 

0.76 

Predicted Low Pb 61 75 

Testing dataset of 

non-England and 

Australia data (n = 

84) 

Actual 

Elevated Pb 

Actual Low 

Pb 

  

Predicted 

Elevated Pb 

11 4  

0.38 

 

0.74 

Predicted Low Pb 18 51 

Testing dataset of 

England and 

Australia data (n = 

1,386) 

Actual 

Elevated Pb 

Actual Low 

Pb 

  

Predicted 

Elevated Pb 

813 153  

0.81 

 

0.75 

Predicted Low Pb 188 232 

Testing dataset of 

non-England and 

Australia data (n = 

269) 

Actual 

Elevated Pb 

Actual Low 

Pb 

  

Predicted 

Elevated Pb 

30 15  

0.31 

 

0.70 

Predicted Low Pb 67 157 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 
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Table 3: Estimate of potential life earnings lost from IQ detriment that would be saved within a 526 

four-year cohort of children due to correct household intervention based on predictive modeling 527 

results when Pb household dust concentrations are ≥ 80 mg/kg. Uncertainty is propagated based 528 

on the original range in starting BLLs and intervention reduction. Essentially, the estimated BLL 529 

decline is multiplied by the potential exposed population, then multiplied by the model 530 

sensitivity and IQ points lost per BLL to come up with total IQ points potentially saved through 531 

household intervention. That value is then multiplied by lifetime productivity loss estimates per 532 

IQ point decrease, as explained below in order to estimate on a first-order basis how much 533 

money is saved from household Pb prevention. 534 

 Starting Pb 

concentration 

(mg/kg)a 

Starting 

BLL 

(µg/dL)b 

Intervention 

reduction 

(%)c 

BLL 

Decline 

(µg/dL) 

Population 

<5 yrs old 

exposed to 

household 

Pb ≥ 80 

mg/kgd 

(millions) 

Model 

Sensitivity 

IQ points 

saved 

(millions)e 

Earnings 

potential 

saved 

(trillions 

USD)f 

 

 

Global 

 

 

 

225 

 

 

 

2.4 ± 1.2 

 

 

 

15 ± 10 

 

 

 

0.36 ± 

0.12 

 

 

358 

0.7 48.7 ± 

16.2 

1.10 ± 

0.37 

0.8* 55.7 ± 

18.6 

1.26 ± 

0.42 

0.9 62.6 ± 

20.9 

1.42 ± 

0.47 

 

 

Australia, 

England, 

U.S. 

 

 

 

225 

 

 

 

2.4 ± 1.2 

 

 

 

15 ± 10 

 

 

 

0.36 ± 

0.12 

 

 

 

13 

0.7 1.77 ± 

0.59 

0.04 ± 

0.01 

0.8* 2.0 ± 0.67 0.05 ± 

0.02 

0.9 2.3 ± 0.76 0.05 ± 

0.02 
 535 

*Our current models for England, Australia, U.S. 536 

aBased on geometric mean of Global DustSafe Pb data ≥ 80 mg/kg from this study, all North 537 

American samples (even those without survey responses), and Nigeria (Isley et al., 2022)—n = 538 

1378. 539 

bUses conservative baseline of 0.7 µg/dL based on U.S. median BLLs of children 1-5 years in 540 

2015-2016 (U.S. EPA, 2019), which is likely much higher in low- and middle-income countries 541 

(e.g., Ericson et al., 2021a), then the relationship between soil Pb concentrations and increases of 542 

BLLs over background for 200 mg/kg Pb from Lanphear et al. (1998) 543 

cBased conservatively on the 17% average BLL reduction through household Pb intervention in 544 

Rhoads et al. (1999). We used 15% to add another conservative layer to our average estimate, 545 

with the ± 10% taking into account some of the variability of intervention reduction. 546 

d(United Nations – Population Division, 2019), based on assumption of 52.9% of global 547 

population < 5 years old exposed to household dust Pb ≥ 80 mg/kg (Fig. 2)—from 2020 data 548 

(global data rounded down from 359 million to be conservative) 549 

https://ourworldindata.org/grapher/under-5-population?time=2020..latest&country=~OWID_WRL
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eBased on IQ points lost per µg/dL of BLL for the range of 2–10 μg/dL from Boyle et al. (2021): 550 

[μ = 0.54] * BLL = IQ points lost 551 

fBased on estimates of lifetime earnings for males ($1,413,313) and females ($1,156,157), and 552 

lifetime productivity decrease between 1.76% to 2.37% for each IQ point lost, used in Boyle et 553 

al. (2021) and Attina and Trasande (2013). Here, we used the minimum productivity decrease of 554 

1.76% per IQ point lost to be conservative, which is $24,874 for males, and $20,348 for females 555 

per IQ point. Because global population is roughly 1 male:1 female (~1.02 male:female), we 556 

took the arithmetic mean between both monetary values for $22,611 per IQ point lost. 557 

 558 

 559 
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