
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Predictive Modelling and Analysis of Process
Parameters on Material Removal Characteristics
in Abrasive Belt Grinding Process
Pandiyan, Vigneashwara; Caesarendra, Wahyu; Tjahjowidodo, Tegoeh; Praveen,
Gunasekaran
2017
Pandiyan, V., Caesarendra, W., Tjahjowidodo, T., & Praveen, G. (2017). Predictive Modelling
and Analysis of Process Parameters on Material Removal Characteristics in Abrasive Belt
Grinding Process. Applied Sciences, 7(4), 363‑.
https://hdl.handle.net/10356/88595
https://doi.org/10.3390/app7040363

© 2017 by The Authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).
Downloaded on 26 Aug 2022 20:06:46 SGT



applied  
sciences

Article

Predictive Modelling and Analysis of Process
Parameters on Material Removal Characteristics in
Abrasive Belt Grinding Process

Vigneashwara Pandiyan 1, Wahyu Caesarendra 2, Tegoeh Tjahjowidodo 1,* and

Gunasekaran Praveen 1

1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639815,

Singapore; vigneash002@e.ntu.edu.sg (V.P.); praveen008@e.ntu.edu.sg (G.P.)
2 Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore 639815, Singapore;

wcaesarendra@ntu.edu.sg

* Correspondence: ttegoeh@ntu.edu.sg; Tel.: +65-6790-4952

Academic Editor: David He

Received: 28 February 2017; Accepted: 31 March 2017; Published: 6 April 2017

Abstract: The surface finishing and stock removal of complicated geometries is the principal objective

for grinding with compliant abrasive tools. To understand and achieve optimum material removal in

a tertiary finishing process such as Abrasive Belt Grinding, it is essential to look in more detail at the

process parameters/variables that affect the stock removal rate. The process variables involved in a

belt grinding process include the grit and abrasive type of grinding belt, belt speed, contact wheel

hardness, serration, and grinding force. Changing these process variables will affect the performance

of the process. The literature survey on belt grinding shows certain limited understanding of material

removal on the process variables. Experimental trials were conducted based on the Taguchi Method to

evaluate the influence of individual and interactive process variables. Analysis of variance (ANOVA)

was employed to investigate the belt grinding characteristics on material removal. This research

work describes a systematic approach to optimise process parameters to achieve the desired stock

removal in a compliant Abrasive Belt Grinding process. Experimental study showed that the removed

material from a surface due to the belt grinding process has a non-linear relationship with the process

variables. In this paper, the Adaptive Neuro-Fuzzy Inference System (ANFIS) model is used to

determine material removal. Compared with the experimental results, the model accurately predicts

the stock removal. With further verification of the empirical model, a better understanding of the

grinding parameters involved in material removal, particularly the influence of the individual process

variables and their interaction, can be obtained.

Keywords: belt grinding; ANOVA; parameter analysis; material removal; predictive model

1. Introduction

Abrasive grinding is a widely employed finishing process, with abrasive grains being used as

the cutting edge to accomplish close tolerances and excellent dimensional correctness and surface

integrity. Abrasive Belt Grinding is a modification of the traditional grinding processes in which the

contact wheel is made of polymer backing material. The grinding belt is formed of abrasives coated on

a backing material and fastened around at least two rotating polymer contact wheels, which make it a

compliant tool, as shown in Figure 1. The soft contact polymer wheel enables this machining process

to be appropriate to machine free-form surfaces due to its versatility, efficiency, and ability to machine

workpieces of intricate shapes and geometry [1]. Understanding of such a process is one of the most

delicate problems in the industry due to the high complexity and nonlinearity. The process parameters

Appl. Sci. 2017, 7, 363; doi:10.3390/app7040363 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 363 2 of 17

affecting material removal belt grinding are that the complex and non-linear behaviour of the belt

grinding tool is predominantly dependent on the contacts amid the workpiece and abrasive belt.

