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Abstract 

To investigate whether training load monitoring data could be used to predict 

injuries in elite Australian football players, data were collected from athletes over 

3 seasons at an Australian football club. Loads were quantified using GPS 

devices, accelerometers and player perceived exertion ratings. Absolute and 

relative training load metrics were calculated for each player each day. Injury 

prediction models (regularised logistic regression, generalised estimating 

equations, random forests and support vector machines) were built for non-

contact, non-contact time-loss and hamstring specific injuries using the first two 

seasons of data. Injury predictions were then generated for the third season and 

evaluated using the area under the receiver operator characteristic (AUC). 

Predictive performance was only marginally better than chance for models of 

non-contact and non-contact time-loss injuries (AUC<0.65). The best performing 

model was a multivariate logistic regression for hamstring injuries (best 

AUC=0.76). Injury prediction models built using training load data from a single 

club showed poor ability to predict injuries when tested on previously unseen 

data, suggesting limited application as a daily decision tool for practitioners. 

Focusing the modelling approach on specific injury types and increasing the 

amount of training observations may improve predictive models for injury 

prevention. 
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Introduction 

Training loads are known to be associated with injuries in team sport athletes (Carey et al., 

2016; Colby, Dawson, Heasman, Rogalski, & Gabbett, 2014; Hulin, Gabbett, Lawson, Caputi, 

& Sampson, 2015; Malone et al., 2016; Murray, Gabbett, Townshend, & Blanch, 2016; 

Rogalski, Dawson, Heasman, & Gabbett, 2013; Thornton, Delaney, Duthie, & Dascombe, 

2016). Monitoring and adjusting loads to reduce injury risk is considered to be an important 

aspect of athlete management (Soligard et al., 2016), especially since injuries can have a 

detrimental effect on team sport performance (Hägglund et al., 2013). Existing studies have 

found associations between injuries and both absolute and relative training loads (Drew & 

Finch, 2016). Therefore monitoring these metrics has been recommended in recent reviews 

(Bourdon et al., 2017; Drew & Finch, 2016; Soligard et al., 2016). Relative training loads are 

typically quantified using the acute:chronic workload ratio (Blanch & Gabbett, 2016; Gabbett, 

2016; Hulin et al., 2015; Murray et al., 2016; Williams, West, Cross, & Stokes, 2016b). This is 

calculated by dividing the short term (acute) training load for an athlete, typically around 7 

days, by their load over a longer (chronic) period, typically 3 weeks or longer. Absolute 

training loads are usually reported using cumulative totals or absolute weekly loads (Colby et 

al., 2014; Rogalski et al., 2013). Other methods of training load calculation that take into 

account daily variations, such as monotony and strain, are also useful for athlete monitoring 

(Foster et al., 2001). 

Multiple metrics exist for quantifying load in team sport athletes (Bourdon et al., 2017; 

Soligard et al., 2016). External loads refer to objective measures of training activity such as 

training duration, running distance, or accelerations (Bourdon et al., 2017; Soligard et al., 

2016). They can be measured using sensor technologies such as global positioning systems 

(GPS) and accelerometers (Bourdon et al., 2017; Soligard et al., 2016). Internal training load is 

defined as the physiological and psychological response to external loads. Internal load is 

typically assessed using metrics derived from heart rate, blood lactate and athlete ratings of 

perceived exertion (RPE) (Bourdon et al., 2017; Soligard et al., 2016). 

It has been suggested that machine learning approaches may provide a way to progress the 

field of training load monitoring and injury prediction by allowing for non-linear pattern 

recognition and interactions between variables (Bittencourt et al., 2016; Bourdon et al., 2017). 

Despite existing studies reporting associations between training load and injury (Carey et al., 

2016; Colby et al., 2014; Rogalski et al., 2013), the ability of load monitoring to predict future 

injury in Australian football is not well established. Studies in rugby league populations have 

examined the performance of training load models to predict injuries in new data (Gabbett, 

2010; Thornton et al., 2016). Currently no specific modelling methodology has established 

superiority for accurate injury predictions. The ability of models to predict particular injury 

types is unknown. Yet to be explored are techniques to deal with the large imbalance between 

injured and non-injured observations, and how the volume of data used to build predictive 

models affects the quality of predictions. 

This study investigates the ability of training loads to predict future injuries in elite Australian 

football players using statistical learning approaches. The proposed aetiology of sports injury 

is complex and multifactorial (Windt & Gabbett, 2017). Recent evidence suggests that training 

loads are a major risk factor (Soligard et al., 2016). Insights into the ability of training load 

models to predict injury may assist decision making by coaches and athletes, and narrow the 

focus of future research. 

