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Abstract

Background: Diabetes Mellitus is an increasingly prevalent chronic disease characterized by the body’s inability to

metabolize glucose. The objective of this study was to build an effective predictive model with high sensitivity and

selectivity to better identify Canadian patients at risk of having Diabetes Mellitus based on patient demographic data

and the laboratory results during their visits to medical facilities.

Methods: Using the most recent records of 13,309 Canadian patients aged between 18 and 90 years, along with their

laboratory information (age, sex, fasting blood glucose, body mass index, high-density lipoprotein, triglycerides, blood

pressure, and low-density lipoprotein), we built predictive models using Logistic Regression and Gradient Boosting

Machine (GBM) techniques. The area under the receiver operating characteristic curve (AROC) was used to evaluate

the discriminatory capability of these models. We used the adjusted threshold method and the class weight method to

improve sensitivity – the proportion of Diabetes Mellitus patients correctly predicted by the model. We also compared

these models to other learning machine techniques such as Decision Tree and Random Forest.

Results: The AROC for the proposed GBM model is 84.7% with a sensitivity of 71.6% and the AROC for the proposed

Logistic Regression model is 84.0% with a sensitivity of 73.4%. The GBM and Logistic Regression models perform better

than the Random Forest and Decision Tree models.

Conclusions: The ability of our model to predict patients with Diabetes using some commonly used lab results is high

with satisfactory sensitivity. These models can be built into an online computer program to help physicians in predicting

patients with future occurrence of diabetes and providing necessary preventive interventions. The model is developed

and validated on the Canadian population which is more specific and powerful to apply on Canadian patients

than existing models developed from US or other populations. Fasting blood glucose, body mass index, high-

density lipoprotein, and triglycerides were the most important predictors in these models.
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Background
Diabetes Mellitus (DM) is an increasingly prevalent

chronic disease characterized by the body’s inability

to metabolize glucose. Finding the disease at the early

stage helps reduce medical costs and the risk of

patients having more complicated health problems.

Wilson et al. [18] developed the Framingham Diabetes

Risk Scoring Model (FDRSM) to predict the risk for

developing DM in middle-aged American adults (45

to 64 years of age) using Logistic Regression. The risk

factors considered in this simple clinical model are

parental history of DM, obesity, high blood pressure,

low levels of high-density lipoprotein cholesterol,

elevated triglyceride levels, and impaired fasting glu-

cose. The number of subjects in the sample was 3140

and the area under the receiver operating characteris-

tic curve (AROC) was reported to be 85.0%. The

performance of this algorithm was evaluated in a

Canadian population by Mashayekhi et al. [11] using

the same predictors as Wilson et al. [18] with the
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exception of parental history of DM. The number of

subjects in the sample was 4403 and the reported

AROC was 78.6%.

Data mining techniques have been widely used in

DM studies to explore the risk factors for DM [5, 6,

8, 12]. Machine learning methods, such as logistic re-

gression, artificial neural network, and decision tree

were used by Meng et al. [12] to predict DM and

pre-diabetes. The data included 735 patients who had

DM or pre-diabetes and 752 who are healthy from

Guangzhou, China. The accuracy was reported to be

77.87% using a decision tree model; 76.13% using a

logistic regression model; and 73.23% using the

Artificial Neural Network (ANN) procedure. Other

machine learning methods, such as Random Forest,

Support Vector Machines (SVM), k-nearest Neighbors

(KNN), and the naïve Bayes have also been used as in

[6–8, 10, 11, 21]. Sisodia, D. and Sisodia, D.S [17]. re-

cently used three classification algorithms: Naïve

Bayes, Decision Tree, and SVM, to detect DM. Their

results showed that Naïve Bayes algorithm works bet-

ter than the other two algorithms.

In this article, we present predictive models using

Gradient Boosting Machine and Logistic Regression

techniques to predict the probability of patients hav-

ing DM based on their demographic information and

laboratory results from their visits to medical facil-

ities. We also compare these methods with other

widely used machine learning techniques such as

Rpart and Random Forest. The MLR (Machine Learn-

ing in R) package in R [2] was used to develop all

the models.