Jourani et al. [2] have presented a three-dimensional numerical model, which could determine pressure

distribution along with the distribution of real contact to study the contact between the belt constituted

by abrasive grains and the surface to understand the material removal mechanism. Zhang et al. [1]

have stated that force distribution in the contact area between the workpiece and the elastic contact

wheel determines the ratio of material removal in the belt grinding process. Ren et al. [3,4] developed

a local process model to predict the material removal rate before machining, making it suiT for the

robot programmer to optimize the tool path based on simulation results. Hamann [5] had proposed a

linear mathematical model for material removal based on cutting parameters. However, the proposed

equation is no longer adequate for intricate surfaces, as both complete removal and local removals are

not equivalently distributed in the entire contact area due to the complex geometry of the workpiece

that is machined. According to the brief literature review above, it can be concluded that most of the

previous research works concentrated on cutting path optimization, thereby making regular contact

resulting in constant material removal [6–9]. Though the removal of material in the belt grinding

process from the workpiece surface can be written as a function of several parameters, their influence

and interaction have not been reported in the literature that will be covered and bridged in this

research work. The material removal volume depends mainly on the contact force between the tool

and the workpiece, the belt speed, and the feed rate in the tangential direction. The influences of

these parameters on the material removal rate were examined experimentally. Orthogonal arrays of

Taguchi, analysis of variance (ANOVA), and regression analyses are employed to analyse the effect of

the belt grinding parameters on the depth of cut, i.e., metal removal rate. The Taguchi Method uses

orthogonal arrays in experimental design for a significant reduction in the number of experimental

runs to find the optimal solution. Taguchi methods have been widely utilised in engineering analysis to

obtain information about the behaviour of a given process [10]. ANOVA is a statistical based analysis

employed to indicate the impact of process parameters on the process output and helps in predicting

the significance of all factors and their interactions [11]. In this research, we have also proposed a

numerical model to predict material removal as a function of process parameters, namely, hardness,

force, rotation speed, grit size, and feed rate, based on the Adaptive Neuro-Fuzzy Inference System

(ANFIS). The ANFIS technique has been used in the past for the prediction and modelling of material

removal as a function of the process parameters [12,13]. The Adaptive Neuro-Fuzzy Inference System

(ANFIS) conjoins the benefits of the neural network and fuzzy systems [14]. When experimental data

and model results are compared, it is observed that the developed regression model is within the limits

of the acceptable error.

–

Figure 1. Principle of belt grinding process.
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The paper is organised as follows; a brief overview of the Abrasive Belt Grinding process and the

problem statement is presented in Section 1, followed by a brief outline of the belt grinding process

and the Adaptive Neuro-fuzzy Inference System (ANFIS) in Section 2. The machining conditions,

experimental setup, process parameter and the Taguchi orthogonal array design to minimise the

number of grinding experiments are reported in Section 3. The results of the belt grinding tests are

analysed using the signal to noise ratio (S/N) and ANOVA in Section 4, followed by a summary of the

predictive modelling of material removal using ANFIS. Finally, the conclusions of this research work

are reviewed in Section 5.

2. Theoretical Basis

2.1. Abrasive Belt Grinding Process

Abrasive Belt Grinding is a tertiary polishing process with a geometrically indeterminate

machining edge with multiple grains. The belt grinding setup has an elastic contact roller wheel

made up of thermosetting polyurethane elastomer, which can be deformed to assist the coated abrasive

belt that functions as the cutting edge, as illustrated in Figure 1. Compliant belt grinding corresponds

to elastic grinding and has the capabilities of grinding, milling, and polishing [15].

The belt grinding process has characteristics of good workpiece-shape adaptability with uniform

material removal, low grinding temperature, maintenance of residual compressive stresses, and

resistance to workpiece burning like any other tertiary finishing process. The belt grinding process can

quickly generate surfaces with high levels of precision and smoothness. Presently, about one-third

of abrasive wheel grinding has been substituted by belt grinding [15]. Similar to any other abrasive

machining process, many process parameters in belt grinding impact the last ground surface quality,

including the grinding belt topography features and cutting parameters. The process parameters

include belt speed, belt preloaded tension, the force imparted, feed rate, workpiece geometry, polymer

hardness, and belt topography features such as grit size [3]. Hamann [5] had proposed a linear

mathematical model as shown below as Equation (1), which states that the overall material removal

rate (MRR) r is either relative or inversely proportional to parameters such as CA (constant of the

grinding process), KA (combination constant of resistance factor of the work coupon and grinding

ability factor of the belt), kt (belt wear factor), Vb (grinding rate), Vw (feed-in rate), Lw (machining

width), and FA (normal force).