Relative and absolute training loads were included as predictor variables in this investigation 

to align with previous studies (Drew & Finch, 2016). Age was included as a proxy for playing 

experience, which has been identified as a potential moderator of the relationship between 
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training loads and injuries (Rogalski et al., 2013). A binary indicator variable for whether a 

player was scheduled to play a match was also included because injury rates in Australian 

football are higher in matches than training sessions (Carey et al., 2016). The modelling 

approaches considered were informed by comparable studies in rugby league that used random 

forests, generalized estimating equations and logistic regression (Gabbett, 2010; Thornton et 

al., 2016). In particular, generalised estimating equations have been proposed as an appropriate 

way to model repeated observations in injury risk factor studies (Williamson, Bangdiwala, 

Marshall, & Waller, 1996). Support vector machines were also used to fit potentially non-

linear relationships (Vapnik & Vapnik, 1998). Different data processing protocols to deal with 

collinear predictors and unbalanced classes were compared, and learning curves were 

constructed to explore how the amount of available data influenced the quality of future 

predictions. 

Sampling strategies to combat class imbalance have not been considered in previous modelling 

studies. Problems with mulitcollinearity were examined by using PCA for dimensionality 

reduction, as has been suggested for multivariate training load analysis (Weaving, Jones, Till, 

Abt, & Beggs, 2017; Williams, Trewartha, Cross, Kemp, & Stokes, 2016a). Univariate and 

multivariate predictive models were trained on two years of player monitoring data and 

evaluated on one year of unseen future data in order to get a realistic estimation of predictive 

ability. Models were compared using the area under the receiver operator characteristic (AUC). 

Particular emphasis was given to the method of evaluating predictive performance given recent 

commentary on the misuse of the term prediction in sports science studies measuring 

association between risk factors and injury (McCall, Fanchini, & Coutts, 2017). 

Methods 

Participants 

The participants involved in the study were from one professional Australian football club. The 

club fielded 45, 45 and 43 players in the 2014, 2015 and 2016 seasons respectively, giving 133 

player seasons from 75 unique athletes. Informed consent was received from the club for 

collection and analysis of de-identified training and injury data. The project was approved by 

the La Trobe University Faculty of Health Sciences Human Ethics Committee (FHEC14/233).  

In the 2016 season the club participating in this study fielded a comparatively high number of 

new players due to multiple season long suspensions. The impact of this on the predictive 

models was explored by comparing the results for new versus returning players. This enabled 

evaluation of the impact of introducing new players on the performance of injury models. 

Data Collection 

Player tracking data were collected using commercially available 10 Hz global positioning 

system (GPS) devices and 100 Hz triaxial accelerometers (Catapult Optimeye S5). All players 

were monitored during all outdoor training sessions and matches. The devices used in the 

study are valid for use in this athletic population (Boyd, Ball, & Aughey, 2011; Rampinini et 

al., 2015). Additionally, players gave a rating of perceived exertion (RPE) after each session 

(Foster et al., 2001). Missing data were imputed using predictive mean matching (Buuren & 

Groothuis-Oudshoorn, 2011).  

Club medical staff recorded all injuries. Injuries were classified using the Orchard Sports 

Injury Classification System (OSICS) (Rae & Orchard, 2007) and were categorised as contact 

or non-contact. Injury severity was classified as either transient (not causing unavailability for 

training or matches) or time-loss (causing the player to be unavailable for regular training or 
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match activity). Hamstring injuries were defined to include all injures when the OSICS 

‘specific’ category was ‘Hamstring strain’ or ‘Hamstring tendon injury’. 

Training load quantification 

Training loads were quantified using 5 different training load variables (Table 1). For each 

workload variable (w) a number of metrics were derived on each day and used as the predictor 

variables for injury models. The training load metrics were chosen from the existing literature 

associating them with injury risk.  

Table 1. Workload variables and descriptions. 

Training load variable Definition 

(i) Distance (m) Distance above 3 km/h 

(ii) Moderate speed running (MSR) (m) Distance between 18-24 km/h 

(iiii) High speed running (HSR) (m) Distance above 24 km/h 

(iv) Session-RPE (arbitrary units) (Foster et al., 

2001) 

Rating of perceived exertion multiplied by session 

duration 

(v) Player load (arbitrary units) (Boyd et al., 2011) 
Proprietary metric measuring the magnitude of rate 

of change of acceleration 

 

(i) Total distance covered has been used a load metric in previous injury risk studies in 

Australian football (Carey et al., 2016; Colby et al., 2014; Hulin et al., 2015; Murray et al., 

2016) and provides a measure of global running load. 

(ii) Moderate speed running (MSR; 18-24 km/h) was included because it had previously been 

identified as a risk factor in Australian football (Carey et al., 2016).  