Methods
The data used in this research were obtained from

CPCSSN (www.cpcssn.ca). The case definition for

diabetes is described in [19]. “Diabetes includes dia-

betes mellitus type 1 and type 2, controlled or uncon-

trolled, and excludes gestational diabetes, chemically

induced (secondary) diabetes, neonatal diabetes, poly-

cystic ovarian syndrome, hyperglycemia, prediabetes,

or similar states or conditions” (page 4 in [19]). The

dataset was generated as follows: 1) Every blood pres-

sure reading (over 6 million) were pulled into a table

for all patients over the age of 17 along with the pa-

tient ID, their age on the date of the exam and their

sex. 2) For each blood pressure reading, we joined

the following records that were closest in time, within

a specific time period, based on the type of measure-

ment: BMI ± 1 year, LDL ± 1 year, HDL ± 1 year, trigly-

ceride (TG) ± 1 year, Fasting blood sugar (FBS) ± 1

month, HbA1c ± 3 months. 3) We removed records

with missing data in any one of the columns. This

left approximately 880,000 records, of which

approximately 255,000 records were from patients

who have diabetes. 4) Patients on insulin, who might

have Type 1 diabetes, and patient on corticosteroids,

which can affect blood sugar levels, were removed

from the dataset, leaving 811,000 records with 235,

000 from patients with DM. 5) We then curated a

dataset for records of patients that preceded the onset

of DM and identified those patients for whom there

were at least 10 visits worth of data. For patients who

had not developed DM, we removed the last year of

records before the end of the database to minimize

the impact of patients who might be on the verge of

becoming diabetic.

There are 215,544 records pertaining to patient

visits in the dataset. The outcome variable is Diabetes

Mellitus which is encoded a binary variable, with cat-

egory 0 indicating patients with no DM and category

1 indicating patients with DM. The predictors of

interest are: Sex, Age (Age at examination date), BMI

(Body Mass Index), TG (Triglycerides), FBS (Fasting

Blood Sugar), sBP (Systolic Blood Pressure), HDL

(High Density Lipoprotein), and LDL (Low Density

Lipoprotein). Since a patient may have multiple

records representing their multiple visits to medical

facilities, we took each patient’s last visit to obtain a

dataset with 13,317 patients. In the exploratory data

analysis step, we found some extreme values in BMI

and TG, and thereafter, excluded these values to ob-

tain a final analysis dataset with 13,309 patients.

About 20.9% of the patients in this sample have

DM. 40% of the patients are male and about 60% are

female (Additional file 1: Table S1). The age of the

patients in this dataset ranges from 18 to 90 years

with a median of around 64 years. Age is also

encoded as a categorical variable represented by the

four categories: Young, Middle-Aged, Senior, and Eld-

erly. About 44.6% of patients are middle-aged, be-

tween 40 and 64 years old; 47.8% are senior, between

65 and 84; 4.8% are elderly who are older than 85;

and 2.9% are younger than 40 years old. Body mass

index was calculated by dividing the patient’s weight

(in kilograms) by the patient’s height (in meters)

squared. The body mass index ranges from 11.2 to 70

with a median of 28.9. The distributions of BMI, FBS,

HDL and TG are all right-skewed (Additional file 2:

Figure S1).

Table 1 shows that the medians of BMI, FBS, and TG

of the group of patients with DM are higher than those

of the group of patients with no DM; the median HDL is

higher for the group of patients with no DM meanwhile

the median LDL, median sBP, and the median Age are

similar.

The correlation matrix of the continuous variables

(Age, BMI, TG, FBS, sBP, HDL, LDL) shows no
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remarkable correlation among the variables, except for a

moderate negative correlation of − 0.39 between HDL

and TG.

Gradient Boosting Machine is a powerful machine-

learning technique that has shown considerable success

in a wide range of practical applications [14]. In this

research study, we used Logistic Regression and Gradi-

ent Boosting Machine techniques in the MLR package in

R to build predictive models. We then compared these

methods to two other modern machine-learning tech-

niques which are Decision Tree Rpart and Random

Forest.