r = CA.KA.kt.
Vb

Vw.Lw
.FA (1)

The material removal intensifies when the number of the interactions of the abrasive grains per

unit time gets maximised [16]. Therefore it is evident that material removal is directly proportional

to the cutting speed (grinding rate) of the polymer contact wheel on the belt grinder. The depth of

penetration depends on the topography and the geometry of the belt/wheel surfaces, which serves as

an undefined cutting-edge. The coarser grain sizes exhibit a greater ability to achieve higher cutting

depth, which results in higher material removal than finer sizes. Material removal increases with a

higher dwell time of interaction between the cutting grain edges, and workpiece surface, i.e., material

removal, is inversely proportional to the feed-in rate [16]. Adequate force is required for the cutting

edge to penetrate deeply into the workpiece to achieve grain cutting depth resulting in material

removal. The penetration depth of the grains into the work coupon surface predominantly depends on

the force imparted for grinding [16]. Belt finishing with contact wheels of different hardnesses results

in dynamic changes in contact pressure, leading to a change in the mechanism of wear. This hints that

the parameters discussed govern the belt grinding process, and changing any of the parameters will

have a resultant shift in the output. Stock removal commonly requires a harder polymer contact wheel,

coarse abrasive grains, greater force, reduced feed, and better cutting speed. Finishing requires the use

of a softer contact wheel and fine grade abrasive grains. However, the degree of the effect will vary

parameter to parameter. The amount of material removed from the workpiece surface results from the
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distinct local contact conditions, which are completely influenced by the process parameters/variables.

The relationship between the material removal rate and process parameters is not well grasped, even

though machining by belt grinding is remarkably straightforward and inexpensive. Belt grinding is

used in industries based on operator’s skill and knowledge, making the process inherently exhibit

poor stability and reproducibility.

2.2. Adaptive Neuro-Fuzzy Inference System

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a blend of the neural network and fuzzy

inference system. Fuzzy inference systems have no learning capabilities regarding the input-output

space and no standard tuning methods for their rule bases, which make system adaptations difficult.

The ANFIS technique offered a method for the fuzzy systems to acquire knowledge regarding the

dataset to calculate the membership function parameters that permitted Fuzzy Inference System

(FIS) for automatic system adaption. ANFIS architecture is a superimposition of FIS on the Artificial

Neural Network (ANN) architecture, which will enable FIS to optimise its rule base based on the

output to learn like an ANN eliminating its inherent disadvantage. The ANFIS algorithm has an

in-built advantage compared to fuzzy models as it holds the learning competencies of the ANN, which

augments the system performance using a priori understanding [17]. Using an input and output

space relation, ANFIS forms an FIS, the membership function of which is altered by exploiting the

back-propagation algorithm and least square method available with ANN [18].

In this section, the ANFIS architecture and its learning algorithm for the Sugeno fuzzy model will

be described primarily. The ANFIS architecture is shown in Figure 2; ANFIS normally has five layers

of neurons, of which neurons in the same layer are of the same function family. Assume that the FIS

under consideration has two inputs, x and y, which form two fuzzy if–then rules based on first-order

Sugeno fuzzy model [19].

Rule 1: If x is A1 and y is B1, then f 1 = p1x +q1y + r1;

Rule 2: If x is A2 and y is B2, then f 2 = p2x +q2y + r2;

where p1, p2, q1, q2, r1, and r2 are linear parameters and A1, A2, B1, and B2 are nonlinear parameters.

The output of the ith node in layer 1 is denoted as O
l,i.

Layer 1: Every adaptive node i in the layer 1 has a node function.

Ol,i = µAi
(x) f or i = 1, 2, or Ol,i = µBi−2

(y) f or i = 3, 4 (2)

where x (or y) is the input to nodes i and Ai (or Bi–2) generating a linguistic label coupled with the

node as given by Equation (2). The membership function for A (or B) can be any, parameterized as a

sigmoidal membership function given by Equation (3).

µAi
(x) =

1

1 + e−a(x−c)
(3)

where (ci, ai) is the parameter set. These are called premise parameters. As the values of the parameters

change, the shape of the membership function varies.