(iii) High speed running (HSR; 24+ km/h) has been identified as a specific risk factor for 

hamstring injury as well as general non-contact injury (Colby et al., 2014; Duhig et al., 2016) 

and is potentially a better measure of training intensity than total distance.  

(iv) Session-RPE was included as internal load metric. RPE is a subjective metric that can take 

into account influences such as heat stress, residual fatigue and other contextual factors that the 

other objective measures cannot. Additionally it has been identified as an injury risk factor in 

previous studies (Gabbett, 2010; Rogalski et al., 2013).  

(v) Player load is a workload metric based on accelerometer data, that has the potential to 

capture information about activities such as tacking, jumping and collisions that the running 

based metrics cannot (Gabbett, 2015). 

Rolling averages (C) were calculated on each day of the season (i) using a 3, 6 and 21 day 

accumulation window. These time periods have been identified as appropriate for quantifying 

cumulative load in Australian football (Carey et al., 2016; Colby et al., 2014). 

௜ܥ = ෍ ௝ܿݓ
 for ܿ ∈ {3, 6, 21}௜ିଵ

௝ୀ௜ି௖  

Exponentially weighted moving averages (EWMA) were calculated daily with 3, 6 and 21 day 

decay parameters (N). An exponentially weighted moving average weights the influence of 

training loads less the longer ago they happened. The method used was adapted from Williams 

et al. (Williams et al., 2016b) so that the value calculated each on day ‘i’ had no dependence on 

the training load that day (wi). This is necessary to avoid information recorded on the day of an 
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injury being used to try and predict that injury. ܣܯܹܧ௜ = ߣ ∙ ௜ିଵݓ + ሺ1 − ሻߣ ∙ ߣ ௜ିଵܣܯܹܧ = 2ܰ + 1  for ܰ ∈ {3, 6, 21} 

Training monotony was calculated each day as the average training load in the previous 7 days 

divided by the standard deviation of daily loads over the same time (Foster et al., 2001). 

Monotony represents the variation in training done by an athlete, with higher values indicating 

more monotonous training. Training strain was calculated as the sum of load in the previous 7 

days multiplied by the training monotony. Strain is an extension of cumulative training volume 

that incorporates a weighting factor based on the amount of daily variation (Foster et al., 

2001). Monotony and strain were not calculated for HSR due to players frequently 

accumulating zero HSR load in the previous 7 days. 

Daily acute:chronic workload ratios (r) were derived for each  workload variable. The 

acute:chronic workload ratio represents the relative amount of short term (acute) training load 

compared to the long term (chronic) load. 3 and 6 day acute time windows were used with a 21 

day chronic window. These choices have been identified as appropriate for discriminating 

between high and low risk athletes in the study cohort (Carey et al., 2016). When players had 

no chronic workload (and by definition zero acute load) they were assigned an acute:chronic 

workload ratio of zero. 

௜ݎ = ෍ ௝ܽ௜ିଵݓ
௝ୀ௜ି௔ ෍ ௝ܿ௜ିଵݓ

௝ୀ௜ି௖൙  

Exponentially weighted acute:chronic workload ratios were included as a modification of the 

acute:chronic workload ratio where the rolling averages were replaced by exponentially 

weighted moving averages (Murray et al., 2016; Williams et al., 2016b). Murray et al. 

suggested that the exponentially weighted acute:chronic workload ratio gave a better indicator 

of injury risk than the rolling average method (Murray et al., 2016). 

In total, for each of the 5 training load metrics (Table 1), 12 features were derived; 3, 6 and 21-

day rolling and exponentially weighted average load. ACWR and exponentially weighted 

ACWR (using 3:21 and 6:21 day windows), as well as monotony and strain (excluding HSR), 

resulting in 58 workload features. The inclusion of a large number of features reflected the 

multiple injury risk factor findings from previous studies (Carey et al., 2016; Colby et al., 

2014; Duhig et al., 2016; Hulin et al., 2015; Malone et al., 2016; Murray et al., 2016; Rogalski 

et al., 2013). There was no a-priori justification to exclude any. The size of the feature space 

and the possible correlations between predictor variables was given particular consideration 

when choosing the modelling and data processing approaches. 

Injury classification 

Three different types of injury were considered; any non-contact (NC), non-contact causing 

time-loss (NCTL) and any hamstring (HS). Separate models were built for each injury 

outcome to investigate whether predictive models performed better for specific injury types. 

Hamstring injuries were chosen as they were the most frequently occurring specific injury in 

this cohort and are a common injury in Australian football (Orchard, Seward, & Orchard, 

2013). A possible lag period between spikes in training load and increased injury risk has been 

reported in previous studies (Hulin et al., 2015). Models were also built for the likelihood of a 

player sustaining an injury in the next five days to investigate whether including a lag period 

could improve predictive performance. 
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Modelling approach 

Predictive models were built on two years of load and injury data (model training data) and 

tested on one season of unseen future data (testing data) (Figure 1). Evaluating models on a 

season of unseen data is required to get an estimate of the ability to predict injuries. 