Procedure

We first created a training dataset by randomly choosing

80% of all patients in the dataset and created a test data-

set with the remaining 20% of patients. The training

dataset has 10,647 patients and the test dataset has 2662

patients. We used the training dataset to train the model

and used the test dataset to evaluate how well the model

performs based on an unseen dataset. Using the training

dataset and the 10-fold cross-validation method, we

tuned the model hyperparameters to obtain the set of

optimal hyperparameters that yields the highest area

under the receiver operating characteristic curve

(AROC). (Please see Additional file 3 for our model tun-

ing process).

Since the dataset is imbalanced with only 20.9% of

the patients in the DM group, we used different

misclassification costs to find the optimal threshold

(or the cut off value) for the DM class (i.e., Diabetes

Mellitus =1). In the tuning threshold approach, we

set up a matrix of misclassification costs in which

the diagonal elements are zero and the ratio of the

cost of a false negative to the cost of a false positive

is 3 to 1. We validated the model with the optimal

hyperparameters using a 10-fold cross validation. In

this step, we measured both AROC values and the

misclassification costs. We tuned the threshold for

the positive class (Diabetes = 1) by choosing the

threshold that yields the lowest expected

misclassification cost. We obtained our final model

by fitting the model with the optimal set of hyper-

parameters on the entire training dataset. Finally,

using the optimal threshold we evaluated the

performance of the final model on the test dataset.

Sensitivity was calculated by dividing the model-

predicted number of DM patients by the observed

number of DM patients. Specificity was calculated by

dividing the model-predicted number of No DM

patients by the observed number of No DM patients.

The misclassification rate is the number of incor-

rectly classified patients divided by the total number

of patients.

Results
The optimal set of hyperparameters we obtained for this

GBM model is as follows: the number of iterations

(n.trees) is 257; the interaction depth (interaction.depth)

is 2; the minimum number of observations in the ter-

minal nodes (n.minobsinnode) is 75; the shrinkage rate

(shrinkage) is 0.126. Since the outcome variable is a

binary variable, we used the Bernoulli loss function and

tree-based learners in this GBM model. Using the cross-

validation method to validate this model, we obtained

AROC values ranging from 81.6 to 85.0% with an aver-

age AROC of 83.6%, indicating a high reliability of the

method. The optimal threshold for the DM class using

the misclassification cost matrix method is 0.24. We also

used the train/test split method to validate this model

and obtained similar results with average AROC of

83.3%.

When testing the model on the test dataset we ob-

tained the following results: the AROC is 84.7%; the

misclassification rate is 18.9%; the sensitivity is

71.6% and the specificity is 83.7%. We observed that

there is a trade off between the sensitivity and the

misclassification rate. Using a default threshold of

0.5, the misclassification rate for the GBM model

was 15%; the sensitivity was low at 48.3%; the speci-

ficity was 95.2%; and the AROC remained the same

at 84.7%.

For our Logistic Regression model, the AROC was

84.0%; the misclassification rate was 19.6%; the sensi-

tivity was 73.4% and the specificity was 82.3%. The

optimal threshold was estimated to be 0.24 and Age

was treated as a categorical variable in this model.

We validated this model using the cross-validation

method and obtained AROC values ranging from 80.6

to 85.7% with an average AROC of 83.2%. Fasting

blood glucose, high-density lipoprotein, body mass

index, and triglycerides were very significant predic-

tors in this model (P < 0.0001). Interestingly, based on

this sample data, we found that age was also a signifi-

cant factor (Table 2); elderly and senior patients

significantly have lower chance of having DM than

the middle-aged patients, given that all other factors

are kept the same. Checking the model assumptions,

we found no severe collinearity; all variables had a

variance inflation factor (VIF) values less than 1.5.

Table 1 Comparing the median of continuous variables

between DM and No DM groups

Group BMI FBS HDL TG LDL sBP Age

DM 31.16 6.10 1.20 1.56 2.71 130 64.00

No DM 28.32 5.20 1.40 1.24 2.74 130 66.00
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Variables FBS, SBP, TG, and BMI were all strongly

linearly associated with the DM outcome on the logit

scale. With respect to standardized residuals, there

were 9 outliers ranging from 3.1 to 3.4. Since the

number of potential influential observations was not

large, all patients were kept in the dataset.