Layer 2: Every node in layer 2 is a fixed node labelled ∏. Each node calculates the firing strength of

each rule, which is the output using the simple product operator. Evaluating the rule premises results

as a product of all of the incoming signals given by Equation (4)

O2,i = wi = µAi
(x) × µBi

(y) f or i = 1, 2 (4)

Layer 3: The ratio of the ith rule’s firing strength to the sum of all of the rule’s firing strengths is

calculated by Equation (5) in layer 3. The output of this layer is called normalized firing strengths.
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O3,i = wi =
wi

Σ2
i wi

=
wi

w1 + w2
i = 1, 2 (5)

Layer 4: Every node i in layer 4 is an adaptive node with a node function. The nodes compute

a parameter function on the layer output. Parameters in this layer will be referred to as

consequent parameters.

O4,i = wi fi = wi(pix + qiy + ri) (6)

where wi is a normalised firing strength from layer 3 and (pi, qi, ri) is the parameter set for the node.

Layer 5: This layer has a fixed single node labelled Σ, which computes the overall output as the

summation of all of the incoming signals, as shown in Equation (7). The Σ gives the overall output of

the constructed adaptive network, having same functionality as the Sugeno fuzzy model.

O5,i = ∑
i

wi fi =
∑i wi fi

∑i wi
(7)

From Figure 2, it can be noticed that the input membership functions of the Takagi-Sugeno model

are non-linear, whereas the output membership functions are linear.

single node labelled Σ, which computes the overall 
(7). The Σ gives the overall output of 

𝑂5,𝑖 =  ∑ 𝑤̅𝑖𝑓𝑖𝑖 = ∑ 𝑤𝑖𝑓𝑖𝑖∑ 𝑤𝑖𝑖

 

Figure 2. Adaptive neuro-fuzzy inference system structure.

3. Experimental Procedures

3.1. Experiment Design Based on Taguchi Method

3.1.1. Experimental Setup

Belt grinding is a modification of the traditional grinding processes, with the contact wheel being

made of compliant polymer material. The abrasive belt sander, as shown in Figure 3, is customised

with a fixture design such that it can be used as a belt grinding tool. A belt sander is an electrically

powered abrasive belt tool that can be run at different variable speeds at unloading conditions. Ester

polyurethane polymer of different Shore A hardnesses is used as a contact wheel, which forms the part

of the contact arm, which is used as the machining end of the custom belt grinder setup, as shown in

Figure 3. The use of robots or multiple-axes machining centres improves the finishing efficiency.

The experimental trials were conducted on coupling the belt sander and an ABB 6660-205-193

multi-axes robot using a suitable fixture, as shown in Figure 4. The ABB 6660-205-193 has a parallel

arm structure, powerful gears, and motors for handling fluctuating process forces prevalent within

applications such as milling, deburring, and grinding. An ATI force sensor (Omega 160) connects the

fixture and the robot arm end effector. This is accomplished by mounting the force sensor to the ABB
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robots end-effector and then attaching the customised belt grinding tool to the force sensor, as shown

in Figure 4. The robot controller continuously receives the force/torque signal, compares it with the

users input, and achieves force compensation. The system is close looped, and this ensures that the

force programmed and the force exerted are the same. The robot arm is primarily used for toolpath

control and force control.

single node labelled Σ, which computes the overall 
(7). The Σ gives the overall output of 

𝑂5,𝑖 =  ∑ 𝑤̅𝑖𝑓𝑖𝑖 = ∑ 𝑤𝑖𝑓𝑖𝑖∑ 𝑤𝑖𝑖

 

Figure 3. Belt Sander customised to perform grinding experimental trials.

 

Figure 4. Experimental setup for compliant Abrasive Belt Grinding.

3.1.2. Toolpath Planning

Force control is essential for avoiding over and under-cutting of the material. Force control is

particularly used for uniform material removal along the whole toolpath. Such an adaptive tool for

path generation in the system was realised with (ATI Omega 160) force control in the experimental

trials. A constant contact force throughout the abrasive belt finishing the process in the normal

direction (Z-axis) is achieved by using a force sensor (ATI Omega 160) attached to the end effector of

the robotic arm of an ABB 6660 robot. The force sensor maintains an adequate in-feed in the normal

direction. Tool path planning has five different zones, as shown in Figure 5. Zone A and Zone B

are when the abrasive belt tool enters the machining region, zone C is where the actual machining

happens in force control mode, and zones D and E are where the abrasive belt tool exits the machining

region. ABB Robot Studio executes tool path planning. Most of belt grinding processes are done

on complicated geometries, and maintaining uniform material removal can be realised only when
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tool centre point (machining end) interacts with the surface normally, which is the current industrial

practice employing highly automatic robotic arm manipulators.