Multivariate statistical models can have many degrees of freedom and can be tuned to fit a 

particular data set very well. To test whether a model will generalise and be useful in practice, 

the predictions must be evaluated on a new data set (Kuhn & Johnson, 2013). 

 

Figure 1. Data split for model training and testing. 

Models were built to try and predict whether an athlete would be injured, given knowledge of 

their training loads. Each day that a player completed training or a match, or reported an injury, 

was included as an observation in the model training data. Predictions were then generated for 

each training or match day in the testing data set and evaluated against actual injury incidence. 

Prediction algorithms 

Multiple algorithms were tested to compare their ability to predict injury in team sport athletes. 

Multivariate models were constructed using all 58 training load variables as well as two 

additional features; player age (years) and a binary indicator variable for whether or not the 

player was scheduled to play a in a competitive match that day. The approaches considered 

were: 

• Logistic regression (LR) is commonly used to model injury outcomes (Colby et al., 2014; 

Gabbett, 2010; Murray et al., 2016). Elastic net regularisation was introduced due to the 

large number of predictor variables used (Zou & Hastie, 2005). 

• Random forest (RF) models were chosen for their ability to fit non-linear patterns in data 

and deal with collinear predictors (Breiman, 2001). Random forests have been used in 

injury prediction studies in rugby league (Thornton et al., 2016). 

• Generalised estimating equations (GEE) are an extension of generalised linear models that 

account for correlations between repeated observations taken from the same subjects 

(Liang & Zeger, 1986). A binomial link function and auto-regressive correlation structure 

was used (Williamson et al., 1996). 

• Support vector machines (SVM) with a radial basis function were used to model the 

potentially non-linear pattern between load and injury in high dimensional data (Vapnik & 

Vapnik, 1998). 

In addition, univariate LR models were constructed for each training load variable (Colby et 

al., 2014; Gabbett, 2010; Murray et al., 2016) to provide a comparison for the more complex 

multivariate and non-linear models used. 

Models hyperparameters (elastic net mixing parameter and regularisation strength for LR, 

number of trees and variables sampled at each node for RF and regularisation penalty for 

SVM) were tuned using 10-fold cross validation on the model training data and a grid search 

method (see supplementary table 1 for details). The choice of hyperparameter that gave the 

best performance (area under ROC curve) during cross validation was then used to construct a 

model on the full training data set (2014-15). This model was then tested on the hold-out 

season (2016). All analyses were performed using the R statistical programming language. 
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Data pre-processing 

To allow for players to accumulate sufficient training loads to calculate workload ratios and 

exponentially weighted moving averages, the first 14 days of each season were removed from 

the model training and testing data. This loss of data could potentially be avoided in future 

studies if monitoring of chronic workloads extended into the off-season period. Players in 

rehabilitation training were excluded from modelling until they returned to full training. 

Many of the training load variables collected were likely to be correlated (Weaving et al., 

2017). Thus our prediction problem may suffer from multi-collinearity, potentially leading to 

instability and errors in the model building process (Kuhn & Johnson, 2013). Principal 

component analysis (PCA) is a dimensionality reduction process that reduces a large number 

of predictor variables to a smaller number of uncorrelated variables (called principal 

components) to combat the problems associated with multi-collinearity (Kuhn & Johnson, 

2013). PCA has been advocated as a way of dealing with collinearity in multivariate training 

load modelling (Weaving et al., 2017). It has been employed in previous studies of training 

load monitoring (Weaving, Marshall, Earle, Nevill, & Abt, 2014; Williams et al., 2016a). To 

explore the effects of PCA pre-processing, each multivariate model was trained with 

unprocessed data and data pre-processed with PCA and the results were compared. Principal 

components were calculated using the singular value decomposition method (Jolliffe, 1986). A 

95% cumulative variance threshold was used to extract m principal components, where m was 

the smallest number of components that explained at least 95% of the total variation in the data 

(Jolliffe, 1986; Kuhn & Johnson, 2013). 

Class imbalance refers to prediction problems when one class is far more common than the 

other (Kuhn & Johnson, 2013). Injury prediction suffers from large class imbalance since 

injuries are far less common than days when a player doesn’t get injured. Severe class 

imbalance can cause prediction algorithms to have trouble correctly predicting the rare class 

(Kuhn & Johnson, 2013). Two sampling techniques were implemented to combat class 

imbalance. Under-sampling randomly removes non-injury days from the model building data 

until there is an equal number of injury and non-injury days. Synthetic minority over-sampling 

(SMOTE) synthetically creates new injury samples in the model training data and under-

samples a fraction of the non-injury days to even up the classes (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002). Each model was built using unprocessed data, under-sampled data and 

SMOTE sampled data. 

