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Abstract

Whether brain matter volume is correlated with cognitive functioning and higher

intelligence is controversial. We explored this relationship by analysis of data col-

lected on 193 healthy young and older adults through the “Leipzig Study for Mind–

Body–Emotion Interactions” (LEMON) study. Our analysis involved four cognitive

measures: fluid intelligence, crystallized intelligence, cognitive flexibility, and working

memory. Brain subregion volumes were determined by magnetic resonance imaging.

We normalized each subregion volume to the estimated total intracranial volume and

conducted training simulations to compare the predictive power of normalized vol-

umes of large regions of the brain (i.e., gray matter, cortical white matter, and cere-

brospinal fluid), normalized subcortical volumes, and combined normalized volumes

of large brain regions and normalized subcortical volumes. Statistical tests showed

significant differences in the performance accuracy and feature importance of the

subregion volumes in predicting cognitive skills for young and older adults. Random

forest feature selection analysis showed that cortical white matter was the key fea-

ture in predicting fluid intelligence in both young and older adults. In young adults,

crystallized intelligence was best predicted by caudate nucleus, thalamus, pallidum,

and nucleus accumbens volumes, whereas putamen, amygdala, nucleus accumbens,

and hippocampus volumes were selected for older adults. Cognitive flexibility was

best predicted by the caudate, nucleus accumbens, and hippocampus in young adults

and caudate and amygdala in older adults. Finally, working memory was best pre-

dicted by the putamen, pallidum, and nucleus accumbens in the younger group,

whereas amygdala and hippocampus volumes were predictive in the older group.

Thus, machine learning predictive models demonstrated an age-dependent associa-

tion between subcortical volumes and cognitive measures. These approaches may be

useful in predicting the likelihood of age-related cognitive decline and in testing of

approaches for targeted improvement of cognitive functioning in older adults.
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1 | INTRODUCTION

Whether brain matter volume is correlated with cognitive functioning

and higher intelligence is a much discussed, frequently researched

topic in neuroscience that remains controversial. Connectivity analysis

performed using structural and functional magnetic resonance imaging

(MRI) has shown an association between intelligence and putamen

(Ketteler et al., 2008; Mestres-Missé et al., 2010), caudate (Basten

et al., 2015; Grazioplene et al., 2015; Rhein et al., 2014), hippocampal

(Valdés Hernández et al., 2017), and thalamic (Bohlken et al., 2014)

volumes. MRI studies suggest that neurobiological correlates of intelli-

gence are configured by specific neural networks connecting cortical

and subcortical brain structures (Basten et al., 2015; Burgaleta

et al., 2014; Cacciola et al., 2017; Cox et al., 2019). For example, the

prefrontal cortex (Courtney et al., 1998; Kane & Engle, 2002), which is

regarded as the processing center for higher cognitive functions,

shows strong connectivity with the subcortical brain regions, specifi-

cally the basal ganglia-striatal region, which is a region classically asso-

ciated with motor processes (Abdullaev et al., 1998; Middleton &

Strick, 2000). Frontal-subcortical circuitry supports important execu-

tive functions, and there is evidence that subcortical structures have

independent roles in higher cognition (Crosson, 2021; Jung

et al., 2020; Leisman et al., 2014; Moretti et al., 2017). A recent study

showed that the subcortical structures, such as the nucleus accum-

bens and amygdala (linked to reward processing in judgment,

decision-making, and emotion regulation and previously thought to

have minimal association with intelligence), have a strong connection

to hippocampal morphometry, a structure strongly associated with

general intelligence (Wu et al., 2020). General intelligence encom-

passes fluid and crystallized intelligences. Fluid intelligence involves

comprehension, reasoning, and problem solving, whereas crystallized

Intelligence involves retrieval of stored information and past experi-

ences. Both fluid intelligence and crystallized intelligence have strong

associations with subcortical volumes and subcortical connectivity

with prefrontal regions (Colom et al., 2009; McGrew, 2009).

Further evidence in support of subcortical involvement in cogni-

tive performance comes from studies of neuropsychiatric disease. In

subjects with autism spectrum disorder, the volumes of the caudate,

putamen, and amygdala are usually increased relative to neurotypical

controls. The hyperconnectivity of these structures to frontal regions

in those with autism spectrum disorder may account for traits such as

repetitive, stereotyped behaviors, impaired executive control, and

poor social skills (Qiu et al., 2016; Sato et al., 2014; Stanfield

et al., 2008). A study employing children who survived preterm birth

without major disability showed that lower intelligence quotients (IQs)

are related to poorer development of the caudate relative to other

brain structures (Abernethy et al., 2004). In another example, Chand

et al. using structural MRI images and machine learning algorithms

discovered two distinct neuroanatomical subtypes of schizophrenia.

