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Predictive Modeling of the Hospital 
Readmission Risk from Patients’ 
Claims Data Using Machine 
Learning: A Case Study on COPD
Xu Min1,2, Bin Yu3 & Fei Wang1

Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic pulmonary condition that affects 
hundreds of millions of people all over the world. Many COPD patients got readmitted to hospital within 

30 days after discharge due to various reasons. Such readmission can usually be avoided if additional 
attention is paid to patients with high readmission risk and appropriate actions are taken. This makes 

early prediction of the hospital readmission risk an important problem. The goal of this paper is to 

conduct a systematic study on developing different types of machine learning models, including both 
deep and non-deep ones, for predicting the readmission risk of COPD patients. We evaluate those 
different approaches on a real world database containing the medical claims of 111,992 patients from 
the Geisinger Health System from January 2004 to September 2015. The patient features we build the 
machine learning models upon include both knowledge-driven ones, which are the features extracted 
according to clinical knowledge potentially related to COPD readmission, and data-driven features, 
which are extracted from the patient data themselves. Our analysis showed that the prediction 
performance in terms of Area Under the receiver operating characteristic (ROC) Curve (AUC) can be 

improved from around 0.60 using knowledge-driven features, to 0.653 by combining both knowledge-
driven and data-driven features, based on the one-year claims history before discharge. Moreover, 
we also demonstrate that the complex deep learning models in this case cannot really improve the 
prediction performance, with the best AUC around 0.65.

Chronic Obstructive Pulmonary Disease (COPD) is one type of obstructive lung disease makes people di�cult 
to breathe. �e Global Burden of Disease Study reports a prevalence of 251 million cases of COPD globally in 
2016, and it is estimated that 3.17 million global deaths were caused by the disease in 20151. In US it was reported 
that 21% of the COPD patients got readmitted 30 days a�er discharge and the cost for these readmissions is 
18% higher than those for initial hospital stays2. �e Centers for Medicare and Medicaid Services (CMS) has set 
COPD as one of their important target diseases for designing policies to reduce readmissions because of this high 
prevalence and cost. According to Purdy et al.3, COPD is an ambulatory care sensitive condition where hospital 
admission could be avoided by e�ective interventions in primary or preventative care. �e risk factors for COPD 
readmission remain largely unknown. Retrospective4 and prospective5 studies have been conducted to investigate 
COPD readmissions.

In recent years, because of the rapid development of computer so�ware and hardware technologies and 
wide adoption of electronic medical data systems, more and more health related data such as Electronic Health 
Records (EHR) and medical claims are becoming readily available. Many computational models have been devel-
oped based on these data for predicting the risk of hospital readmission. �e LACE index6 uses four variables (L 
ength of stay (L), A cuity of the admission (A), C omorbidity of the patient (C) and E mergency department use 
in the duration of 6 months before admission (E)) to predict the risk of death or nonelective 30-day readmission 
a�er hospital discharge among both medical and surgical patients. Similarly, the HOSPITAL score7 uses 7 clinical 
predictors (which are available in patient EHRs) to identify patients at high risk of potentially avoidable hospital 
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readmission within 30 days. Researchers have also explored pure data-driven machine learning approaches for 
this problem. For example, Hosseinzadeh et al.8 investigated the predictability of hospital readmission using clas-
sical machine learning methods (e.g., naïve Bayes and decision trees) using the claims data from the provincial 
hospital system in Quebec, Canada. Cauruana et al.9 applied generalized additive model to predict the hospital 
readmission risk of a general cohort with around 400,000 patients, where each patient is represented as a vector of 
about 4,000 dimensions. Sushmita et al.10 studied the prediction of all-cause hospital readmission with machine 
learning methods (support vector machine, decision trees, random forests and generalized boosting machine) 
using the admission data of patients provided by a large hospital chain in the Northwestern United States. �ese 
studies have demonstrated the better potential of machine learning models for hospital readmission prediction 
comparing to LACE and HOSPITAL score.