Model evaluation 

To evaluate the performance of each modelling approach, predicted injury probabilities were 

generated for each training or match day in the full testing data set. A receiver operator 

characteristic curve was constructed and the AUC calculated. Importantly, each model was 

evaluated on exactly the same data set (i.e. no under-sampling or SMOTE applied to testing 

data) to allow for fair comparisons. A perfect model would have AUC=1.0 and random 

guessing would be expected to produce AUC=0.5. This gives a performance metric preferable 

to error rate for problems with unbalanced data; where low error can be achieved by simply 

predicting the more common class every time (Kuhn & Johnson, 2013; Thornton et al., 2016) 

(e.g. if the injury rate is 1%, a model always predicting no-injury is 99% accurate).  

To estimate the variability introduced into the modelling procedure by randomly sampling the 

data during the pre-processing and model tuning stages, 50 repetitions of the entire process 

were run, generating a set of performance estimates for each model. Under-sampling and 

SMOTE sampling introduce variability into the modelling pipeline because they select a 

random subset of the training data before the model building stage. A different selection may 



IJCSS – Volume 17/2018/Issue 1              www.iacss.org 

56 

result in a different model. Variability is also introduced during the model tuning stage. During 

cross validation the training data set is randomly partitioned into 10 folds, model 

hyperparameters are then chosen based on the performance across these folds. It is possible 

that when the process is repeated the composition of the folds will change. In this circumstance 

a different hyperparameter will be chosen and a different model created. 

Results 

The number of reported injuries (and frequency relative to the number of sessions) is shown in 

Table 2. Hamstring injury rates were similar across seasons (0.004 vs. 0.003 injuries per 

session), however non-contact (0.035 vs. 0.014 injuries per session) and non-contact time-loss 

(0.017 vs. 0.009 injuries per session) injury rates were lower. 

Table 2: Injury counts and rates (relative to total number of sessions) in the model training and testing data. 

(NC = non-contact, NCTL = non-contact time-loss, HS = hamstring, ‘lag’ suffix indicates outcome is 

injury within 5 days). 

Injury outcome 
Model training data (2014 & 

2015) 
Testing data (2016) 

NC 321 (0.035) 67 (0.014) 

NCTL 156 (0.017) 42 (0.009) 

HS 36 (0.004) 13 (0.003) 

NC-lag 1601 (0.174) 479 (0.103) 

NCTL-lag 784 (0.085) 295 (0.063) 

HS-lag 183 (0.020) 88 (0.019) 

Total records (match & training) 9203 4664 

Predictive ability of different modelling approaches 

Predictive performance was limited for multivariate models when using un-processed data 

(Figure 2). Using regularised LR to model hamstring injuries performed best (mean 

AUC=0.72), all other multivariate models had a mean AUC of less than 0.65 on the testing 

data. Univariate models performed worse than multivariate models for each injury outcome 

(best AUC<0.6 for NC and NCTL, and best AUC<0.7 for HS). 

Attempting to account for a possible lag time between training load spikes and injury 

occurrence (NC lag, NCTL lag and HS lag in Figure 2) did not improve predictive 

performance (mean AUC=0.50-0.57). In general, models provided predictions only marginally 

better than chance. 

The performance of HS injury models (particularly LR and RF) was more variable than non-

specific injury models (Figure 2). The increased variability is likely due to the smaller number 

of HS injuries in the model training data (n=36). The random inclusion or exclusion of one or 

more of these injuries during the model building stage has a greater impact on the final model. 

No particular prediction algorithm showed a strong tendency to outperform others across 

different injury outcomes. The more complex models (RF and SVM) did not tend to 

outperform generalised linear models (LR). Accounting for individual clustering effects (GEE) 

did not lead to better results. 
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Figure 2: Area under ROC curve evaluated on the testing data set (mean and standard deviation of 50 

repetitions) for different prediction algorithms and injury outcomes (no data pre-processing). (NC = 

non-contact, NCTL = non-contact time-loss, HS = hamstring, ‘lag’ suffix indicates outcome is injury 

within 5 days. GEE = Generalised estimating equation, LR = regularized logistic regression, RF = 

random forest, SVM = support vector machine). 