Compared to normal participants, subjects with subtype 1 had smaller

thalamus and nucleus accumbens volumes, and subjects with subtype

2 had increased volume of the basal ganglia. Furthermore, they

reported higher educational attainment in those with subtype 2 com-

pared to subtype 1, which may indicate a role of the basal ganglia in

higher cognitive achievement (Chand et al., 2020). Another recent

study showed that electrical stimulation of the caudate and putamen

improved learning and memory ability in epileptic patients, further

suggesting the importance of striatal structures in higher-order cogni-

tive functioning (Bick et al., 2019).

A number of neuroimaging studies have also reported age-related

volume changes of various subcortical structures. For the most part,

these studies have found volume reductions with age (Du et al., 2006;

Hasan et al., 2008; Sullivan et al., 2004; Van Der Werf et al., 2001;

Walhovd, Fjell, Reinvang, Lundervold, Dale, et al., 2005), although

others have found age-related increases in volume in some structures

(Goodro et al., 2012; Van Petten, 2004). Given the current demo-

graphic trends reflecting an aging society and an increasing incidence

and burden of neurodegenerative diseases such as Alzheimer's disease

and Parkinson's disease (Nichols et al., 2019), a closer look at subcorti-

cal changes in age-related cognitive decline may help shed light on

the etiologies of these conditions, which remain largely unknown.

Using advanced artificial intelligence methods informed by neuro-

imaging metrics of healthy aging, early detection of abnormal brain

changes due to disease may be possible. Machine learning and deep

learning studies have demonstrated associations between the subcor-

tical volumes and cognitive performance. In a pioneering study, Wang

et al. (2015) showed that IQ could be predicted in developing children

using support vector regressors; predictive features were thalamus,

hippocampus, amygdala, and caudate volumes. Using these features,

Zou et al. (2019) analyzed a much larger data set with a deep learning

approach and showed that of these three regions, thalamus and the

caudate nucleus volumes were most predictive of IQ in developing

children.

To understand the relationship between subcortical volumes and

higher-level cognition in a nonclinical sample, we conducted a study

with the open-access “Leipzig Study for Mind–Body–Emotion Interac-

tions” (LEMON) database of MRI and cognitive data from 193 subjects

(Babayan et al., 2019). Random forest is the best off-the-shelf algo-

rithm for a large number of real-world classification problems

(Fernández-Delgado et al., 2014). Although it has been a central topic

of interest for the last two decades in machine learning communities,

the exact statistical foundations are still being researched (Mentch &

Zhou, 2020). In short, the random forest algorithm is based on the

aggregation of a large number of decision and regression trees, where

each tree is trained independently on a randomly selected subset of

data points from the original data set and on a randomly selected

2 WEERASEKERA ET AL.
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subset of features. At each node in the tree there will be a split and

the algorithm will select the threshold for a feature that maximizes

the information gain of that split. This is applied until there are no

more points in the tree's data set. Since each tree is trained indepen-

dently from each other, the risk of overfitting when using a large num-

ber of trees is very low (Fernández-Delgado et al., 2014; Probst &

Boulesteix, 2018), and it is now recommended to use as many trees as

one possibly can (Mentch & Zhou, 2020) In addition, the implicit ran-

domization in random forests acts as regularization and mitigates

against overfitting to particular features (Mentch & Zhou, 2020). It

has also been shown that random forests adapt very well to sparsity,

thus its convergence depends only on the number of strong features

and not on how many noise variables are present (Biau, 2012).

Given the moderate number of subjects in our data set, we used a

fivefold cross-validation scheme stratified by gender for a group of

young adults and a group of older adults, because we were interested

in predictions corresponding to all subjects, not just a random validation

subset. In contrast, the winning group of the Adolescent Brain Cogni-

tive Development Neurocognitive Prediction (ABCD-NP) Challenge

used a random 20% validation set (Mihalik et al., 2019). To measure the

confidence of comparing the predictive power of subcortical volumes

to that of global brain volumes, we ran 1000 cross-validation simulation

studies, so that we averaged out the randomness induced by the cross-

validation train-test split and the random internal splits. We thereby

computed the true difference between predicting a cognitive measure

based on subcortical volumes compared to global brain volumes and

extracted a hierarchy of the most predictive brain subregions for the

selected cognitive functions. Given the role of subcortical structures in

cognition and age-related changes in brain structures, we expected sub-

cortical structures to predict differences in cognitive measures between

young versus older adults. Indeed, we found that cortical white matter

was the key feature in predicting fluid intelligence in both young and

older adults. Crystallized intelligence, cognitive flexibility, and working

memory were best predicted by subcortical volumes in both younger

and older groups. Discovering brain structure and cognitive associations

specific to aging is expected to be vital for understanding the neural

underpinnings of cognition and cognitive decline and for identification

of biomarkers of neurological disorders.