Recently, deep learning11, as a speci�c type of machine learning models, has attracted attentions of research-
ers in various �elds (e.g., computer vision, speech analysis and natural language processing) because of their 
superior performance. Researchers have also explored the potential of deep learning approaches in hospital read-
mission prediction. For example, Wang et al.12 developed a cost-sensitive deep learning approach combining 
Convolutional Neural Network (CNN)13 and Multi-Layer Perceptron (MLP)14 for readmission prediction. Xiao 
et al.15 adapted the TopicRNN approach16, which combines probabilistic topic modeling17 and Recurrent Neural 
Network (RNN)18 to better capture long-term dependencies in sequences, to predict the readmission risk of heart 
failure patients. Rajkomar et al.19 also developed an approach that ensembles three deep learning models to pre-
dict the risk of 30-day unplanned readmission.

Despite the initial success, so far there is no comprehensive and systematic investigation on the potential of 
machine learning models for hospital readmission risk prediction. �e goal of this paper is to conduct such a 
study on COPD patients using their longitudinal claims records. �e output of our model is the probability that 
each patient will be readmitted within 30 days at the time of discharge. We comprehensively examined the perfor-
mance of traditional machine learning models including logistic regression and variants, random forest, Support 
Vector Machine (SVM) and Gradient Boosting Decision Tree, as well as deep learning models including MLP, 
CNN, RNN and variants, using both knowledge and data driven patient features.

Methods and Materials
�is paper aims at conducting a systematic comparative study on the performance of di�erent machine learning 
models for predicting the hospital readmission risk of COPD patients. Here we characterize a machine learning 
model as either traditional (non-deep) or deep. A traditional model is typically composed of two major steps, 
feature engineering20 and model building21. Feature engineering extracts “good” features from the data that are 
e�ective for the model building step. Di�erent from traditional methods, a deep learning model11 enjoys an 
end-to-end learning mechanism, where the feature engineering part is implicitly integrated into the learning 
pipeline. In the following we introduce these two types of approaches formally.

Traditional Methods. As we introduced above, there are two major steps in traditional methods: feature 
engineering and model building.

Feature Engineering. Our goal is to predict the risk of hospital readmission, which is de�ned as a readmission 
to hospital within 30 days of a prior hospital discharge. �erefore, the prediction is made on the day of hospital 
discharge. Patient features can be constructed from the medical history prior to the discharge day. Here we cat-
egorize the patient features as either knowledge- or data-driven. More speci�cally, we investigate the following 
knowledge - driven features.

•	 HOSPITAL Score7. �e original HOSPITAL score is aggregated from 7 features from di�erent subdomains, 
wherein 4 of them are available in our claims data, including the number of procedures performed during 
hospital stay (HOS_Proc), the number of hospital admissions during the previous year (HOS_NOAD), the 
number of hospital stays with >=5 days (HOS_LOS), and the index admission type (HOS_Index). We use 
them as separate dimensions in the patient representation.

•	 LACE Index6. �e LACE index is aggregated from 4 features, i.e. Length of stay (days) (L), Acute (emergent) 
admission (A), Charlson Comorbidity Index (C) and Number of ED visits within six months (E). We use 
them as separate dimensions in the patient representation.

•	 Handcra�ed Features. In addition to HOSPITAL score and LACE index, we also picked 12 features that could 
be important to our task, including age, gender, length of stay (LOS), number of admissions in the previous 
year (NOA), total length of all stays in the previous year (LOAS), number of all kinds of admissions (NOAA, 
including outpatient admissions), number of di�erent types of index admissions (Index, Index_trans, Index_
�nal, Readm, Readm_trans, Readm_�nal).

One limitation of our data is that some important patient features, such as the Global Initiative for Obstructive 
Lung Disease (GOLD) severity grade22, are not available, therefore we cannot use them in the predictive modeling 
process.

�e other feature category is data-driven features, which includes the following four di�erent types.

•	 Diagnosis. �e patient diagnosis in our data is encoded with the International Classi�cation of Diseases 
(ICD-9) codes. Considering the large number of distinct ICD-9 codes, we further investigated three di�erent 
grouping strategies: (1) First three digits of ICD-9; (2) Clinical Classi�cations So�ware (CCS) codes; (3) Hier-
archical Condition Category (HCC) codes.
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•	 Procedures. �e patient procedure information is encoded with three di�erent coding sources, i.e., CCS 
codes, Berenson-Eggers Type of Service (BETOS) codes, and revenue codes.