Based on the information gain criterion which

measures the amount of information gained by each

predictor, we also found that fasting blood glucose is

the most important predictor, followed by high-

density lipoprotein, body mass index, and triglycer-

ides; then age, sex, blood pressure, and low-density

lipoprotein (Fig. 1).

To compare the performance of the obtained Logistic

Regression and GBM models with other machine-

learning techniques, we used the same training dataset,

test dataset, and procedure on the Rpart and Random

Forest techniques. The AROC values from the models

are presented in Table 3.

The results in Table 3 show that the GBM model per-

forms the best based on highest AROC value, followed

by the Logistic Regression model and the Random Forest

model. The Rpart model gives the lowest AROC value at

78.2%.

Figure 2 illustrates the Receiver Operating Curves

(ROC) curves of the four models.

The confusion matrices for these four models are pre-

sented in Additional file 1: Tables S2, S3, S4 and S5.

Our models can be implemented in practice. For the

Logistic Regression model, we outline an algorithm for

estimating the risk of DM. sBP and LDL were excluded

from this model as their contributions were not statisti-

cally significant.

Table 2 Predictors associated with the logistic regression model

Variables Estimated coefficient Odds ratio 95% CI for odds ratio P Value

Intercept −11.816 < 0.0001

Age

Middle-Aged (40–64) (Reference) 1.000

Elderly (85–90) −0.829 0.436 (0.31, 0.61) < 0.0001

Senior (65–84) −0.127 0.881 (0.78, 0.99) 0.036

Young (< 40) 0.238 1.269 (0.90, 1.79) 0.170

Male −0.250 0.779 (0.69, 0.88) < 0.0001

FBS 1.963 7.122 (6.45, 7.87) < 0.0001

BMI 0.023 1.024 (1.01, 1.03) < 0.0001

HDL −0.894 0.409 (0.34, 0.49) < 0.0001

TG 0.158 1.171 (1.09, 1.26) < 0.0001

sBP −0.001 0.999 (0.96, 1.00) 0.560

LDL −0.011 0.990 (0.93, 1.05) 0.740

Fig. 1 Information gain measure from predictors

Table 3 Comparing the AROC values with other machine-

learning techniques

Model Area under the
ROC curve, AROC

GBM 84.7%

LOGISTIC REGRESSION 84.0%

RANDOM FOREST 83.4%

RPART 78.2%
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For the GBM model, it is more difficult to display the

equations explicitly. However, it is feasible to set up an on-

line real-time DM risk predictor program so that a patients’

risk of developing DM can be reported when the

patient’s predictor values are entered. The trained GBM

model can be saved in the Predictive Model Markup

Language (PMML) format, which is an XML-based

format, using the package r2pmml in R. Thereafter, the

model can be deployed to make predictions using a Java

platform (Scoruby and Goscore packages) or the

Yellowfin platform.

To compare the performance of the four models, we

conducted 10-fold cross validation on the whole dataset

with the following steps:

1. Divide data set into 10 parts. Use 9 parts as training

data set and the last part as the testing data set.

2. Train the four 4 models on the training data set.

3. Measure AROC for each model based on the

testing data set

4. Repeat for all 10 folds

Shuffle the whole data set and repeat the above pro-

cedure 2 more times.

Based on 30 values of AROC obtained for each model

(with age is treated as a continuous variable), we estimated

the mean of their AROC values as shown in Table 4.

We also created a box plot to compare the AROC

values of the four models (Fig. 3).

The box plot shows that the medians of AROC values

for GBM, Logistic Regression and Random Forest are

quite close to each other and they are all greater than

that of the Rpart model.

Due to the independence and normality assumptions

of the t-test, it may not be safe to use the paired t-test

for testing equality between the mean AROC values for

any two models based on the AROC values we obtained.