2 | MATERIALS AND METHODS

2.1 | Study subjects

The open-access LEMON data set includes extensive clinical and cog-

nitive information and raw anonymized MRI scans of subjects grouped

in age bins of 5 years (e.g., 20–25 and 25–30 years of age) (Babayan

et al., 2019). Subjects were evaluated at the Max Planck Institute for

Human Cognitive and Brain Sciences. Exclusion criteria included cur-

rent or past history of cardiovascular disease (hypertension, congeni-

tal heart disease, or heart attacks), psychiatric disorders needing more

than 2 weeks of therapy during the last 10 years, post-traumatic

stress disorder, psychosis or suicidal attempts, neurological

(e.g., multiple sclerosis, epilepsy, and stroke), or malignant conditions,

and medication usage (e.g., centrally acting drugs, cortisol, alpha/beta-

blocker, excessive alcohol, benzodiazepine, cocaine, amphetamines,

cannabis, or opiates) as well as MRI contraindications (Babayan

et al., 2019; Mehrabinejad et al., 2021). A total of 224 eligible native

German-speaking individuals underwent structural MRI scans, psycho-

logical assessments, and cognitive-, attention-, and creativity-related

assessments (Mehrabinejad et al., 2021). Magnetic resonance imaging

was performed on a 3 T scanner (MAGNETOM Verio, Siemens

Healthcare GmbH) equipped with a 32-channel head coil. Other tech-

nical details of protocols are available at http://fcon_1000.projects.

nitrc.org/indi/retro/MPI_LEMON.html.

Of the 224 subjects, we selected a subset of 193 healthy subjects

who had completed all cognitive testing without any issues. Some of

the encountered issues included forgetting their reading glasses, being

distracted or not understanding the instructions, having set the wrong

difficulty level, technical errors during test performance, and inten-

tionally not starting the test on time. Furthermore, we used only those

age groups that had a minimum of 10 subjects. Our cohort included

68 females and 125 males from six age groups, three groups repre-

senting young adults (YAs: 20–35 years) and three groups for older

adults (OAs: 60–75 years). Since there was a significant gender differ-

ence between the young and older age groups (χ2(1) = 4.91,

p = .026), we used a gender-stratification cross-validation scheme to

mitigate overfitting of the data.

2.2 | Cognitive tests

Cognitive skills were tested in four domains: fluid intelligence, crystal-

lized intelligence, cognitive flexibility, and working memory.

(a) Performance on subtest 3 of the Performance Testing System

(Kreuzpointner, 2010), a measure of logical thinking, was used to

quantify fluid intelligence. Participants were asked to identify one

item in a series of symbols that did not follow the logical rule of that

series. The goal was to find as many items as possible within 3 min.

The number of correctly identified items was used as the measure of

fluid intelligence. (b) The Vocabulary Test (Wortschatztest) (Schmidt &

Metzler, 1992), a measure of receptive vocabulary and considered an

index of verbal IQ, was used to measure crystallized intelligence.

(c) The Trail Making Test (Tischler & Petermann, 2010), a measure of

cognitive flexibility, was used to measure cognitive processing speed

and executive function. In the second subtest, the subject connects

numbers and letters in alternating and increasing order. The comple-

tion time was taken as our measure of cognitive flexibility. (d) The Test

of Attentional Performance (Working memory task) (Zimmermann &

Fimm, 2017) was used to quantify working memory. The participants

had to monitor a series of numbers and press a button as fast as possi-

ble when the number on the screen was the same as the number pre-

sented two trials earlier. The mean reaction time for correct button

presses was used as the measure. The performance of the cohort used

in this study on these cognitive measures arranged by age group and

gender can be found in Table 1.

WEERASEKERA ET AL. 3
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2.3 | Brain segmentation

T1-MPRAGE images were processed and segmented using Free

Surfer v5.3.0 (Desikan et al., 2006). Processing steps included motion

correction, skull-stripping, Talairach transformation, signal-intensity

normalization, subcortical processing, and volumetric segmentation.