•	 Pharmacy. �e pharmacy/medication information is encoded with National Drug Code (NDC), which we 
further mapped to the Generic �erapeutic Class (GTC) codes for the sake of dimensionality reduction.

•	 Locations. We also consider the location where the medical service is provided.
For all four types of data-driven features, we construct the following representations through the analogy 
with natural language processing23:

•	 Bag-of-Words (BoW) representation, which counts the frequency of each feature in the feature construction 
time period.

•	 boolean Bag-of-Words (bBoW), which just cares about whether or not a speci�c feature appears in the feature 
construction time period.

•	 Term Frequency-Inverse Document Frequency (TFIDF) normalization of the BoW representation23, which 
suppresses the impact of highly prevalent features (which could be non-informative) by weighting the feature 
counts by the inverse of its popularity (counts) in all patients’ records.

For both knowledge- and data-driven features, we use either one year or full period before the hospital 
discharge date as the feature construction period (also called observation window). �e only exceptions are 
HOSPITAL score and LACE (which are de�ned over one year). Table 1 summarizes the dimensions of all features 
introduced above. In addition to the investigation of di�erent groups of features respectively in the predictive 
modeling process, we also combine multiple groups of features for training the models to see how they can boost 
the performance

Model Building. A�er the patient features are constructed, we will feed them into a machine learning model for 
readmission risk prediction. �e following models are considered in this paper: (1) Logistic regression and its 
variants (with 1 or 2 norm regularizations); (2) Random F orest; (3) Support Vector Machine (SVM)24, where we 
only consider the linear case; (4) Gradient Boosting Decision Tree (GBDT)25; (5) Multi-Layer Perceptron 
(MLP)14. We introduce more details of these models below.

•	 Logistic Regression (LR). Logistic regression is a popular model in applied health service research. It can be 
used to explain the relationship between one dependent binary variable and one or more independent varia-
bles. Mathematically, we model the probability logit (which is the log-odds) of the probability of an event, as 
a linear combination of predictive variables, i.e., = | =logit p y x w w x( ( 1 ; )) T , where =

−( )logit p( ) log
p

p1
. 

�e regression coe�cients w are usually estimated through the maximum likelihood estimation (MLE) pro-
cedure,  which  i s  equiva lent  to  minimize  the  negat ive  tota l  data  log- l ike l ihood as 
= − ∑ |p yw x warg min log ( ; )i

N
i iw .

•	 Logistic Regression with 1 penalty (LR_l1). Sometimes the number of independent variables is large, in 
which case not every of them is useful. In order to promote model sparsity and pick out variables that really 
contribute to the prediction, we can add 1 regularization to the negative total data log-likelihood26, that is, 

β= − ∑ | + || ||p yw x w warg min log ( ; )i
N

i iw 1. β > 0 is the tradeo� parameter.
•	 Logistic Regression with 2 penalty (LR_l2). We can also add 2 regularization to the negative total data 

log-likelihood to improve numerical stability in the parameter estimation process, i.e. , 
β= − ∑ | + || ||p yw x w warg min log ( ; )i

N
i iw 2. β > 0 is the tradeo� parameter.

•	 Random Forest (RF)27. Random forest is an ensemble learning method, which constructs multiple decision 
trees (each on a randomly sampled feature set) at the training stage. �eir outputs will be aggregated in the 
prediction stage (usually through majority voting) as the �nal result.

Feature x
Dimension  
(one-year history)

Dimension  
(full history)

Knowledge-driven

HOS 4 —

LACE 4 —

hand 12 12

Data-driven

DX 9743 10306

DX_3dig 1153 1169

DX_CCS 285 285

DX_HCC 197 197

PROC 11193 12009

PROC_group 399 402

PHAR 20289 22964

PHAR_GTC 42 42

LC 32 33

Table 1. Dimensions of di�erent kinds of features.
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•	 Support Vector Machine (SVM)24. SVM is a discriminative classi�er which constructs a hyperplane to sepa-
rate the two classes with the maximum margin. In particular, solves the following optimization problem 

λ= ∑ − − + || ||y bw w x warg min max (0,1 ( ))N
i

T
iw 1 2, where w is the separation hyperplane.