 

, Taguchi’s L27 orthogonal array (five

L3 

90 

•

•
•

roughness of 0.8 microns (μm).
•
•

Figure 5. Toolpath planning in force control mode by ABB Robot Studio.

3.1.3. Taguchi Based DoE (Design of Experiments)

As the knowledge of the likely interactions of the belt grinding parameters was not known

initially, trials were planned using Taguchi orthogonal array design, showing only the effects of the

individual parameters. To evaluate the effect of the belt grinding process parameters on material

removal, Taguchi’s L27 orthogonal array (five-factor, three-level) model is selected, and experiments

were performed based on it. In this study, the process parameters such as grit size, rubber shore A

hardness, force, feed, and wheel speed are considered to analyse material removal. Table 1 shows a

summary of process parameters and their level used for performing grinding trials. The experimental

layout for the five cutting parameters using the L27 orthogonal array is provided in Table 2. The mean

S/N ratio for each level of the other machining parameters is assessed based on the material removal,

i.e., depth of cut, and a greater S/N ratio corresponds to better material removal characteristics.

Table 1. Belt grinding parameters and their levels.

Parameter Unit
Levels

L1 L2 L3

RPM (m/min) 250 500 700
Feed (mm/s) 10 20 30
Force (N) 10 20 30

Rubber hardness (Shore A) 30 60 90
Grit Size - 60 120 220

3.2. Experimental Conditions

The experimental studies were done on a belt grinding setup based on settings of machining

parameters, which were defined by using the Taguchi experimental design method. In addition,

the test conditions listed below were maintained constantly throughout to achieve a controlled

experimental trial.

• The contact head of the belt grinder is kept at normal angle to keep uniformity in contact conditions

throughout machining.

• Tool wear effect was ignored as the tests were conducted in the useful lifetime of the belt tool.

• The surface condition of the machined aluminium 6061 coupons was uniform with a surface

roughness of 0.8 microns (µm).
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• Experiments are carried out in dry conditions.

• Experiments were carried out with three passes for each trial. On each pass, the depth of cut

was measured at three different locations, as shown in Figure 6, resulting in nine measurements.

According to the parameter combinations from the Taguchi method, which obtained 27 trials as

presented in Table 2, 243 depth of cut readings were obtained.

Table 2. Taguchi Experimental design using the L27 orthogonal array and corresponding depth of cut

and signal-to-noise (S/N) ratio.

Trial No.
Factors MRR

RPM Feed Force Hardness Grit Depth of Cut S/N Ratio

1 250 10 10 30 60 65.60076 36.338177
2 250 10 10 30 120 25.87109 28.256295
3 250 10 10 30 220 13.34471 22.506183
4 250 20 20 60 60 86.10453 38.70052
5 250 20 20 60 120 44.20156 32.908752
6 250 20 20 60 220 23.53456 27.434122
7 250 30 30 90 60 93.8753 39.451027
8 250 30 30 90 120 54.33391 34.701419
9 250 30 30 90 220 23.55062 27.440047
10 500 10 20 90 60 142.9324 43.102614
11 500 10 20 90 120 86.37583 38.727845
12 500 10 20 90 220 59.38035 35.472855
13 500 20 30 30 60 120.6638 41.63154
14 500 20 30 30 120 57.50747 35.194485
15 500 20 30 30 220 45.55799 33.171291
16 500 30 10 60 60 77.47286 37.782992
17 500 30 10 60 120 26.08495 28.3278
18 500 30 10 60 220 13.54166 22.633438
19 750 10 30 60 60 134.8952 42.59993
20 750 10 30 60 120 76.88529 37.716865
21 750 10 30 60 220 58.97687 35.413634
22 750 20 10 90 60 103.8255 40.326081
23 750 20 10 90 120 56.9663 35.11236
24 750 20 10 90 220 35.31606 30.959445
25 750 30 20 30 60 114.009 41.138783
26 750 30 20 30 120 56.65924 35.065415
27 750 30 20 30 220 44.31528 32.93107

