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Abstract. Modern information systems that support complex business processes
generally maintain significant amounts of process execution data, particularly
records of events corresponding to the execution of activities (event logs). In
this paper, we present an approach to analyze such event logs in order to pre-
dictively monitor business constraints during business process execution. At any
point during an execution of a process, the user can define business constraints in
the form of linear temporal logic rules. When an activity is being executed, the
framework identifies input data values that are more (or less) likely to lead to the
achievement of each business constraint. Unlike reactive compliance monitoring
approaches that detect violations only after they have occurred, our predictive
monitoring approach provides early advice so that users can steer ongoing pro-
cess executions towards the achievement of business constraints. In other words,
violations are predicted (and potentially prevented) rather than merely detected.
The approach has been implemented in the ProM process mining toolset and val-
idated on a real-life log pertaining to the treatment of cancer patients in a large
hospital.

Keywords: Predictive Process Monitoring, Recommendations, Business
Constraints, Linear Temporal Logic.

1 Introduction

The execution of business processes is generally subject to internal policies, norms, best
practices, regulations, and laws. For example, a doctor may only perform a certain type
of surgery if this is preceded by a pre-operational screening, while in a sales process,
an order can be archived only after that the customer has confirmed receipt of all or-
dered items. We use the term business constraint to refer a requirement imposed on the
execution of a process that separates compliant from non-compliant behavior [20].

Compliance monitoring is an everyday imperative in many organizations. Accord-
ingly, a range of research proposals have addressed the problem of monitoring business
processes with respect to business constraints [15,14,16,26,13,19,4,10,5,28]. Given a
process model and a set of constraints – expressed, e.g., in temporal logic – these tech-
niques provide a basis to monitor ongoing executions of a process (a.k.a. cases) in order
to assess whether they comply with the constraints in question. However, these moni-
toring approaches are reactive, in that they allow users to identify a violation only after
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it has occurred rather than supporting them in preventing such violations in the first
place.

In this setting, this paper presents a novel monitoring framework, namely Predictive
Business Process Monitoring, based on the continuous generation of predictions and
recommendations on what activities to perform and what input data values to provide, so
that the likelihood of violation of business constraints is minimized. At any point during
the execution of a business process, the user can specify a business constraint using
Linear Temporal Logic (LTL). Based on an analysis of execution traces, the framework
continuously provides the user with estimations of the likelihood of achieving each
business constraint for a given ongoing process execution. The proposed framework
takes into account the fact that predictions often depend both on: (i) the sequence of
activities executed in a given case; and (ii) the values of data attributes after each activity
execution in a case. For example, for some diseases, doctors may decide whether to
perform a surgery or not, based on the age of the patient, while in a sales process, a
discount may be applied only for premium customers.

The core of the proposed framework is a method to generate predictions of business
constraint fulfillment. Specifically, the technique estimates for each enabled activity in
an ongoing case, and for every data input that can be given to this activity, the prob-
ability that the execution of the activity with the corresponding data input will lead
to the fulfillment of the business constraint. In line with the principle of considering
both control-flow and data, the proposed technique proceeds according to a two-phased
approach. Given an ongoing case in which certain activities are enabled, we first se-
lect from the set of completed execution traces, those that have a prefix “similar” to
the (uncompleted) trace of the ongoing case (control-flow matching). Next, for each
selected trace, we produce a data snapshot consisting of a value assignment for each
data attribute up to its matched prefix. Given a business constraint, we classify a data
snapshot as a positive or a negative example based on whether the constraint was even-
tually fulfilled in the completed trace or not. In this way, we map the prediction task
to a classification task, wherein the goal is to determine if a given data snapshot leads
to a business constraint fulfillment and with what probability. Finally, we solve the re-
sulting classification task using decision tree learning, i.e., we produce a decision tree
to discriminate between fulfillments and violations. The decision tree is then used to
estimate the probability that the business constraint will be achieved, for each possible
combination of input attribute values.

The proposed framework can be applied both for prediction and recommendation.
For prediction, the decision tree is used to evaluate the probability for the business con-
straint to be satisfied for a given combination of attribute values. For recommendation,
the decision tree is used to select combinations of attribute values that maximize the
probability of the business constraint being satisfied. The predictive monitoring frame-
work has been implemented in the ProM toolset for process mining. The framework has
been validated using a real-life log (provided for the 2011 BPI challenge [1]) pertaining
to the treatment of cancer patients in a large Dutch academic hospital.