•	 Gradient Boosting Decision Tree (GBDT)25. Gradient boosting is an ensemble model comprising of a set of 
weak learners obtained in a stage-wise fashion through the minimization of some di�erentiable prediction 
loss using functional gradient descent. For GDBT those weak learners are set to be decision trees.

•	 Multi-layer Perceptron (MLP)28. Multi-layer perceptron is a class of feed-forward arti�cial neural network. It 
consists of multiple hidden layers with nonlinear processing units, and is trained with the back-propagation 
technique.

Deep Learning Methods. One limitation of all traditional machine learning models we introduced above 
is that they need to aggregate patient features in the observation window to form patient vectors. �is ignores the 
temporality in patient records, which is usually important in healthcare settings as it indicates the disease progres-
sion process. To explore such temporality, we construct a set of deep learning models, speci�cally Convolutional 
Neural Networks (CNN)13, Recurrent Neural Networks (RNN)18 and their variants (e.g., Long-Short Term 
Memory (LSTM)29 and Gated Recurrent Unit (GRU)30). In addition, we further incorporate contextual event 
embedding, time-sensitive modeling and attention mechanism into the model building process to enhance the 
model performance. �e details are explained as follows.

Contextual Event Embedding. If we concatenate the claim records for each patient according to their associated 
timestamps, we can obtain a medical event sequence for each patient. Contextual embedding31 is a class of techniques 
that learn a vector based representation for each event in the sequence, such that each vector encodes the contextual 
information around its corresponding event. Word2Vec32 is one representative contextual embedding technique that 
learns an embedded vector for each word in a document corpus (each document can be viewed as a word sequence).

Claims data can be analogous to the text data as they contain sequences of medical events, which play a similar 
role as words in texts. �e di�erence is that each medical event is associated with a concrete timestamp in claims data, 
which could be critical. For example, two medical events with one day and one year gap can have completely di�erent 
meanings in healthcare setting. �erefore we investigated the following variants of contextual embedding techniques.

 1. Using a time window instead of a context window to generate event contexts.
 2. Weighting the event pairs according to the temporal gap between them. Higher weights will be given to 

temporally closer event pairs
 3. Med2Vec33, which is a contextual embedding technique that is able to learn both event -level and visit-level 

representations for longitudinal patient records, where the temporal gap information is appended as an 
additional dimension in the event/visit vectors.

More details of these methods are provided in Supplementary Materials. In addition to these methods, we also 
implemented the one-hot embedding model as the baseline. Speci�cally, let V be the number of unique medical 
events, then the one-hot representation of an event is a V-dimensional binary vector with value 1 on the dimen-
sion corresponding to the event and all other entries being 0.

Time Fusion in Deep Models. In order to conveniently explore the event temporalities in patient claims, we 
investigated three types of patient representations.

 1. Sequence Representation. We represent the records for each patient as two sequences, an event sequence 
and a timestamp sequence, and then treat the prediction problem as a sequence classi�cation problem. 
Speci�cally, let V be the number of distinct medical events. For any speci�c patient, we have the event 
sequence 〈 〉c c c, , , L1 2 , and the the corresponding timestamp sequence 〈 〉t t t, , , L1 2 , where 
∈ c V[1, 2, , ]i , and ≤ ≤ ≤t t tL1 2 . We can apply the contextual event embedding techniques 

introduced above to embed each event ci as a vector wi, then the event sequence becomes the vector 
sequence w w w, , , L1 2 . �en we can incorporate time information using a time weighting layer. Given the 
timestamp sequence, we can get a temporal weight λ∝ ⋅ ∆d softmax t( )i i , where ∆ti is the temporal gap 
between ti and the hospital discharge date when the prediction is made on, λ is a time scaling parameter to 
be learned in the training phase.

 2. Matrix Representation with Regular Time Intervals (MR-RTI). In this case, we represent the claims records of 
each patient as a longitudinal matrix similar to what Wang et al.34 did. �e columns correspond to di�erent 
medical events, so there are V columns in total. �e rows correspond to regular time intervals. For example, 
each row could represent a day, a week or a month, depending on the time resolution. �e (i, j)-th entry of 
this matrix is 1, if the j-th event is observed at the i-th timestamp in the patient’s claims, and 0 otherwise.