Hamstring injury prediction 

Regularised LR for hamstring injuries showed better performance (mean AUC=0.72) than 

other models (Figure 2). The model gives a predicted injury probability each day, how this 

translates into practice (i.e. modifying player training and preventing injuries) is dependent on 

the preferences of the decision maker. Specifically, how they weight the consequences (cost) 

of a false negative (missed injury) relative to a false positive prediction (unnecessarily 

cancelling or modifying a session by decreasing volume or intensity). To illustrate this we 

considered three arbitrary relative costs: 1 missed injury (i.e. one we didn’t predict) costs as 

much as 50 unnecessarily modified sessions (aggressive risk), as much as 100 sessions 

(moderate risk), or as much as 1000 sessions (conservative risk). The estimated optimal 

performance metrics for the three choices are shown in Table 3. There is a trade-off between 

correctly predicting more injuries and incorrectly flagging non-injury sessions. In general, the 

AUC values for other models in the study were similar or below the HS model, suggesting 

they would not perform significantly better than the results in Table 3. 

Table 3: Estimated optimal performance of HS injury models for different relative cost ratios (values reported as 

median of 50 repetitions). 

Cost of false 

negative 

relative to false 

positive 

True 

positive 

rate 

False 

positive 

rate 

Positive 

likelihood 

ratio 

Negative 

likelihood 

ratio 

Probability 

injury 

given 

positive 

prediction 

Probability 

injury 

given 

negative 

prediction 

50 (aggressive 

risk) 
0.08 0.004 17.9 0.93 0.05 0.003 

100 (moderate 

risk) 
0.54 0.11 5.0 0.52 0.01 0.001 

1000 

(conservative 

risk) 

0.92 0.53 1.7 0.16 0.005 0.0004 

Effect of data pre-processing 

The effects of different data pre-processing protocols are shown in Figure 3. Model 

performance varied under different protocols, yet the differences in predictive ability were 
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generally small. Reducing the number of predictors to a smaller, uncorrelated set by applying 

PCA pre-processing caused minor performance improvements in the models considered 

(Figure 3). This suggested that multicollinearity was a potential cause of poor performance 

when using un-processed data. Additionally, the variability in performance tended to decrease 

(especially for RF models). 

Under-sampling non-injury days led to performance decreases for all models except the SVM 

(Figure 3). This is possibly due to the information lost from the model training data when a 

large number of the non-injury days are removed. Under-sampling may not be appropriate for 

the injury prediction problem. SMOTE sampling did not lead to any major performance 

improvements (Figure 3). In the SMOTE procedure new injury observations were synthetically 

created using the common characteristics observed in actual injuries. This may not help the 

generalisability of models if new injuries show little resemblance to past ones. SVM models 

were the exception, and benefited from both sampling methods used, suggesting their 

performance was more negatively affected by imbalance between injury and non-injury 

observations. Combining SMOTE sampling and PCA pre-processing was similarly 

unsuccessful in improving predictive performance. 

 

Figure 3: Effects of data pre-processing protocols and sampling methods on model performance (mean and 

standard deviation of 50 repetitions) for each injury outcome (NC = non-contact, NCTL = non-

contact time-loss, HS = hamstring. GEE = Generalised estimating equation, LR = regularized logistic 

regression, RF = random forest, SVM = support vector machine). 

Applying sampling methods to the data to try and reduce the amount of imbalance between the 

number of injured and non-injured observations led to increased variability in the results 

(Figure 3). This is a consequence of randomly removing different subsets of the data before 

building models in each simulation. ROC curves for the best performing models (highest mean 

AUC) for each injury type are shown in Figure 4. ROC curves for the modelling procedures 

that included under-sampling and SMOTE sampling of the training data showed much more 

variability between the 50 repetitions (Figure 4(a-b)). The best performing hamstring model 

(Figure 4(c)), which didn’t use any sampling methods, showed only very small variability 

between repetitions (nearly perfect overlap for each repetition). 
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Figure 4: ROC curves for 50 repetitions of the best performing (highest mean AUC) modelling process for each 

injury type: (a) SVM with under-sampling for NC, (b) RF with SMOTE sampling for NCTL and (c) 

LR with PCA for HS injuries (NC = non-contact, NCTL = non-contact time-loss, HS = hamstring. 

LR = regularized logistic regression, RF = random forest, SVM = support vector machine). 

Principal component analysis 

PCA pre-processing applied to the full training data set (i.e. before any sampling strategies 

were applied) required 14 principal components to explain 95% of the variance in the data 

(Figure 5(a)). The first two components accounted for close to 60% of the variance. This 

implied that much of the information contained in the multiple training load metrics could be 

captured in a lower dimension. The correlation between the predictor variables and the first 

two principal components is shown in Figure 5(b). A clear grouping effect between variables 

of the same types was observed. The relative training load variables (ACWR and exponentially 

weighted ACWR) were related to the principal components in similar ways. The grouping 

could also be observed for 21-day cumulative loads and 3-day cumulative loads. Separation 

between monotony, strain (calculated over 7 days) and 6-day cumulative load variables was 

less clear. This was potentially due to their similar timescales. The two non-training related 

variables, age and match indicator, were not strongly correlated with either of the first two 

principal components. 