The remainder of the paper is structured as follows. Section 2 introduces a run-
ning example. Section 3 introduces concepts pertaining to LTL and decision trees. Sec-
tion 4 presents the predictive monitoring framework and its implementation. Section 5
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discusses the validation on a real-life log. Finally, Section 6 discusses related work and
Section 7 draws conclusions and perspectives.

2 Running Example

During the execution of a business process, process participants cooperate to satisfy
certain business constraints. At any stage of the process enactment, decisions are taken
aimed at achieving the satisfaction of these constraints. Therefore, it becomes crucial for
process participants to be provided with predictions on whether the business constraints
will be achieved or not and, even more, to receive recommendations about the choices
that maximize the probability of satisfying the business constraints.

Fig. 1 shows a BPMN model of a business process we will use as running example.
It describes how a patient is nursed according to the instructions of a doctor. During the
process execution, the doctor has to make decisions on therapies and on the doses of
medicines to be administered to the patient. The process starts when the patient provides
the doctor with lab test results. Based on the tests, the doctor formulates a diagnosis.
Then, the doctor has to decide the therapy to prescribe. The therapy can be a surgery,
a pharmacological therapy or a manipulation. In case of a pharmacological therapy, the
doctor has also to prescribe the quantity of medicine the patient has to assume.

In this scenario, historical information about past executions of the process could be
used to support the doctor in making decisions by providing him or her with predictions
about the (most likely) iter of the disease and recommendations about the best choices
to be made in order to guarantee the patient recovery. The approach presented in this
paper aims at supporting process participants in their decisions by providing them with
predictions about the satisfaction of their constraints and, in case they can influence the
process with their decisions, by recommending them the best choices to be made to
satisfy their business constraint.

In our example, the constraint the doctor wants to satisfy could be that every diag-
nosis is eventually followed by the patient recovery. By exploiting data related to the
clinical history of other patients with similar characteristics, our technique aims at pro-
viding the process participants with predictions about whether the patient will recover
or not. In addition, whenever the doctor has to make decisions (e.g., prescribe the type
of therapy or choose the dose of a medicine), recommendations are provided about the
options for which it is more likely that the patient will recover.

Fig. 1. A simple process describing the medical treatment management
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3 Background

In this section, we first introduce the language used for the business constraint definition
(LTL), and we then provide an overview on decision tree learning.

3.1 LTL

In our proposed approach, a business constraint can be formulated in terms of LTL rules,
as LTL (and its variations) is classically used in the literature for expressing business
constraints on procedural knowledge [21]. LTL [23] is a modal logic with modalities
devoted to describe time aspects. Classically, LTL is defined for infinite traces. How-
ever, when focusing on the compliance of business processes, we use a variant of LTL
defined for finite traces (since business process are supposed to complete eventually).

We assume that events occurring during the process execution fall in the set of atomic
propositions. LTL rules are constructed from these atoms by applying the temporal
operators X (next), F (future), G (globally), and U (until) in addition to the usual
boolean connectives. Given a formula ϕ, Xϕ means that the next time instant exists and
ϕ is true in the next time instant (strong next). Fϕ indicates that ϕ is true sometimes in
the future. Gϕ means that ϕ is true always in the future. ϕUψ indicates that ϕ has to
hold at least until ψ holds and ψ must hold in the current or in a future time instant.

In the context of the running example, examples of relevant business constraints
formulated in terms of LTL rules include:

– ϕ0 = G(“diagnosis” → F(“recovered”)),
– ϕ1 = F(“tumor marker CA − 19.9”) ∨ F(“ca − 125 using meia”),
– ϕ2 = G(“CEA− tumor marker using meia” → F(“squamous cell carcinoma using eia”)),
– ϕ3 = (¬“histological examination − biopsies nno”)U(“cytology − ectocervix − ”),
– ϕ4 = F(“histological examination − big resectiep”), and
– ϕ5 = (¬“histological examination−biopsies nno”)U(“squamous cell carcinomausing eia”).

3.2 Decision Tree Learning

Decision tree learning uses a decision tree as a model to predict the value of a tar-
get variable based on input variables (features). Decision trees are built from a set of
training dataset. Each internal node of the tree is labeled with an input feature. Arcs
stemming from a node labeled with a feature are labeled with possible values or value
ranges of the feature. Each leaf of the decision tree is labeled with a class, i.e., a value of
the target variable given the values of the input variables represented by the path from
the root to the leaf.