 3. Matrix Representation with Irregular Time Intervals (MR-ITI). �e MR-RTI representation could be very 
sparse – if the patient did not pay visit to the clinic on a speci�c day then he/she will have an all-zero row 
in the matrix. �e MR-ITI representation deletes these all-zero rows in MR-RTI, which greatly reduced the 
matrix sparsity. However, because the time intervals are no longer regular, we also need to record the exact 
timestamp for each row in the matrix. �is is similar to the sequence representation.

We summarize the three di�erent patient representations in Fig. 1.

https://doi.org/10.1038/s41598-019-39071-y
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Attention Mechanism. In addition to the time weighting layer to incorporate timestamp information, we can 
also apply attention mechanism on the event embeddings to emphasize more on the important medical events. 
�e attention weight for event ci is computed using a so�max function β∝a softmax w( )i

T
i , where β is a reference 

vector to be learned from the model training process, and wi is the embedded vector of ci. �is attention weight ai 
tells us how much attention we should pay on event ci. We can multiply it with the time weight to get a composite 
weight for each event in the modeling process.

�e overall architecture of the deep learning models we investigated is provided in Fig. 3 in the supplemental 
material.

Results
The detailed experimental results are presented in this section. First we introduce the process of data 
preprocessing.

Data Preprocessing. Our raw data contain 111,992 patients in Geisinger Health System who had at least 
one COPD related diagnosis (ICD-9 diagnosis codes: 490.**, 491.**, 492.**, 493.2*, 494.**, 496.**) between 
January 2004 and September 2015. �e information contained in patient claims include patient demographics, 
medication, service location (utilization), diagnosis and procedure. Table 1 in the supplemental material summa-
rizes the details of each type of information.

We built a three-step pipeline for data preprocessing: data �ltering, data labeling and data splitting, which are 
detailed below.

Data Filtering. We �lter the raw patient claims with the following criteria: (1) Keep Main Hospital (MH) claims 
with status ‘Approved’; (2) Keep patients who have ever been diagnosed with at least one of 491.*, 492.*, and 496.* 
in MH DX claims; (3) Keep patients who are at least 40 years old; (4) Keep patients with decided gender; (5) Keep 
patients with at least one Inpatient MH claim in the entire history; (6) Keep patients with observation history 

Figure 1. �ree types of patient representations for incorporating the temporal information. (a) Sequence 
Representation; (b) Matrix Representation with Regular Time Intervals (MR-RTI); (c) Matrix Representation 
with Irregular Time Intervals (MR-ITI).

Figure 2. AUC performance achieved by predictive models with di�erent types of features and machine 
learning models. In (a), ‘hos’, ‘lace’, ‘hand’, ‘knowledge’ represent HOSPITAL score, LACE index, handcra�ed 
feature, and the combination of all these three kinds of features. For the legend, ‘lr’, ‘lrl1’, ‘lrl1’, ‘rf ’, ‘svm’, ‘gbdt’, 
‘mlp’ represent logistic regression, logistic regression with L1 penalty, logistic regression with L2 penalty, 
random forest, support vector machine, gradient boosting decision tree, and multi-layer perceptron. �e same 
naming convention is also applied in the legends of the follow-up �gures. In (b), COPD readmission prediction 
performance with combined data -driven features. For the x-axis, ‘data_bow’, ‘data_t�df ’ and ‘data_bbow’ 
represent BoW, TFIDF and BBoW features.

https://doi.org/10.1038/s41598-019-39071-y
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of at least 60 days; (7) Keep patients with at least one pharmacy claim in the entire history. �e detailed patient 
information before and a�er each �ltering criterion can be found in the Supplementary Material.

Data Labeling. In order to build the predictive model, we further label each patient hospital admission as either 
index admission or readmission. Speci�cally, a hospital readmission is when a patient who had been discharged 
from a hospital is admitted again to the same or a di�erent hospital within 30 days. �e original hospital admis-
sion is referred to as index admission, and the subsequent admission is referred to as readmission. We further 
have the following inclusion criteria for index admissions in our study.