 

 Feed Force ess Grit t  Ra

    38.70052

   220 35.472855

    37.782992

    40.326081

Figure 6. Profilometer with the tactile stylus used to measure the depth of cut across the grinded path

at three different locations A, B and C.
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3.3. Prediction of Depth of Cut

A Mitutoyo stylus profilometer with a stylus tip radius of 5 µm was used to measure the depth of

cut across the grinded path. Mitutoyo profilometer primarily consists of a traverse unit and a processor

control module. The grinded workpieces are so adjusted that the area of interest of measurement is

across the grinded path. The length is profiled across locations A, B, and C along the tool path, as

shown in Figure 6. 3D and 2D profiles were extracted from the workpiece surface across the machined

length, using the profilometer to measure the depth of cut, as illustrated in Figure 7.

per test. Figure 8 shows the standard deviation of the depth of cut measure taken from Taguchi’s L27 

‘
’ −𝑆𝑁 = −10𝑙𝑜𝑔10 (1𝑛∑ 1𝑦2)

Figure 7. (a) 3D profile extracted from the workpiece surface across the machined surface using

Taly-scan; (b) 2D profile obtained from the workpiece surface across the grinded path to measure the

depth of cut.

The depth of cut is measured as the distance between the deepest point in the grinded path and

the surface of the word coupon. Each experimental trial was repeated three times to have consistency,

and depth of cut was measured across three locations for each trial, resulting in a total of nine reading

per test. Figure 8 shows the standard deviation of the depth of cut measure taken from Taguchi’s L27

orthogonal array based experimental trials for all 27 test conditions. Table 2 shows the experimental

results for the mean depth of cut and corresponding S/N ratios. The depth of cut, i.e., material

removal, was identified as the process output as well as the quality characteristic with the concept ‘the

larger-the-better’. The S/N ratio for the larger-the-better is: S/N = −10 × log (mean square deviation):

S

N
= −10log10

(

1

n ∑
1

y2

)

(8)
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where n is the number of measurements in a trial/row, in this case, n = 1, and y is the measured value

in a run/row. A higher S/N value agrees with a higher depth of cut. Consequently, the ideal level of

the grinding parameters is the level with the most significant S/N value.

 

Figure 8. Standard deviation of the depth of cut taken from Taguchi based L27 orthogonal experimental trials.

4. Results and Analysis

Figure 9 presents the results of the S/N ratio for the five parameters at three levels. According

to Figure 9, the optimal parameters for a higher material removal rate were obtained at 750 RPM

(level 3), 10 mm/s feed rate (level 1), 30 N force (level 3), 90 Shore A hardness (level 3), and 60 grit

(level 1). The Material Removal Rate (MRR) increases with increasing Rotation per Minute (RPM),

force, and hardness. On the contrary, it increases with decreasing feed and grit size. With coarser

grain, i.e., smaller grit size, the depth of cut increases. An increase in force imparted on the work

coupon and hardness of contact wheel results in an increase of material removal. The increase of RPM

in the contact wheel causes greater tangential force, thereby causing the enhancement of the depth

of cut. The decrease in feed rate causes the contact time between the grains and work coupon to be

maximized, resulting in a higher material removal rate.

Figure 9. Mean signal-to-noise (S/N) ratio graph for depth of cut.
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4.1. Analysis of Variance (ANOVA)

To understand a detailed visualisation of the impact of various factors influencing the depth of

cut, i.e., material removal, in the belt grinding of Aluminium 6061 specimen, ANOVA was used. Based

on the ANOVA, the comparative significance of the grinding parameters on the depth of cut was

examined to define more accurately the optimum combination of the grinding parameters for higher

material removal. The analysis is carried out for the level of significance of 5% (the level of confidence

is 95%); the results are shown in Table 3. The last column of Table 3 shows the percentage impact of

each parameter on the total variation, signifying their degree of effect on the results. The larger the

percentage contribution, the greater the influence a parameter has on the material removal. It can be

observed from Table 3 that the grit size (F = 124.93) has the greater static influence of 63.93%, followed

by RPM (F = 26.42), which has an influence of 13.54%, and Force (F = 25.00), which has an influence of

12.79% on material removal rate. The feed and wheel hardnesses have an insignificant effect on the

material removal of 3.34% and 2.31%.