Each leaf of the decision tree is associated with a class support (class support) and
a probability distribution (class probability). Class support represents the number of
examples in the training set, that follow the path from the root to the leaf and that are
correctly classified; class probability (prob) is the percentage of examples correctly
classified with respect to all the examples following that specific path, as shown in the
formula reported in (1).

prob =
#(corr class leaf examples)

#(corr class leaf examples+ incorr class leaf examples)
(1)
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Fig. 2. Predictive Business Process Monitoring Framework: architectural overview

One of the most used decision tree learning algorithms is the C4.5 algorithm [24].
C4.5 relies on the normalized information gain to choose, for each node of the tree,
the feature to be used for splitting the set of examples. The feature with the highest
normalized information gain is chosen to make the decision.

4 Approach

In this section, we present the details of the proposed approach, which combines dif-
ferent existing techniques ranging from clustering approaches to decision tree learning,
to provide predictions, at runtime, about the fulfillments of business constraints in an
execution trace. In the following sections, we provide an overview of the approach and
of the more specific implementation.

4.1 General Approach

Before presenting the approach proposed in this paper, some assumptions should be
made. First, we assume that a set of historical execution traces of the process is available
from which we can extract information about how the process was executed in the
past. Based on the information extracted from the historical traces, we can provide
predictions and recommendations for a running execution trace. Second, we assume
that the underlying business process should be in some way non-deterministic or, at
least, the mechanisms that guide the decisions taken during the process execution should
not be known by the user. Any recommendation or prediction would be useless if the
process participant already knows how the process develops given the input data values
provided (we can think to a doctor who may not know about new therapies, or to a
company providing services that does not know about the behaviors of its customers).
Third, we assume that data used in the process are globally visible throughout the whole
process.
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Fig. 2 sketches the proposed Predictive Business Process Monitoring Framework.
It relies on two main modules: a Trace Processor module to filter and classify (past)
execution traces and a Predictor module, which uses the Trace Processor output as
training data to provide predictions and recommendations (when an input is requested
to the user).

The Trace prefix-based Filterer submodule of the Trace Processor module extracts
from the set of historical traces only those traces having a prefix control flow similar to
the one of the current execution trace (up to the current event). The filtering is needed
since data values are usually strongly dependent on the control flow path followed by
the specific execution. In addition, traces with similar prefixes are more likely to have,
eventually in the future, a similar behavior. The similarity between two traces is evalu-
ated based on their edit distance. We use this abstraction (instead of considering traces
with a prefix that perfectly matches the current partial trace) to guarantee a sufficient
number of examples to be used for the decision tree learning. In particular, a similarity
threshold can be specified to include more traces in the training set (by considering also
the ones that are less similar to the current trace).

Each (historical) trace is identified with a data snapshot containing the assignment
of values for each attribute in the corresponding selected prefix. The traces (the data
snapshots) of the training set are classified by the Trace Classifier submodule based
on whether, in each of them, the desired business constraint is satisfied or not. The
constraint is expressed in terms of a set of LTL formulas. In the case of our running
example, the constraint “whenever a diagnosis is performed, then the patient will even-
tually recover” can be represented in LTL through formula ϕ0 reported in Section 3.1.

Formulas have to be satisfied along the whole execution trace. Four possible cases
can occur at evaluation time:

– the formula is permanently violated: the prediction is trivial (non-satisfied);
– the formula is permanently satisfied: the prediction is trivial (satisfied);
– the formula is temporary violated/satisfied: the prediction should be able to indicate

whether the formula will be satisfied or not in the future.

Once the relevant traces and, therefore, the corresponding data snapshots, are clas-
sified, they are passed to the Decision tree learning module, in charge to derive the
learned decision tree with the associated class support and probability. Fig. 3 shows
a decision tree related to our running example: the number of data training examples
(with values of the input variables following the path from the root to each leaf) re-
spectively correctly and non-correctly classified is reported on the corresponding leaf
of the tree. For example, for values “Joint dislocation” and “Pharmacological therapy”,
the resulting class is the formula satisfaction (“yes”), with 2 examples of the training
set following the same path correctly classified and 1 non-correctly classified, i.e., with
a class probability prob = 2

2+1 = 0.66.
All the data values assigned in the past, are supposed to be known by the predictor

system at the current execution point of the trace. The tree can hence be pruned by re-
moving all the branches corresponding to known values. The pruning algorithm returns
either a unique path (and a unique class) or a subtree of the original tree, according to
whether the system is used as predictor (the values of all the tree attributes are known)
or as a recommender (there are attributes in the tree that are still unknown), respectively.
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Fig. 3. Example decision tree

In the latter case, leaves are ranked according to the associated class probability. The
conditions on the values of the unknown attributes corresponding to the leaves with the
highest rankings are returned to the user as recommendations.