 1. �e patient has enrollment information for at least 30 days a�er the discharge. �is is necessary to gauran-
tee that readmissions within 30 days can be tracked.

Variables Mean Std Min Max Variables Mean Std Min Max

Age 72.10 11.83 29 99 Readm_trans 0.01 0.11 0 6

Gender 0.50 0.50 0 1 Readm_�nal 0.01 0.09 0 2

LOS 5.00 6.21 0 389 LACE_L 3.43 1.49 0 7

LOAS 9.74 12.28 0 404 LACE_A 2.04 1.40 0 3

NOA 1.89 1.36 1 16 LACE_C 2.73 1.15 0 4

NOAA 55.17 38.07 1 493 LACE_E 1.85 1.40 0 4

Index 1.53 0.90 0 7 HOS_Proc 0 0 0 0

Index_trans 0.10 0.36 0 7 HOS_LOS 0.78 0.97 0 2

Index_�nal 0.09 0.30 0 3 HOS_NOAD 1.00 1.19 0 5

Readm 0.16 0.56 0 13 HOS_Index 0.68 0.47 0 1

Table 2. Summary statistics of the 67,771 patients.

Figure 3. Comparisons of the predictive performance of di�erent types of data-driven features on COPD 
readmission. In (a), ‘dx_bow’, ‘dx_t�df ’, ‘dx_bbow’ represent BoW, TFIDF and BBoW feature for diagnosis 
records. ‘dx_ccs_bow’, ‘dx_ccs_t�df ’, ‘dx_ccs_bbow’ represent Bow, TFIDF and BBoW feature for grouped 
diagnosis codes using CCS hierarchy. �e same naming convention also applies to (b–d).

https://doi.org/10.1038/s41598-019-39071-y
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 2. �e patient was enrolled for 12 months prior to the index admission. �is is necessary to gather adequate 
clinical information for accurate risk adjustment.

One issue we need to deal with is hospital transfer. A hospital transfer is the case in which a patient is dis-
charged from a hospital and admitted to another hospital at the same day. �erefore, we have 6 classes of hospital 
admissions in total: index admission, index transfer (the patient is transferred at the same day of the index admis-
sion), index �nal (this is the last stop of the transfer), readmission, readmission transfer, and readmission �nal. 
�e numbers of all 6 kinds of admissions are provided in the supplemental material. Finally, we get 67,771 index 
admissions (i.e, index and index_�nal), among which 10,265 (15.15%) samples are followed by a 30-day readmis-
sion. �ere are 27,138 patients involved in these hospital stays. We summarize the statistical characteristics of the 
overall samples in Table 2.

Data Splitting. We apply �ve-fold cross validation on all 27,138 patients to evaluate the performance of the 
investigated approaches. Note that we cannot apply �ve-fold cross validation on discharges, because if one patient 
has multiple discharges, it is possible that some of these discharges are in training set while some are in validation 
set. �is may produce overly optimistic performance due to label leaking.

Traditional Methods. We implemented seven di�erent traditional machine learning models with di�erent 
of feature sets as introduced in the Methods Section. �e results are summarized below.

Knowledge-driven features. �e prediction performance in terms of Area Under the r eceiver o perating c harac-
teristic (ROC) Curve (AUC) with knowledge-driven features are shown in Fig. 2(a). �ese features are extracted 
from the one-year history prior to the discharge of the index admission. We can observe that:

 1. �e two baseline methods, HOSPITAL score and LACE index, have similar performance with AUC 
around 0.60, and HOSPITAL score is slightly better.

 2. Our handcra�ed features can produce better performance than the two baseline methods.
 3. �e combined knowledge-driven features lead to the best performance, with the mean AUC of 0.643 using 

the GBDT classi�er.

To better understand knowledge-driven features, we further investigate the trained logistic regression model. 
We record the coe�cients of all predictors in Table 3. We can �nd that older age, male gender, longer length of 
stay, and more admissions in previous year will increase the risk of readmission. It is interesting to notice that a 
larger number of index_trans in the previous year will decrease the risk. �e reason could be that more hospital 
transfers lead to better patient care. �e LACE index features and HOSPITAL score features have positive rela-
tionship with readmission risk, except HOS_Proc, HOS_index.