Model performance for new versus returning players 

Predictive accuracy of NC and NCTL injury models did not significantly change when new 

players and returning players were considered separately (Figure 6). Hamstring models 

appeared to perform better on returning players, suggesting they may have started to identify 

patterns leading to hamstring injury in the existing playing group. However, of the 13 total 

hamstring injuries in the testing data; 10 were to new players and only 3 to returning players. 

The inflated results for the returning players may be a consequence of the small sample size 

and not truly representative of expected future performance. 
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Figure 5: Results of principal component analysis applied to full training data set. (a) Scree plot showing the 

percentage variance explained by the first 14 principal components (the number required to pass 95% 

cumulative variance explained). (b) Variable factor map showing how correlated each predictor 

variable is with the first two principal components (a representative subset of variable labels were 

chosen for figure clarity). 

 

Figure 6: Model performance (mean and standard deviation of 50 repetitions) for (a) new players and (b) 

returning players (PCA pre-processing). 

Effect of increasing the number of model training samples 

The performance of predictive models can be influenced by the amount of data available to 

build models (Kuhn & Johnson, 2013). A learning curve shows the performance of a model on 

the training and testing data sets as the size of the training data set is increased. This indicates 

whether performance is improving or plateauing as more data is used. Learning curves were 

constructed for two injury models (Figure 7) to investigate whether the poor performance 

could be attributed to insufficient amounts of data.  
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Figure 7: Learning curves showing mean and standard deviation of performance for; (a) LR model of HS 

injuries (b) SVM model of NCTL injuries (both with PCA pre-processing). (NCTL = non-contact 

time-loss, HS = hamstring. LR = regularized logistic regression, SVM = support vector machine) 

The performance of LR to predict hamstring injury (with PCA) is shown in Figure 7(a). Test 

set performance increased as the amount of data used the build the model increased, suggesting 

the model was learning to recognise hamstrings injuries better. The performance on the 

training and testing sets appeared to converge to a similar level (mean AUC=0.7-0.8) once the 

full data set was used. However this represented a limited ability to predict injuries (Table 3); 

meaning the model was unable to fully explain the relationship between the predictor and 

outcome variables, or had underfit the problem. Underfitting suggested the model was unable 

to capture enough complexity in the data or that the predictor variables did not contain enough 

information to predict injuries (Kuhn & Johnson, 2013). 

Figure 7(b) shows the learning curve for an SVM model for NCTL injuries (with PCA). The 

performance on the model training data was near perfect but test set performance was well 

below desired levels. The learning curve suggests the model may be suffering from overfitting; 

it has perfectly fit the injuries in the model training data but does not generalise well to new 

data. Potential strategies for addressing this are collecting more data (especially more positive 

injury samples) or penalising the model for increasing complexity (regularisation) (Kuhn & 

Johnson, 2013). The increase in performance observed when the size of the training data set 

was increased from 460 to 9203 samples was approximately 5%. Estimating further 

improvements is difficult given the potentially non-linear relationship, however it appears at 

least an order of magnitude (tenfold) more data may be needed. 

Discussion 

Models of the relationships between training loads and injuries in elite Australian footballers 

showed limited ability to predict future injuries. Multivariate models of non-contact and non-

contact time-loss injuries performed better than univariate models, yet only marginally better 

than would be expected by random chance (mean AUC<0.7). The levels of performance were 

comparable to similar modelling in rugby league (AUC=0.64-0.74) (Thornton et al., 2016). 

Considering hamstring injuries on their own led to improvements in model performance (best 

AUC=0.76) (Figure 2-4). Implementing such a model in practice would require practitioners to 

consider how much modification of player training they are willing to accept in an attempt to 

prevent injuries. Results suggested that predicting half of the hamstring injuries would incur a 

false positive rate above 10% (or more than 1 in 10 player sessions unnecessarily modified) 

(Table 3). The multivariate models used in this study provided improved predictive ability 
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compared to findings by Ruddy et. al. (Ruddy et al., 2016) in a larger cohort of hamstring 

injuries in Australian football (AUC=0.5-0.63). 

Pre-processing data to account for multicollinearity of predictors (with PCA) and sampling to 

reduce the level of class imbalance resulted in minor improvements to predictive performance 

(Figure 3). Particularly in the more complex models (SVM) that tended to over-fit the model 

training data. Consideration of these issues may improve predictive performance in future 

modelling studies. 