For example, consider the case in which a diagnosis (“Joint dislocation”) and a ther-
apy (“Pharmacological therapy”) have been given by the doctor. The Predictor will
consider only the path from the root to leaf l1 (pruning all the other branches) and
will predict the satisfaction of the formula with a probability class prob = 0.66 (see
Fig. 3). We can also consider the case in which a diagnosis has already been made (e.g.,
“Joint dislocation”), but no therapy has been prescribed yet. Then, all the branches cor-
responding to other values of the diagnosis attribute (i.e., “Arthrosis”, “Dupuytren’s
contracture”, “Osteoarthritis”, “Slipped disc”) can be pruned. Only the subtree corre-
sponding to the branch “Joint dislocation” is analyzed and, since no other attribute is
known, the class probability of each leaf computed. As shown in Fig. 3, the three leaves
have the following classes and class probabilities:

– l1: satisfied with probl1 = 2
2+1 = 0.66

– l2: non-satisfied with probl2 = 1
1 = 1

– l3: satisfied with probl3 = 3
3+0 = 1

The system will hence recommend “Manipulation” (probl3 = 1).
Note that, if we consider as a feature of the decision tree the next activity to be

executed, our framework is also able to recommend which activity should be performed
next to maximize the probability of satisfying a business constraint.

4.2 Implementation

The approach has been implemented in the ProM process mining toolset. ProM provides
a generic Operational Support (OS) environment [2,29] that allows the tool to interact
with external workflow management systems at runtime. A stream of events coming
from a workflow management system is received by an OS service. The OS service
is connected to a set of OS providers implementing different types of analysis that
can be performed online on the stream. Our Predictive Business Process Monitoring
Framework has been implemented as an OS provider.

Fig. 4 shows the entire architecture. The OS service receives a stream of events (in-
cluding the current execution trace) from a workflow management system and forwards
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Fig. 4. Predictive Business Process Monitoring Framework: implemented architecture

it to the Predictive Business Process Monitoring Framework that returns back predic-
tions and recommendations. The OS service sends these results back to the workflow
management system.

For the implementation of the Predictor, we rely on the WeKa J48 implementation
of the C4.5 algorithm, which takes as input a .arff file and builds a decision tree. The
.arff file contains a list of typed variables (including the target variable) and, for each
trace prefix (i.e., for each data snapshot), the corresponding values. This file is created
by the Trace Processor and passed to the Predictor. The resulting decision tree is then
analyzed to generate predictions and recommendations.

5 Experimentation

We have conducted a set of experiments by using the BPI challenge 2011 [1] event log.
This log pertains to a healthcare process and, in particular, contains the executions of
a process related to the treatment of patients diagnosed with cancer in a large Dutch
academic hospital. The whole event log contains 1, 143 cases and 150, 291 events dis-
tributed across 623 event classes (activities). Each case refers to the treatment of a
different patient. The event log contains domain specific attributes that are both case
attributes and event attributes in addition to the standard XES attributes.1 For example,
Age, Diagnosis, and Treatment code are case attributes and Activity code, Number of
executions, Specialism code, and Group are event attributes.

In our experimentation, first, we have ordered the traces in the log based on the time
at which the first event of each trace has occurred. Then, we have splitted the log in two
parts. We have used the first part (80% of the traces) as training set, i.e., we have used
these traces as historical data to derive predictions. We have implemented a log replayer
to simulate the execution of the remaining traces (remaining 20%) and send them as an
event stream to the OS service in ProM (test set).

1 XES (eXtensible Event Stream) is an XML-based standard for event logs proposed by the
IEEE Task Force on Process Mining (www.xes-standard.org).

www.xes-standard.org
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Fig. 5. ROC spaces drawn for different LTL formulas and different evaluation points. Similarity
threshold: 0.8; Minimum number of traces: 30.