Therefore, to estimate the consistency of the predictive

power for each model, we used the DeLong test [3] to

find the standard deviation and the 95% confidence
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interval for the AROC value of each model. We also

used the DeLong method to compare the AROC values

of two correlated ROC curves. For each pair, we wanted

to test the equality of AROCs of two ROC curves and

whether the AROC value of the first mode is signifi-

cantly greater than that of the second model. The

DeLong method is a nonparametric method that was

implemented in pROC package in R [20]. The obtained

results are presented in Tables 5 and 6.

The standard deviations are small and the confidence

intervals are not wide. This indicates that the values of

AROC of the four models are consistent.

These results show that the AROC value of the GBM

model is significantly greater than that of Random For-

est, and Rpart models (P < 0.001), but not significantly

greater than that of Logistic Regression model (P > 0.05).

The Logistic Regression model also has an AROC value

greater than that of Random Forest and of Rpart. The

AROC of Random Forest model is significantly greater

than that of Rpart model, as well. We also noted that

the comparison of the tests are statistically significant

but this relative performance may be restricted to the

specific population and data we are dealing with.

To see how our models work on a different data set,

we used Pima Indians Dataset which is a publicly avail-

able [15]. All patients in this data set are females at least

21 years old of Pima Indian heritage. There are 768 ob-

servations with 9 variables as followings: Pregnant, num-

ber of times pregnant; Glucose, plasma glucose

concentration (glucose tolerance test); BP, diastolic

blood pressure (mm/Hg); Thickness (triceps skin fold

thickness (mm)); Insulin (2-Hour serum insulin (mu U/

ml); BMI (body mass index (weight in kg/(height in m)

squared)); Pedigree (diabetes pedigree function); Age

(Age of the patients in years); Diabetes (binary variable

with 1 for Diabetes and 0 for No Diabetes).

When working on this data set, we noticed that there

are many rows with missing data and the missing values

in Glucose, BP, Thickness, and BMI are labeled as 0. For

example, about 48.7% of Insulin values are missing. For

purpose of validating our methods, we chose not to

Table 4 Mean of AROC for the four models from the cross-

validation results

Mean

GBM 83.9%

Logistic Regression 83.5%

Random Forest 83.0%

Rpart 77.1%

Fig. 3 Box plot: comparing the AROC of the four models in the

cross-validation results

Table 5 AROC, standard deviation, and 95% confidence interval

of AROC for the four models using the DeLong method

AROC Standard deviation 95% CI

GBM 84.5% 0.97% (82.6, 86.4)

Logistic Regression 84.1% 1.01% (82.1, 86.1)

Random Forest 83.2% 1.05% (81.1, 85.2)

Rpart 78.1% 1.10% (76.0, 80.3)

Fig. 2 Receiver operating curves for the Rpart, random forest,

logistic regression, and GBM models
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impute the data but excluded all rows with missing

values. There are 392 observations left in the working

data set in which 130 patients with diabetes and 262

without diabetes. We applied our methods on this data-

set to predict whether or not a patient has diabetes. We

also divided the PIMA data set into the training data set

(80% of the observations) and the testing data set (20%

of the observations). We trained the four models on the

training data set and validate the models on the testing

data set. On the testing data set, we obtained the AROC

of 84.7% for GBM model, 88.0% for Logistic Regression

Model, 87.1% for Random Forest Model, and 77.0% for

Rpart model (Additional file 1: Table S8).

We also conducted 10-fold cross-validation and re-

peated the procedure for two more times.

Here are our results based on the 30 AROC values

from the cross-validation results conducted on the

PIMA Indian data set.

The results we obtained for this data set are quite

consistent with what we observed in our main data set

(Table 7). Based on these results, GBM, Logistic Regres-

sion, and Random Forest are comparable and they all

give higher mean AROC than that of the Rpart model

on the testing data set. We also created a box plot to

compare the sampling distributions of the AROC values

for the four models.

The box plot (Fig. 4) shows that the variability in the

AROC values of GBM, Logistic Regression, and Random

Forest are quite the same and less than that of the Rpart

model.