Results from the PCA analysis showed the different training load variables to strongly 

correlated (Figure 5(b)). A large proportion of the total variance in the 60 variable data set 

could be captured by only a few principal components (Figure 5(a)). The metrics used in this 

study were originally chosen in an attempt to represent different physiological demands 

imposed on players. The results suggested that in Australian football the different metrics 

contain largely overlapping information. This finding highlights issues with performing 

multivariate training load modelling without initially treating the data to extract orthogonal 

components (Weaving et al., 2017). The amount of redundancy in the predictor variables may 

also partially explain the inability to predict injuries with high accuracy. The inclusion of 

multiple GPS and accelerometer derived metrics provided little additional information and 

future studies may benefit from including different sources of information in modelling 

approaches (e.g. anthropomorphic measurements, injury histories or psychological profiles). 

The internal training load variable (sRPE) did not appear to provide different information to 

external loads (Figure 5). The strong correlations between different training load metrics may 

be a consequence of the particular demands of training and matches in Australian football, and 

it is not known if this finding generalizes to other athletic cohorts.  

Possibilities for improving injury prediction models 

The learning curves for different modelling approaches are shown in Figure 7. These provide 

some indicators for ways to potentially improve the performance of future injury prediction 

models. Underfitting models (Figure 7(a)) can be improved by increasing the model 

complexity or by increasing the number and variety of predictors (Kuhn & Johnson, 2013). 

This suggests that linear models such as logistic regression may not be well suited to 

modelling complex injury relationships, supporting the contention of Bittencourt et. al. 

(Bittencourt et al., 2016). The more complex models (RF and SVM) tended to over-fit the 

small number of injuries in the data (Figure 7(b)) and did not generalise well to future injury 

observations. Collecting more player monitoring and injury data (>10 team-seasons) may 

provide a way to construct practically useful prediction models. 

Given the low injury per session rate (0.4% for hamstring to 3% for all non-contact) and the 

large number of possible risk factors, a probabilistic approach to load and injury risk models 

that allows for clinical judgement given context and other sources of information may improve 

outcomes. Future studies may see progress by taking this approach and not considering injury 

prediction as a binary classification problem. 

Utility of training load monitoring for injury risk reduction 

Results of this study suggested that training loads models were limited in their ability predict 

future injuries for an athlete on a given day. However this not does not rule out training load 

monitoring as a valid practice. There is strong evidence (Blanch & Gabbett, 2016; Carey et al., 

2016; Hulin et al., 2015; Malone et al., 2016; Murray et al., 2016; Soligard et al., 2016) that 

rapid increases in load and spikes in acute:chronic workload ratio are associated with increases 

in team injury rates. For this reason, measuring absolute and relative training loads in team 
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sports to monitor load progression and allow for informed modification of plans is still 

considered best practice (Drew & Finch, 2016; Soligard et al., 2016). Using individual training 

loads as a daily decision tool for athlete injury prediction has limited utility in this study. 

Limitations 

The professional sporting team participating in this study had comparatively high player 

turnover. This may have impacted on the accuracy of injury prediction models (Figure 6) and 

restricted the ability to build player specific models. The small injury sample size was a 

consequence of conducting this study within a single club. There were an insufficient number 

of injury records of a particular type (other than hamstrings) to create different injury specific 

models. 

This study included a number of the commonly used training load measures (GPS and session-

RPE) and derived metrics (cumulative load, acute:chronic workload ratio, monotony and 

strain). Running demands in relative speed zones, subjective wellness and fatigue markers and 

biomechanical screening data were not available. These variables may contain relevant 

information to improve predictive models. 

In both the model training and testing seasons physical preparation staff were aware of the 

emerging body of research on training loads and injury risk (Colby et al., 2014; Gabbett, 2010, 

2016; Hulin et al., 2015; Rogalski et al., 2013) and gave consideration to this when planning 

training. This may have influenced the distribution of training load variables recorded. 

Practical applications 

The results of this study highlighted the limitations of using training load based predictive 

models as a daily decision tool for practitioners in Australian football. We outlined how a 

practitioner’s judgement on the “cost” of an injury relative to a modified training session can 

influence how a predictive model is implemented in practice (Table 3). Improved predictive 

performance for hamstring specific models suggests that modelling specific injury outcomes 

instead of general non-contact injuries may be more informative for assessing injury risk in 

practice. The findings relating to insufficient data set size and poor model performance address 

an issue likely encountered by practitioners operating in a team-sport environment.  

CONCLUSION 

Models of training load, age and session type showed limited ability to predict future injury in 

Australian footballers. Hamstring specific injury models showed better predictive performance 

than general non-contact models. Future studies may benefit by considering specific injury 

types as outcomes variables. Predictive performance also improved with increasing quantity of 

data. This highlighted the limitations of predictive modelling attempts conducted within a 

single team and the need for collaboration or larger cohorts. Training load may be an important 

injury risk factor to monitor, yet considering it in isolation as a daily decision tool has limited 

ability to predict injury. 
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