We defined 5 business constraints corresponding to a subset (from ϕ1 to ϕ5) of the
LTL rules reported in Section 3.1. This set of rules, indeed, allows us to exercise all the
LTL constructs while investigating possibly real business constraints. We have asked
for a prediction about each of the defined business constraints in different evaluation
points during the replay of each trace in our test set. In particular, we have considered
as evaluation points the initial event (start event) of each trace, an early event (i.e., an
event located at about 1/4 of each trace), and an intermediate event (i.e., an event located
in the middle of each trace).

As well as a similarity threshold (see Section 4.1), the implemented OS provider al-
lows the user to specify a minimum number of traces to be used in the training set. In
this way, if the threshold does not guarantee a sufficient number of examples, further
traces are considered from the set of historical traces with a similarity with the cur-
rent execution trace lower than the specified threshold. In a first experiment, we have
considered a similarity threshold of 0.8 and a minimum number of traces of 30.

For evaluating the effectiveness of our approach, we have used the ROC space anal-
ysis. In particular, we have classified predictions in four categories, i.e., i) true-positive
(TP : positive outcomes correctly predicted); ii) false-positive (FP : negative outcomes
predicted as positive); iii) true-negative (TN : negative outcomes correctly predicted);
iv) false-negative (FN : positive outcomes predicted as negative). The gold standard
used as reference is the set of all true positive instances. In our experiments, we can
easily identify the true positive instances. Indeed, if we are asking for a prediction at a
certain point in time during the replay of a trace, we can understand if the prediction is
correct by replaying the trace until the end.
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Table 1. Evaluation of the approach for different LTL formulas, different evaluation points. Sim-
ilarity threshold: 0.8; Minimum number of traces: 30.

TP FP FN TN TPR FPR PPV F1 ACC

ϕ1

Start 46 18 11 46 0.807 0.281 0.718 0.76 0.76
Early 73 37 7 42 0.912 0.468 0.663 0.768 0.723

Intermediate 75 34 8 52 0.903 0.395 0.688 0.781 0.751
All 194 89 26 140 0.881 0.388 0.685 0.771 0.743

ϕ2

Start 104 12 8 34 0.928 0.26 0.896 0.912 0.873
Early 101 19 10 34 0.909 0.358 0.841 0.874 0.823

Intermediate 110 19 7 35 0.94 0.351 0.852 0.894 0.847
All 315 50 25 103 0.926 0.326 0.863 0.893 0.847

ϕ3

Start 8 13 4 140 0.666 0.084 0.38 0.484 0.896
Early 0 11 9 148 0 0.06 0 0 0.88

Intermediate 2 18 7 143 0.222 0.111 0.1 0.137 0.852
All 10 42 20 431 0.333 0.088 0.192 0.243 0.876

ϕ4

Start 53 33 19 82 0.736 0.286 0.616 0.67 0.721
Early 54 18 7 83 0.885 0.178 0.75 0.812 0.845

Intermediate 57 22 9 92 0.863 0.192 0.721 0.786 0.827
All 164 73 35 257 0.824 0.221 0.691 0.752 0.795

ϕ5

Start 55 10 17 85 0.763 0.105 0.846 0.802 0.838
Early 52 13 11 94 0.825 0.121 0.8 0.812 0.858

Intermediate 61 14 9 100 0.871 0.122 0.813 0.841 0.875
All 168 37 37 279 0.819 0.117 0.819 0.819 0.857

To draw a ROC space, we need two metrics, i.e., the true positive rate (TPR), repre-
sented on the y axis, and the false positive rate (FPR), represented on the x axis. The
TPR (or recall) defines how many positive outcomes are correctly predicted among all
positive examples available:

TPR =
TP

TP + FN
. (2)

On the other hand, the FPR defines how many negative outcomes are predicted as pos-
itive among all negative examples available:

FPR =
FP

FP + TN
. (3)

We have classified predictions for each LTL rule ϕi, and, therefore, each of them is
represented as one point in the ROC space. In Fig. 5, we show four spaces drawn by
classifying the evaluation points by position (start, early, intermediate). In the figure, we
also show the results obtained by considering all the evaluation points together. Note
that the best possible prediction method would yield a point in the upper left corner of
the ROC space, representing 100% sensitivity (no false negatives) and 100% specificity
(no false positives). A completely random guess would give a point along a diagonal
line from the left bottom to the top right corners. Points above the diagonal represent
good classification results, points below the line poor results.
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Fig. 6. Comparison of ROC spaces drawn using (1) a similarity threshold of 0.8, (2) a similarity
threshold of 0.5, (3) class probability higher than the average, and (4) class support higher than
the median of the class supports.