Data-driven features. For data-driven features, we combine the grouped diagnosis, grouped procedure, grouped 
pharmacy and location codes together to obtain the combined data-driven features, whose performances are 
summarized in Fig. 2(b). From the �gure we can observe that the best mean AUC value is around 0.646, which 
can be obtained from the BoW representation using GBDT classi�er.

We further explore how di�erent types of data -driven features in�uence the prediction performance. �ese 
features are extracted from the one-year history prior to the discharge date of the index admission. �e results are 
shown in Fig. 3, from which we can observe that:

 1. �e grouped codes (e.g., diagnosis codes grouped by CCS) can produce better performances than the orig-
inal raw codes. �is is potentially due to the high dimensionality of the raw codes, which results in highly 
sparse feature representations. Grouping the codes can greatly reduce the dimensionality and thus increase 
the density of the feature vector.

 2. Comparing with other features, diagnosis and procedure are more useful to the readmission prediction 
task, while the pharmacy feature is not very informative.

 3. �e GBDT classi�er generally achieves the best performance among the seven traditional classi�ers for 
most of the features.

Age Gender LOS LOAS NOA NOAA Index

LR 0.0032 0.0996 0.0174 −0.0089 0.0861 0.0056 0.0002

LR_l1 0.0026 0.0987 0.0172 −0.0087 0.0847 0.0056 0.0

Index_trans Index_�nal Readm Readm_trans Readm_�nal LACE_L LACE_A

LR −0.1364 0.1081 0.0893 0.2166 −0.1918 0.0737 0.0213

LR_l1 −0.1238 0.0914 0.0885 0.1177 −0.0677 0.0732 0.0235

LACE_C LACE_E HOS_Proc HOS_LOS HOS_NOAD HOS_Index Intercept

LR 0.0444 0.0761 0.0 0.0536 0.0747 0.0071 −1.5246

LR_l1 0.0493 0.0761 0.0 0.0537 0.0753 0.0 −1.4950

Table 3. Coe�cients of knowledge-driven features in LR model and LR model with 1 penalty.
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�e E�ect of Observation Window Lengths. We also explored how the observation window length will a�ect the 
readmission prediction performance. We compared the performance of one-year observation window against 
the full-history. All knowledge- and data-driven features are concatenated. �e results are summarized in Table 4, 
from which we can observe that:

 1. For the one-year observation window, we can obtain the best AUC of 0.653 using GBDT, which is better 
than knowledge-or data-driven features alone.

 2. Increasing the observation window from one year to full history barely improves the performance of 
GBDT, while most of other models get obvious improvements.

Deep Learning Methods. For deep learning experiments, we focus on the impact of di�erent time fusion 
and embedding strategies.

Time Fusion Strategies. We compare the performance of di�erent time fusion methods in Fig. 4a, from which 
we can observe that:

 1. �e basic sequence classi�cation without considering time information generates the worst performance. 
�is means that considering the exact event timestamps can indeed improve the prediction performance.

 2. Matrix representation with regular time intervals performs better than sequence representation.
 3. Matrix representation with irregular time interval combined with event attentions does not necessarily 

improve the prediction performance.
 4. If we use a coarse time granularity, for example by week or month instead of by day in matrix representa-

tions, the prediction AUC can be improved. �e best performance of AUC 0.650 is achieved by GRU 
model based on matrix representation by month.

Embedding Strategies. We also explored the impact of di�erent embedding strategies. We used the matrix rep-
resentation with regular time intervals aggregated by month. �e performance of using di�erent embedding strat-
egies is summarized in Fig. 4(b), from which we do not observe signi�cant di�erences across the performances 
of di�erent embedding strategies.

LR LR_l1 LR_l2 RF SVM GBDT MLP

One year 0.617 0.616 0.617 0.636 0.612 0.653 0.571

Full history 0.635 0.644 0.645 0.624 0.643 0.654 0.627

Table 4. Prediction performance for comprehensive features extracted from one-year history and from full 
history.