Table 3. Results of analysis of variance (ANOVA) for depth of cut.

Machining Parameter Degrees of Freedom Sum of Squares Mean Square F Ratio Contribution (%)

RPM 2 5055.5 2527.7 26.42 13.54
Feed 2 1249.1 624.5 6.53 3.34
Force 2 4782.8 2391.4 25.00 12.79

Hardness 2 867.1 433.6 4.53 2.31
Grit 2 23,903.7 11,951.9 124.93 63.93

Error 16 1530.7 95.7 - 4.09
Total 26 37,388.8 - - -

Interaction plots are most often used to visualise interactions during ANOVA. The effect of one

factor depends on the level of the other factor, and such possible interactions can be envisioned using

an interaction plot. The two way interaction effects are shown as line plots in Figure 10. Figure 10,

below, indicates the interaction plot among the five belt grinding parameters that have been considered

in our study on the depth of cut.

 

Figure 10. Two way interaction effect plots between RPM, feed, force, hardness, and grit and their

influence on depth of cut at different initial levels of parameters.
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4.2. Predictive Modelling of Material Removal Using ANFIS

Adaptive neuro-fuzzy inference system (ANFIS) removes the primary problem in fuzzy if-then

rules by using the learning ability of an artificial neural network (ANN) for automated tuning of fuzzy

if-then rules during training, resulting in a change of the membership function of parameters, thus

leading to the automatic adaptation of the fuzzy system based on inputs-output space. The initial step

of the ANFIS modelling system is to decide the input and output variables of the fuzzy logic controller.

The ANFIS model described in this paper has five input parameters; RPM, feed, force, hardness, grit,

and the output as the depth of cut, i.e., material removal rate (MRR).

The ANFIS model described in this paper is a Multiple Input Single Output (MISO) system with

multiple inputs and a single output. Figure 11 shows real inputs and real output with fuzzy rule

architecture of the ANFIS. A Taguchi based experimental design with 27 runs, as indicated in Table 2,

is used as the inputs for the ANFIS model.

 

Figure 11. Adaptive Neuro-Fuzzy Inference System (ANFIS) model for belt grinding showing inputs

and output.

4.2.1. Membership Functions for the Input and Output Variables

A membership function allocates grades of membership extending from numbers between zero

and one to the range of the possible values of the variable. Zero membership value specifies that it is

not a member of the fuzzy-set; one signifies an extensive member. A membership function such as

sigmoidal membership function is created for each input variable used in belt grinding, as illustrated

in Figure 11. The sigmoid function is differentiable for all values of the inputs to allow the use of

powerful back-propagation learning algorithms [20]. The application of general sigmoidal membership

functions to the neuro-fuzzy modelling process is a very attractive methodology to characterise

nonlinear processes [21]. The advantage of sigmoidal membership functions over other membership

functions is the better approximation due to tapering edges.

4.2.2. ANFIS Rules Employed in Model

The fuzzy modelling of Abrasive Belt Grinding uses five input parameters and one output

parameter. The five input parameters include cutting speed, shore A hardness, feed, force, and
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grit size, and the output parameter is the material depth of cut. Each parameter corresponds to six

linguistic variables. These variables can generate a number of rules in the designed control rules of

the system. The topology of ANFIS architecture that implements the sigmoidal membership function

designed with 243 fuzzy rules for depth of cut prediction used in this research is illustrated in

Figure 12. Figure 12 present an ANFIS architecture that is equivalent to a five-input first-order Sugeno

fuzzy model. The ANFIS used contains 243 rules, with sigmoidal membership functions assigned to

each input variable. The total number of fitting parameters is 303, including 60 premise (nonlinear)

parameters and 243 consequent (linear) parameters. The applicable control rules formulated along

with the membership function for the model are shown in rule viewer of the fuzzy model, as presented

in Figure 13. These rules were implemented in a MATLAB environment using a Sugeno-type fuzzy

inference system in the fuzzy logic toolbox.

 

Figure 12. Topology of adaptive neuro-fuzzy inference system architecture.

Figure 13. A part of the rule viewer in the proposed fuzzy model.