The ROC space analysis highlights that for ϕ1, ϕ2, ϕ4, and ϕ5 our OS provider was
able to discriminate well between positive and negative outcomes.2 The results for ϕ3

are less good since the number of positive examples for this formula is extremely low
and the discovered decision tree overfits.

In general, the position in a trace in which we ask for a prediction does not affect sig-
nificantly its reliability. In the presented scenario, in which case attributes are available
since before the initial event occurs, this is true also for the initial event. Nevertheless, in
case of overfitting, there is more variability. Table 1 shows that our results are good also
in terms of positive predictive value (PPV), or precision, indicating how many positive
outcomes are correctly predicted among all the outcomes predicted as positive:

PPV =
TP

TP + FP
, (4)

in terms of harmonic mean of precision and recall:

F1 = 2 · PPV · TPR
PPV + TPR

, (5)

2 Note that, in some cases, the OS provider does not return any prediction. This is due to the fact
that, when one of the features reported in the decision tree is an enumeration (and this is the
case for several attributes in the considered log), it can happen that not all the possible values
of the feature are included in a path from the root to a leaf of the decision tree. Therefore, it
is not possible to do any prediction about the behavior of executions in which the feature has
one of these values.
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Table 2. Evaluation of the approach using (1) a similarity threshold of 0.8, (2) a similarity thresh-
old of 0.5, (3) class probability higher than the average, and (4) class support higher than the
median of the class supports

TPR FPR PPV F1 ACC LOSS

ϕ1

Similarity thresh. 0.8 0.881 0.388 0.685 0.771 0.743 -
Similarity thresh. 0.5 0.915 0.498 0.612 0.734 0.693 -

Class prob. above the average 0.94 0.429 0.714 0.812 0.767 0.223
Support above the median 0.88 0.201 0.83 0.854 0.841 0.508

ϕ2

Similarity thresh. 0.8 0.926 0.326 0.863 0.893 0.847 -
Similarity thresh. 0.5 0.858 0.391 0.831 0.844 0.781 -

Class prob. above the average 0.903 0.39 0.851 0.876 0.818 0.294
Support above the median 1 0.171 0.971 0.985 0.974 0.519

ϕ3

Similarity thresh. 0.8 0.333 0.088 0.192 0.243 0.876 -
Similarity thresh. 0.5 0.285 0.092 0.188 0.227 0.864 -

Class prob. above the average 0.285 0.07 0.176 0.218 0.897 0.167
Support above the median 0.375 0 1 0.545 0.977 0.559

ϕ4

Similarity thresh. 0.8 0.824 0.221 0.691 0.752 0.795 -
Similarity thresh. 0.5 0.846 0.132 0.754 0.797 0.86 -

Class prob. above the average 0.881 0.186 0.728 0.797 0.838 0.206
Support above the median 0.92 0.1 0.793 0.851 0.905 0.518

ϕ5

Similarity thresh. 0.8 0.819 0.117 0.819 0.819 0.857 -
Similarity thresh. 0.5 0.794 0.101 0.807 0.801 0.862 -

Class prob. above the average 0.761 0.089 0.809 0.784 0.86 0.23
Support above the median 0.938 0.053 0.938 0.938 0.942 0.53

and in terms of accuracy. Accuracy is particularly important in our context since it
indicates how many times a prediction was correct:

ACC =
TP + TN

TP + FP + TN + FN
(6)

Note that the accuracy value is good also in case of overfitting (formula ϕ3).
In a second experiment, we used a lower similarity threshold (0.5) and, again, a

minimum number of traces equal to 30. The results for this experiment (for all the
evaluation points together) are reported in Table 2 and in Fig. 6. This experiment shows
that generating predictions based on a higher number of historical traces not always
improves the quality of the results. This is due to the fact that, even if we are considering
a larger training set, this set also includes traces that are quite dissimilar from the current
trace, thus producing misleading results.

One way of assessing the reliability or “goodness” of a prediction is to use its class
probability. In Table 2 and in Fig. 6, we show the results obtained by filtering out
predictions with a class probability that is lower than the average. Table 2 also reports
the prediction loss (LOSS), i.e., the percentage of predictions lost when filtering out
predictions with a low class probability. This experiment shows that considering only
predictions with a high class probability not always improves the quality of the results,
though the percentage of predictions lost is not high (about 20%).
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Another way of evaluating the reliability of a prediction is to consider its class sup-
port. In Table 2 and in Fig. 6, we show the results obtained by filtering out predictions
with support lower than the median of the supports. In this case, although the cut of
predictions is high (more than half of the predictions are filtered out), there is a clear
improvement in all the considered metrics: in the ROC dimensions, in the F-measure as
well as in the average accuracy of the predictions.