Figure 4. Performance comparison among di�erent time fusion and di�erent embedding strategies. In (a), 
‘basic’ indicates the most basic model where we use the sequence input without any time weighting or attention 
mechanisms. ‘basic_day’, ‘basic_week’ and ‘basic_month’ indicate the model using matrix input with regular 
time interval, whose time granularity is day, week and month. ‘time_day’, ‘att_day’, ‘time_att_day’ indicate the 
model using matrix input of irregular time interval, plus the time weighting layer, attention weighting layer, 
and both layers. For all models, we adopt Word2Vec embedding, and let the embedding layer be trainable when 
training the deep models. In (b),’skipgrams’,’skipgrams_w’ and’med2vec’ indicate the models using embedding 
matrix learned by Skip-grams model, the time weighted Skip-grams model, and the Med2vec model. �e 
su�x’_�xed’ means that we keep the parameters in the embedding layer �xed during training.’one-hot’ indicates 
the model simply uses the one-hot embedding layer.
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Discussions
From our investigations above on the task of readmission risk prediction for COPD patients based on patient 
claims data, we have the following observations.

 1. Knowledge is powerful. Similar to what has been observed in Rajkomar et al.19, simple models based on 
clinical knowledge, such as LACE and Hospital Score, work pretty well in reality. We also expanded the 
knowledge-driven features used in these two models to a broader set (see the handcra�ed features in 
Table 1), which can further improve the prediction performance in terms of AUC (from 0.61 to 0.64). 
Comparing with data-driven features, those knowledge-driven features are highly interpretable and 
generalizable.

 2. Data-driven features are helpful. With the data-driven features, we can improve the prediction performance 
(from 0.64 to 0.65). Combining the knowledge- and data-driven features leads to the best prediction per-
formance (around 0.653).

 3. GDBT is powerful. Comparing with other traditional machine learning models, GBDT can achieve better 
performance almost across all di�erent experimental settings, and it obtained the best performance with 
the combination of both knowledge- and data-driven features.

 4. Longer history barely helps. We do not observe much di�erences on the prediction performance on patient 
records with one-year observation window or full-history. �is observation also explains implicitly why 
only one year history was used in both LACE and HOSPITAL Score models.

 5. Deep learning barely helps. We have systematically investigated the performance of various deep learning 
models, including the variants of CNN and RNN with di�erent representation, embedding and time-sen-
sitive strategies. However, the best performance achieved among them is on par with the best performance 
of GDBT (around 0.65). �e same phenomenon is also observed in Rajkomar et al.19.

With these observations, we can conclude that predicting the risk of hospital readmission is di�cult based 
on only claims data. Machine learning models can bene�t when combining patient data with clinical knowledge. 
�is is potentially be explained from the following aspects.

 1. Medicine has been a research discipline with long history. �e medical knowledge people accumulated 
from clinical practice are invaluable and powerful.

 2. Unlike other application domains such as computer vision and natural language processing, where deep 
learning models have been shown to be very powerful, medical problems are much more complicated and 
with less available training samples. �is means that it is di�cult to have a ‘su�ciently large’ patient dataset 
to train a very good machine learning model. In this case, incorporating domain knowledge into the model 
building process is of vital importance, and complex models do not necessarily lead to better performance 
as they need even more training samples.

 3. �e information contained in patient claims records may not be su�cient for building good hospital 
readmission risk prediction models. Some important and relevant clinical features, such as GOLD severity 
grade, are not available. More comprehensive and �ner granular patient data, such as electronic health 
records, could be potentially more helpful.

 4. Our claims data lacks mortality information of patients. In fact, hospital readmission risk and death risk 
are competing clinical risks, since patients that die a�er discharge cannot be readmitted, which makes the 
risk of readmission and death a�er discharge are o�en negatively linked. However, there could be some 
common causes for both risks (e.g., condition exacerbation), which could confuse the predictive models.

Conclusion
We conducted a comprehensive study on predictive modeling of the 30 day readmission risk of COPD patients 
based on their claims records with various machine learning models. We constructed both knowledge- and 
data-driven features from the patients’ claim records to train the predictive models. Both traditional and modern 
machine learning models are investigated. �e results showed that the combination of both knowledge and data 
driven features can lead to the best prediction performance, and complicated models such as deep learning can 
barely improvement the performance. Our studies verify the importance of medical knowledge in the predictive 
modeling process, as well as the demands for better patient data.
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