All segmentation results were visually inspected for quality before

inclusion in the analyses. Segmented volumes of each subcortical

structure (caudate, putamen, thalamus, pallidum, amygdala, nucleus

accumbens, and hippocampus) for both hemispheres were extracted

and summed. To calculate global brain volume, volumes of total gray

matter, cortical white matter for both hemispheres, and cerebrospinal

fluid (CSF) were summed. Volumes of all brain segments were

normalized to the estimated total intracranial volume (eTIV) to control

for individual and sex-related differences in brain size as previously

described (O'Dwyer et al., 2012; Wolff et al., 2013). Detailed volumet-

rics of the brain subregions categorized by subject age group and gen-

der are listed in Table 2.

2.4 | Simulations

All software code and processed data sets are available upon reason-

able request. The simplified workflow is presented in Figure 1. The

volumes of three large regions of the brain (gray matter, cortical white

matter, and CSF) normalized to eTIV and seven eTIV-normalized

TABLE 1 Subject characteristics and performance on cognitive measuresa

Age groups (years)

Young adults (20–35 years) Older adults (60–75 years)
Young versus
older Genders combined

Female Male p Female Male p pFemale pmale Young Older p

N 44 101 – 23 25 – .027b

FI (items) 22.2 (3.6) 20.8 (3.3) .030 15.9 (3.1) 15.9 (3.1) 1 <.001 <.001 21.2 (3.4) 15.9 (3.0) <.0001

CI (IQ

scores)

109.0 (8.5) 107.3 (8.4) .270 107.4 (9.6) 109.6

(12.3)

.491 .505 .383 107.8 (8.4) 108.6 (11) .5980

CF (s) 47.5 (12.9) 52.8 (15.7) .036 84.4 (27.8) 95.5 (32.2) .207 <.001 <.001 51.1 (15.0) 90.1 (30.0) <.0001

WM (ms) 560.0

(163.2)

553.7

(135.9)

.823 641.8

(194.2)

589.0

(133.5)

.283 .092 .244 555.3 (143.3) 614.3 (164.0) .0187

Note: CI is reported here as standardized scores, scores on the rest are raw score averages.

Abbreviations: CF, cognitive flexibility; CI, crystallized intelligence; FI, fluid intelligence; WM, working memory.
aData are reported as averages (standard deviation).
bSex differences between groups (young vs. older adults) were compared using chi-squared test.

TABLE 2 Brain subregion volumes (in mm3) of young and older adults in our cohorta

Age groups (years)

Young adults (20–35) Older adults (60–75) Young versus olderb

Female (N = 44) Male (N = 101) Female (N = 23) Male (N = 25) pFemale pmale

eTIV 1,047,425 (84,677) 1,170,756 (101,342) 1,024,260 (117,260) 1,170,432 (137,151) .407 .991

tGMV 620,627 (48,493) 694,296 (55,759) 535,971 (32,449) 584,346 (51,651) <.001 <.001

cWM 423,257 (33,411) 495,464 (50,506) 415,921 (41,849) 460,488 (60,589) .471 .012

CSF 958 (216) 1049 (239) 1241 (278) 1537 (320) <.001 <.001

Caudate 7582 (892) 8095 (1073) 7212 (874) 7466 (762) .109 .001

Putamen 11,189 (983) 12,442 (1260) 9296 (1061) 10,284 (1066) <.001 <.001

Thalamus 14,015 (1028) 15,814 (1253) 12,288 (939) 13,076 (1481) <.001 <.001

Pallidum 2918 (346) 3305 (401) 2857 (394) 3169 (381) .534 .122

Amygdala 2816 (262) 3263 (434) 2705 (291) 2971 (413) .133 .003

NAcc 1137 (134) 1293 (189) 903 (171) 927 (167) <.001 <.001

Hippocampus 6870 (603) 7623 (698) 6834 (558) 6838 (846) .808 <.001

Abbreviations: CSF, cerebrospinal fluid; cWM, combined white matter volume; eTIV, estimated total intracranial volume; NAcc, nucleus accumbens; tGMV,

total gray matter volume.
aData are reported as averages (standard deviation).
bp Values are reported: young females versus older females (pfemale) and young males versus older males (pmale).

4 WEERASEKERA ET AL.
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subcortical volumes were used as quantitative descriptors, which we

refer to here as features, in simulations. To properly analyze the pre-

dictive power of subcortical volumes, a three-way comparison was

done using the volumes of the larger regions as baseline, the subcorti-

cal volumes as the main set of interest, and the union of the two

(global brain volumes and subcortical volumes) as the combined data

set. A thousand simulations of cross-validation training of the random

forest algorithm with 1000 regression trees were performed in

Python using the scikit-learn package (Pedregosa et al., 2011). Non-

parametric tests included in Python's “SciPy” (Virtanen et al., 2020)