Discussion
In this research study, we used the Logistic Regression

and GBM machine learning techniques to build a model

to predict the probability that a patient develops DM

based on their personal information and recent labora-

tory results. We also compared these models to other

machine learning models to see that the Logistic Regres-

sion and GBM models perform best and give highest

AROC values.

During the analysis, we also used the class weight

method for our imbalanced dataset. We first tuned the

class weight for the DM class to find the optimal class

weight that minimized the average classification cost.

We found that the optimal class weight for the GBM

model is 3 and the optimal class weight for the Logistic

Regression is 3.5. These optimal class weights are then

incorporated into the model during the training process.

We obtained similar results for GBM, Logistic Regres-

sion, and Random Forest model. However, the Decision

Tree Rpart model gives a higher AROC at 81.8% com-

pared to 78.2% when the threshold adjustment method

was used (Additional file 1: Table S6). We also applied a

natural logarithmic transformation on the continuous

variables, however, this did not improve AROC and

sensitivity.

Compared to the simple clinical model presented by

Wilson et al. [18], the AROC value from our GBM

model was very similar. The AROC value of our Logistic

Regression model was lower, given the fact that the

parental history of the disease was not available in our

sample data. We also note that the characteristics of the

sample data used in this study were not the same as the

ones used by Wilson et al. [18]. For example, the age of

the patients in our dataset ranges from 18 to 90, while

the patients studied by Wilson et al. [18] ranges from 45

to 64. Schmid et al. [16] conducted a study on Swiss

patients to compare different score systems used to

Table 6 Paired one-sided DeLong test to compare the AROC

values of the four models

Test name z-statistic p-value

GBM vs. Logistic Regression 1.392 0.081

GBM vs. Random Forest 3.885 5.13e-05

GBM vs. Rpart 8.914 2.20e-16

Logistic Regression vs. Random Forest 2.038 0.021

Logistic Regression vs. Rpart 8.006 5.95e-16

Random Forest vs. Rpart 7.028 1.05e-12

Table 7 Comparing the AROC values of the four models using

PIMA Indian data set

Mean

GBM 85.1%

Logistic Regression 84.6%

Random Forest 85.5%

Rpart 80.5%

Fig. 4 Box plot of AROC values for the Rpart, random forest, logistic

regression, and GBM models applied to PIMA Indian data set
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estimate the risk of developing type 2 diabetes such as

the 9-year risk score from Balkau et al. [1], the Finnish

Diabetes Risk Score (FINDRISC) [13], the prevalent

undiagnosed diabetes risk score from Griffin et al. [4],

10-year-risk scores from Kahn et al. [9], 8-year risk score

from Wilson et al. [18], and the risk score from the

Swiss Diabetes Association. Their results indicated that

the risk for developing type 2 diabetes varies consider-

ably among the scoring systems studied. They also

recommended that different risk-scoring systems should

be validated for each population considered to ad-

equately prevent type 2 diabetes. These scoring systems

all include the parental history of diabetes factor and the

AROC values reported in these scoring systems range

from 71 to 86%. Mashayekhi et al. [11] had previously

applied Wilson’s simple clinical model to the Canadian

population. Comparing our results to the results re-

ported by Mashayekhi et al., the AROC values suggest

that our GBM and Logistic Regression models perform

better with respect to predictive ability. Using the same

continuous predictors from the simple clinical model

with the exception of parental history of diabetes, we

also obtained an AROC of 83.8% for the Logistic Regres-

sion model on the test dataset.

Conclusion
The main contribution of our research study was pro-

posing two predictive models using machine-learning

techniques, Gradient Boosting Machine and Logistic Re-

gression, in order to identify patients with high risk of

developing DM. We applied both the classical statistical

model and modern learning-machine techniques to our

sample dataset. We dealt with the issue of imbalanced

data using the adjusted-threshold method and class

weight method. The ability to detect patients with DM

using our models is high with fair sensitivity. These pre-

dictive models are developed and validated on Canadian

population reflecting the risk patterns of DM among

Canadian patients. These models can be set up in a

computer program online to help physicians in assessing

Canadian patients’ risk of developing Diabetes Mellitus.
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