Appl. Sci. 2017, 7, 363 14 of 17

Figure 14 presents the initial and final membership functions of the five belt grinding input

parameters derived by sigmoidal membership function training. It can be seen from Figure 14

that the changes between the initial and final membership functions hardness and feed parameter

are insignificant.

 

Figure 14. Change in shape of the sigmoidal membership function for each input before and after Training.

However, on comparing the shape of initial and final membership functions of belt grinding

parameters such as grit size, RPM, and force, a considerable change in the final membership function

after training can be seen. Analysis of the sigmoidal membership function after training indicates that

the factor in the belt grinding parameters that has the most impact on material removal is grit size,

followed by RPM and force, confirming the results of the ANOVA performed in Section 4.1.

4.2.3. Training the Network and Prediction Performance

Prediction of the depth of cut of the process by ANFIS consists of two main parts; training data

and testing data. Hence, among data sets, 70% data is selected stochastically for the training of the

ANFIS network and 30% for testing the developed model.

During the training in ANFIS, 27 sets of data were used to conduct learning, and this ceased after

250 iterations, as shown in Figure 15. The step size for parameter adaptation had an initial value of 0.1.

The proposed ANFIS training parameters are given in Table 4. Adaptive neuro-fuzzy inference system

(ANFIS) learning in this work uses the hybrid method for updating membership function parameters,

which are comprised of back-propagation for the parameters linked with the input membership and

least-squares estimation for the parameters related to the output membership functions. The results

projected from the fuzzy model of belt grinding have been assessed with the experimental data for

validation. Figure 16 gives the comparison of the predicted depth of cut using the established fuzzy

model and the data taken from the belt grinding experiments.
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Figure 15. Plot of error versus epochs for modelling material removal.

Table 4. Adaptive Neuro-Fuzzy Inference System (ANFIS) training parameters.

Parameter Value

Neuron level 5
Size of input data set 243

Training Set 70%
Testing Set 30%
andMethod Prod
orMethod Max

defuzzMethod Wtaver
impMethod Prod
aggMethod Max

Number of output 1
Membership function Sigmoidal membership

Learning rules Least square estimation-Gradient descent algorithm
Number of epoch 250

Figure 16. Comparison of predicted with actual experimental values for depth of cut.

The developed ANFIS system gave an overall 93.5% accuracy, as illustrated in Figure 17.

Comparing outputs generated by the fuzzy model with the experimental data from 27 test conditions

based on Taguchi DoE (Design of Experiments), the variations are found to be minimum. Thus, it

can be inferred that there is a co-relation between the simulated results and the experimental results

obtained at the same machining conditions.
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Figure 17. Correlation between actual and predicted values of test and train data set.

5. Conclusions

In this study, an investigation into the influence of belt grinding parameters on material removal

depth based on the Taguchi parameter design method has been analysed and presented. In the belt

grinding experiments, three levels of cutting wheel speed, feed rate, force, grit size, and polymer

hardness were applied. Based on the experimental results and summarising the research, the following

generalised conclusions are drawn:

1. ANOVA determined the level of significance of the machining parameters on the material

depth of cut. Based on the analysis of variance (ANOVA) results at a 95% confidence level, the

highly dominant parameters of material removal are identified. Namely, the grit size grinding

parameter is the primary factor that has the highest influence on the material removal, and

this parameter is about five times greater than the second ranking parameters (RPM and force

imparted). The feed rate and polymer wheel hardness parameters do not seem to have much of

an influence on the depth of cut, i.e., material removal. Results from ANOVA interactions also

suggests that the experimental trials can further be optimised using Taguchi Interaction instead

of orthogonal design.

2. Based on the signal-to-noise ratio results in Figure 9, we can construe that 750 RPM, 10 mm/s

feed rate, 30 N force, 90 Shore A hardness, and 60 grit size are the optimal grinding parameters

for achieving maximum depth of cut.

3. A method of modelling and calculating the material removal using ANFIS is proposed in this

paper. The ANFIS model developed is validated with experimental trials for given conditions.

It has been identified that results produced by the designed regression model have acceptable

deviations between the predicted and the actual experimental results with 93.5% accuracy. The

ANFIS model developed in this research work is viable and could be used to predict the depth of

cut, i.e., material removal for an Abrasive Belt Grinding process.
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