and “scikit-posthocs” (Terpilowski, 2019) packages were used to

determine statistical significance. In each simulation, all subjects from

the young adult and older adult age groups were randomly split into

five groups stratified by gender, as the data set is unbalanced toward

young males (Table 1). The algorithm was trained five different times,

with each training iteration done on a training set consisting of four

folds, with the remainder used as the test set. The stratification by

gender ensured that the gender distribution of the test set was as

close as possible to that of the training set. Simulations were repeated

1000 times, and significance was evaluated using a nonparametric

Kruskal-Wallis (Kruskal & Wallis, 1952) test and a post hoc Dunn–Š

idák test (Grazioplene et al., 2015; Šidák, 1967). These simulations

allowed us to compute the true difference between the three data

sets in predicting a cognitive measure.

2.5 | Performance measures

We used root mean squared error (RMSE) as the primary measure to

quantify the prediction performance of the random forest algorithm

trained on different data sets. Five different RMSEs corresponding to

each cross-validation were computed in each simulation, and the aver-

age of these five RMSEs was representative of one simulation. For

each of the four cognitive measures, we obtained three RMSE sets,

corresponding to each of the three data sets (global volumes,

subcortical volumes, and combined), each RMSE set containing 1000

average RMSEs following 1000 simulations. We used the nonpara-

metric Kruskal–Wallis statistical test to determine if the three RMSE

sets followed the same distribution or not. A Dunn–Šídák post hoc

test was used to identify the RMSE set with the lowest error. We

show boxplots of RMSE values for each cognitive measure as well as

the p values of the data set comparison in each group (YA and OA)

with regard to each cognitive variable of interest. Coefficients of cor-

relation between cognitive measures and brain subregion volumes

were compared between younger and older adults after converting

into z-scores (Fisher, 1921).

2.6 | Feature importance

One advantage of using the random forest algorithm is that it auto-

matically computes the selection importance of each feature, in our

case brain subregion volumes. The feature importance is normalized

per data set, so that all values sum to 1. Random forest feature rank-

ing has an internal bias toward the categorical feature with the most

categories (Strobl et al., 2007). As our three data sets contain only

numerical features, we can reliably use the feature selection rankings

from random forest analysis to determine the hierarchy of the most

informative brain subregions for each data set. Within each simula-

tion, five different brain subregion rankings were computed corre-

sponding to each of the five folds. We analyzed the brain subregion

importance rankings by comparing the average of 1000 simulations to

the value that would be obtained if all features had equal importance.

The equal importance threshold for the global volume data set of the

three large regions of the brain is 1/3, that for the subcortical volumes

data set is 1/7, and that for the union of generic and subcortical vol-

umes is 1/10. We performed the comparison using a one-sample t-

test, which is a test for the null hypothesis that the expected mean of

a sample of independent observations (i.e., set of feature importance)

is equal to the mean of a given population (i.e., theoretical value).

F IGURE 1 Schematic illustration of the overall workflow

WEERASEKERA ET AL. 5
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3 | RESULTS

In this study, we investigated the association between cognitive func-

tioning and volumes of subcortical regions in a cohort of 193 healthy

young (20–35 years) and older (60–75 years) adults from the LEMON

study. We found significant difference in FI and CF between the older

and younger adults, regardless of gender. However, neither crystalized

intelligence nor WM differed between the two age groups. We used

Random forests to determine whether brain volumes were predictive

of cognitive measures and to identify brain subregions best correlated

with each cognitive measure (Figure 2). We found group-specific signif-

icant correlations for young adults between nucleus accumbens and

fluid intelligence (R = �0.24, p = .004) and for older adults between

nucleus accumbens and crystallized intelligence (R = �0.325, p = .024).

Significant correlations were also found between pallidum and crystal-

lized intelligence for young adults (R = �0.194, p = .019) and between

putamen and crystallized intelligence for older adults (R = �0.362,

p = .011). There were significant differences between the young adult

group and the older adult group for the correlation coefficients

between crystallized intelligence and putamen (RYA = 0.041,

ROA = �0.362, p = .014) and between crystallized intelligence and

nucleus accumbens (RYA = 0.018, ROA = �0.325, p = .038).