In summary, the evaluation shows that the proposed approach is feasible and pro-
vides accurate predictions (and hence recommendations). Results seem overall not to
be affected by the position of the evaluation point, thus demonstrating that the approach
works well even when few variables are known. Support seems to be an important fac-
tor influencing the results, i.e., the more evidences we have in the training set, the more
accurate are the produced predictions. If on the one hand this highlights the need to have
adequate training sets, on the other it also shows that sacrificing outlier predictions, it
is possible to obtain very accurate results (accuracy around 0.9).

6 Related Work

In the literature, there are some works that provide approaches for generating predic-
tions and recommendations during process execution and are focused on the time per-
spective. In [3,2], the authors present a set of approaches based on annotated transition
systems containing time information extracted from event logs. The annotated transition
systems are used to check time conformance while cases are being executed, predict the
remaining processing time of incomplete cases, and recommend appropriate activities
to end users working on these cases. In [9], an ad-hoc predictive clustering approach
is presented, in which context-related execution scenarios are discovered and modeled
through state-aware performance predictors. In [25], the authors introduce a method for
predicting the remaining execution time of a process based on stochastic Petri nets.

There are several works focusing on generating predictions and recommendations
to reduce risks. For example, in [7], the authors present a technique to support process
participants in making risk-informed decisions, with the aim of reducing the process
risks. Risks are predicted by traversing decision trees generated from the logs of past
process executions. In [22], the authors propose an approach for predicting of time-
related process risks by identifying (using statistical principles) indicators observable
in event logs that highlight the possibility of transgressing deadlines. In [27], the authors
propose an approach for Root Cause Analysis based on classification algorithms. After
enriching a log with information like workload, occurrence of delay and involvement
of resources, they use decision trees to identify the causes of overtime faults.

An approach for prediction of abnormal termination of business processes has been
presented in [11]. Here, a fault detection algorithm (local outlier factor) is used to es-
timate the probability of a fault to occur. Alarms are provided to early notify probable
abnormal terminations to prevent risks rather than simply react to them. In [6], Castel-
lanos et al. present a business operations management platform equipped with time
series forecasting functionalities. This platform allows for predictions of metric values
on running process instances as well as for predictions of aggregated metric values of
future instances (e.g., the number of orders that will be placed next Monday). Predictive
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monitoring focusing on failures and quality has also been applied to real case studies
(e.g., in transportation contexts [18,8]).

A key difference between these approaches and our technique is that they rely ei-
ther on the control-flow or on the data perspective for making predictions at runtime,
whereas we take both perspectives into consideration. In addition, the purpose of our
recommendations is different. We provide recommendations neither to reduce risks nor
to satisfy/discover timing constraints. We aim instead at maximizing the likelihood of
satisfying business constraints expressed in the form of LTL rules.

7 Conclusion

This paper presented a framework for predictive business process monitoring based on
the estimation of probabilities of fulfillment of LTL rules at different points during the
execution of a case. The framework takes into account both the sequencing of activities
as well as data associated to the execution of each activity. A validation of the frame-
work using a real-life log demonstrates that recommendations generated based on the
framework have a promising level of accuracy when sufficient support is available.

Increased accuracy could be achieved by extending the technique along two direc-
tions. First, the proposed technique matches the trace of an ongoing case against pre-
fixes of completed traces based on edit distance. While this is a well-known measure of
similarity and suitable as a first step in this study, other approaches could be considered,
including trace similarity measures based on occurrences of n-grams, counts of activi-
ties and activity pairs, and other relevant features that have been studied in the context of
trace clustering [17]. In a similar vein, discriminative sequence mining techniques [12]
could be applied in order to extract prefix patterns that are associated with fulfillment
of a given business constraint. These patterns can also be taken as input in the predic-
tion. Secondly, we have considered the use of decision trees to build the classifier. With
larger number of attributes, which might be encountered in richer logs, decision trees
are likely to exhibit lower accuracy due to their inherent weaknesses when dealing with
large feature sets. In this context, other classification techniques, such as random forests
or sparse logistic regression are possible alternatives.
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