3.1 | Prediction performance of three data sets

Three data sets were analyzed. The baseline data set included vol-

umes of gray matter, cortical white matter, and CSF normalized to

eTIV. The second data set included eTIV-normalized volumes of seven

subcortical regions. The combined data set was the union of these

two data sets. We used RMSE as the primary measure to quantify the

prediction accuracy of the random forest analysis. The RMSEs aver-

aged over 1000 simulations are presented for young and older adult

groups in Table 3 and Table 4, respectively. Boxplots of RMSEs for

each cognitive measure and each data set are shown for younger and

older adults in Figure 3. The baseline data set was the best performing

data set only for the fluid intelligence measure for both younger adult

(0.358 ± 0.08) and older adult (0.327 ± 0.13) groups; for other cogni-

tive measures, the subcortical volume data set always performed bet-

ter than the baseline data set. Crystallized intelligence was best

predicted by the subcortical volumes data set in young adults (8.50

± 0.18). In older adults, crystallized intelligence was best predicted by

the combined data set (11.61 ± 0.47), although this was not signifi-

cantly different from the performance of the subcortical volumes data

set (11.66 ± 0.50). Cognitive flexibility and working memory were

both best predicted by the subcortical volumes for both younger

(149.16 ± 3.28) and older adults (183.03 ± 7.06). As a secondary mea-

sure in quantifying the prediction accuracy, Pearson correlation coeffi-

cients were also determined (Figure S1).

3.2 | Feature importance analysis identifies brain
subregions predictive of cognitive ability

To gain an understanding of the global and subcortical brain struc-

tures that drive the predictions of cognitive ability, we inspected the

F IGURE 2 Pearson's correlation coefficient matrices of the variables used in the study. The variables of interest, subcortical volumes, and
cognitive measures are highlighted by the yellow box, significant correlations (p < .05) within group are highlighted by black boxes. Color scale shows
the correlation coefficient values. Correlation coefficients were multiplied by 100 for clarity. CSF, cerebrospinal fluid; NAcc, nucleus accumbens.
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feature importance of our best-performing data sets for each cogni-

tive measure. Subcortical structures correlated with each behavior

measure are presented in Figure 4. Tables 5 and 6 summarize feature

importance frequencies for younger and older adults, respectively.

Corresponding feature importance plots are shown in Figures S2 and

S3. Cortical white matter was the most important feature in predicting

fluid intelligence for both young and older adults. For predicting

crystallized intelligence in young adults, caudate (0.154), thalamus

(0.144), nucleus accumbens (0.154), and pallidum (0.211) were the

most important features, whereas the most important features for

older adults were putamen (0.151), amygdala (0.181), nucleus accum-

bens (0.150), and the hippocampus (0.202). Caudate (0.166), nucleus

accumbens (0.221), and hippocampus (0.155) were the most predic-

tive features of cognitive flexibility in young adults, whereas caudate

TABLE 3 RMSE values of cognitive measure predictions for all data sets in young adultsa

Data sets

Fluid intelligence

(items)

Crystallized intelligence

(IQ points)

Cognitive

flexibility (s)

Working

memory (ms)

Global brain volumes 3.58 (0.08) 9.29 (0.18) 16.91 (0.44) 169.14 (4.55)

Subcortical volumes 3.82 (0.09) 8.50 (0.18) 16.08 (0.42) 149.16 (3.28)

Combined volumes 3.69 (0.08) 8.68 (0.17) 16.25 (0.39) 156.25 (3.84)

Note: Significant values are shaded blue.

Abbreviations: IQ, intelligence quotient; RMSE, root mean squared error.
aAverage RMSE (standard deviation in parentheses) over 1000 simulations.

TABLE 4 RMSE values of cognitive measure predictions for all data sets in older adultsa

Data sets
Fluid intelligence
(items)

Crystallized intelligence
(IQ points)

Cognitive
flexibility (s)

Working
memory (ms)

Global brain volumes 3.27 (0.13) 12.35 (0.49) 36.80 (1.55) 193.36 (8.66)

Subcortical volumes 3.32 (0.12) 11.66 (0.50) 34.48 (1.21) 184.03 (7.06)

Combined volumes 3.33 (0.11) 11.61 (0.47) 34.87 (1.17) 190.71 (7.05)

Note: Significant values are shaded blue.

Abbreviations: IQ, intelligence quotient; RMSE, root mean squared error.
aAverage RMSE (standard deviation in parentheses) over 1000 simulations.

F IGURE 3 Box plots of RMSE and post hoc adjusted p values for correlations of cognitive measures with baseline data set of normalized
global brain volumes (GBVs), data set of normalized subcortical brain volumes (SCVs), and the combined data set (GBV + SCV) in (a) young adults
and (b) older adults. Red bold line: Median. Boxes: Interquartile ranges (IQRs). Whiskers: Max and min values not exceeding each 1.5 IQR. Circles:
Outer values. RMSE, root mean squared error.
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(0.174) and amygdala (0.203) were the most predictive for the older

adults. For prediction of working memory in young adults, putamen

(0.153), pallidum (0.193), and nucleus accumbens (0.161) were the

most important features, whereas for the older adults, amygdala

(0.168) and hippocampus (0.252) were the most important.

4 | DISCUSSION

In this study, we used a machine-learning approach to explore the

relationships between select higher-level cognitive measures and sub-

cortical brain volumes determined using T1-weighted MRI scans in

healthy young and older adults obtained from the LEMON study

(Babayan et al., 2019). Our aim was to identify changes in neurocogni-

tive architecture that occur with aging. Our analysis involved four cog-

nitive measures, fluid intelligence, crystallized intelligence, cognitive

flexibility, and working memory. The volumes of certain subcortical

structures were predictive of performance on these measures, but the

predictive structures differed in young and older adults, possibly

reflecting age-related changes in neural processing strategies.

Fluid intelligence was best predicted for both groups by volumes

of global regions of the brain (gray matter, cortical white matter, and

CSF); the volume of cortical white matter had more predictive value

than volumes of gray matter or CSF. Crystallized intelligence, cogni-

tive flexibility, and working memory were better predicted by volumes

of subcortical structures alone or by combining volumes of subcortical

structures with those of global brain structures than by the volumes

of global regions. Feature importance analysis revealed that caudate,

putamen, nucleus accumbens, and hippocampus were most predictive

of cognitive measures in both young and older adults. Among these

structures, the nucleus accumbens was a key feature in cognitive

functioning in young adults, whereas the hippocampus appears to be

more central in older adults.

F IGURE 4 Feature importance for each behavior measure
illustrated on brain hemispheres for young adults (left) and older
adults (right). Structures of importance are highlighted: White matter
(golden), caudate (green), putamen (turquoise), amygdala (purple),
hippocampus (red), palladium (blue), nucleus accumbens (pink), and
thalamus (beige).

TABLE 5 Average feature importance frequencies for selected brain regions in young adultsa

Region Fluid intelligence Crystallized intelligence Cognitive flexibility Working memory

tGMV 0.290 – – –

cWM 0.395 – – –

CSF 0.315 – – –

Caudate – 0.154 0.166 0.090

Putamen – 0.109 0.119 0.153

Thalamus – 0.144 0.120 0.131

Pallidum – 0.211 0.115 0.193

Amygdala – 0.118 0.104 0.142

Nucleus accumbens – 0.154 0.221 0.161

Hippocampus – 0.110 0.155 0.131

Note: Statistically significant values after a one-sample t-test are indicated by blue shading.

Abbreviations: CSF, cerebrospinal fluid; cWM, combined white matter volume; tGMV, total gray matter volume.
aEqual importance threshold for fluid intelligence is 1/3 (0.333); thresholds for crystallized intelligence, cognitive flexibility, and working memory are

1/7 (0.143).
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MRI studies have shown that the brain undergoes morphological

changes during normal aging (He et al., 2021; Jiang et al., 2020). The

overall brain matter volume linearly decreases with age; however,

subcortical regions, especially the caudate and the hippocampus, are

altered heterogeneously (Fjell et al., 2013; Good et al., 2001; Wal-

hovd, Fjell, Reinvang, Lundervold, Dale, et al., 2005). Furthermore,

there are linear declines in executive functions related to processing

speed (Bashore et al., 1997) and sensory functioning (Cavazzana

et al., 2018) with age, although a substantial portion of aged subjects

shows only modest or no losses in cognitive functioning (Schupf

et al., 2004; Wilson et al., 2002). Altered cognitive functioning in aging

has been attributed to compensation, dedifferentiation, or adaptation

to loss by mechanisms of plasticity (Baltes & Lindenberger, 1997;

Greenwood, 2007).

Our observation that distinct subcortical profiles predict cognitive

function in young and older adults suggests that processing strategies

change during aging to meet executive function needs. For example,

we observed that in young adults' volumes of the nucleus accumbens,

a structure that is part of the reward circuitry, which mediates motiva-

tion processing and goal-directed behavior (Hyde & Garcia-Rill, 2019),

was predictive of success in cognitive flexibility and working memory

tasks. In older adults, success in the same tasks was predicted by the

volume of the amygdala, which is related to emotional memory and

reward learning (Piretti et al., 2020). In both groups, performance in

cognitive flexibility was also predicted by volumes of the caudate

nucleus, which plays an important role in motor planning and cogni-

tive learning (Barbosa et al., 2017; Choia et al., 2020; Grahn

et al., 2008; Leisman et al., 2014), and the hippocampus, a structure

important in learning and memory (Anand & Dhikav, 2012). These dif-

ferences in subcortical-behavior associations between young and

older adults are suggestive of a shift from reward- and motivation-

based decision-making during early adult years to an emotion- and

vigilance-based approach in later years. Interestingly, the nucleus

accumbens receives direct input from the amygdala and hippocampus

and sends output to the caudate and pallidum (Nicola, 2007), reflect-

ing a spatial proximity of these structures. Therefore, it is possible that

regional, age-related atrophy of particular subcortical regions may lead

to structural and functional reorganization of networks to maintain

cognitive and motor functioning. Previous neuroimaging studies pro-

vided evidence that aging brains exhibit increased prefrontal and hip-

pocampal activity compared to younger counterparts (Grady &

Craik, 2000).

Most previous studies have focused on gray matter cortical met-

rics (Bajaj et al., 2018; Walhovd, Fjell, Reinvang, Lundervold, Fischl,

et al., 2005), although more recent studies have revealed associations

of subcortical volumes and white matter connectivity with higher cog-

nitive abilities (Burgaleta et al., 2014; Davies et al., 2018; Grazioplene

et al., 2015; Zhao et al., 2019). Subcortical functions are likely to be

important for higher cognitive skills, but evidence of their morphologi-

cal association with cognitive abilities is sparse. To date, only a few

studies have investigated the association between subcortical struc-

tures and performance on intelligence and executive function-related

tasks, and results are inconsistent (Burgaleta et al., 2014; Grazioplene

et al., 2015; MacDonald et al., 2014; Rhein et al., 2014). Discrepancies

might be due to sample heterogeneity, differences between adminis-

tered tests, or methodological differences. Our use of a carefully

selected subgroup of subjects from the LEMON cohort along with

robust analyses may then reflect meaningful results, but our finding

will need to be confirmed.

Our study has limitations. One is that we did not analyze children

or adolescents. Since there are notable age-related neuroanatomical

changes from childhood to adulthood (Mills et al., 2016; Pujol

et al., 2021), analyses of younger subjects will be necessary to provide

an understanding of brain-cognitive association across the whole life-

span. Second, the imbalances between the numbers of young adults

and older adults and between the numbers of males and females

TABLE 6 Average feature importance frequencies for selected brain regions in older adultsa

Region Fluid intelligence Crystallized intelligence Cognitive flexibility Working memory

tGMV 0.301 – – –

cWM 0.395 – – –

CSF 0.304 – – –

Caudate – 0.142 0.174 0.126

Putamen – 0.151 0.126 0.100

Thalamus – 0.088 0.102 0.126

Pallidum – 0.087 0.138 0.099

Amygdala – 0.181 0.203 0.168

Nucleus accumbens – 0.150 0.141 0.127

Hippocampus – 0.202 0.115 0.252

Note: Statistically significant values after a one-sample t-test are indicated by blue shading.

Abbreviations: CSF, cerebrospinal fluid; cWM, combined white matter volume; tGMV, total gray matter volume.
aEqual importance threshold for fluid intelligence is 1/3 (0.333); thresholds for crystallized intelligence, cognitive flexibility, and working memory are

1/7 (0.143).
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within the young-adult data set is a limitation, as our results will likely

be skewed toward the majority class. We tried to overcome any

imbalance by splitting the subjects into young and older adult groups

and by performing gender-stratified cross-validation in training, but

for future studies a larger and more balanced cohort should be exam-

ined. Third, in the recent ABCD-NP challenge, 24 research teams used

machine learning and deep learning techniques to predict fluid intelli-

gence, and 19 teams developed strategies that were better than a

naïve predictor. However, the study concluded that multi-modal MRI

data (i.e., diffusion and functional) was needed for accurate prediction

of fluid intelligence regardless of the artificial intelligence algorithms

(Pohl et al., 2019). In this study, we used only subcortical volumetric

measurements, without surface, thickness, or any other multi-modal

MRI data, and, for simplicity, we only used the random forest algo-

rithm to predict cognitive measures and to rank the regions according

to their predictive power. In the future, we plan to extend our

machine learning analysis to larger data sets including a wider age

range of subjects and multi-parametric MRI data.

In conclusion, our model suggests that volumes of several sub-

cortical structures are correlated with higher-level cognition and

appear to differentially predict cognitive measures in young versus

older adults. As a next step, we will focus on the interaction

between subcortical regions and cortical brain regions to better

understand the neurobiological factors that drive cognitive perfor-

mance in young compared to older adults. Discovering associations

between cognitive characteristics and noninvasive neuroimaging

metrics could pinpoint the neural underpinnings of cognition and

cognitive decline. Methodological advances in this area could iden-

tify objective assessment methods for typical and atypical brain

function and mechanisms that could be targeted to moderate

neurodegeneration.
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