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Latent-Domain Predictive Neural Speech Coding
Xue Jiang, Xiulian Peng, Huaying Xue, Yuan Zhang, Yan Lu

Abstract—Neural audio/speech coding has recently demon-
strated its capability to deliver high quality at much lower
bitrates than traditional methods. However, existing neural au-
dio/speech codecs employ either acoustic features or learned
blind features with a convolutional neural network for encoding,
by which there are still temporal redundancies within encoded
features. This paper introduces latent-domain predictive coding
into the VQ-VAE framework to fully remove such redundancies
and proposes the TF-Codec for low-latency neural speech coding
in an end-to-end manner. Specifically, the extracted features
are encoded conditioned on a prediction from past quantized
latent frames so that temporal correlations are further removed.
Moreover, we introduce a learnable compression on the time-
frequency input to adaptively adjust the attention paid to main
frequencies and details at different bitrates. A differentiable
vector quantization scheme based on distance-to-soft mapping
and Gumbel-Softmax is proposed to better model the latent dis-
tributions with rate constraint. Subjective results on multilingual
speech datasets show that, with low latency, the proposed TF-
Codec at 1 kbps achieves significantly better quality than Opus
at 9 kbps, and TF-Codec at 3 kbps outperforms both EVS at 9.6
kbps and Opus at 12 kbps. Numerous studies are conducted to
demonstrate the effectiveness of these techniques.

Index Terms—Neural audio/speech coding, auto-encoder, pre-
dictive coding.

I. INTRODUCTION

In recent years, neural audio/speech coding has rapidly
advanced and now delivers high-quality results at very
low bitrates, particularly for speech. Existing neural codecs
can mainly be divided into two categories, generative de-
coder model-based codecs [1]–[5] and end-to-end neural
audio/speech coding [6]–[12]. The former extracts acoustic
features from the audio for encoding and employs a powerful
decoder to reconstruct the waveform based on generative mod-
els. The latter mainly leverages the VQ-VAE [13] framework
to learn an encoder, a vector quantizer and a decoder in an end-
to-end manner. The latent features to be quantized are mostly
blindly learned using a convolutional neural network (CNN)
without any prior knowledge. These methods have largely
improved the coding efficiency by achieving high quality at
low bitrates. However, temporal correlations are not fully
exploited in these algorithms, resulting in much redundancy
among neighboring frames in encoded features. In light of this,
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(a) Previous VQ-VAE based neural codec

(b) Our predictive VQ-VAE based neural codec

Fig. 1. Proposed latent-domain predictive neural speech coding.

we propose incorporating predictive coding into the VQ-VAE-
based neural coding framework to remove such redundancies.

Predictive coding is widely used in traditional image [14],
video [15]–[17] and audio coding [18], [19] for spatial and
temporal redundancy removal, where reconstructed neighbor-
ing blocks/frames/samples are used to predict the current
block/frame/sample and the predicted residuals are quantized
and encoded into a bitstream. The residuals after prediction
are much sparser and their entropy is largely reduced. In
neural video codecs [20], [21], such temporal correlation is
also exploited by utilizing motion-aligned reference frame as
a prediction or context for encoding current frame. However,
in neural audio codec, such techniques have rarely been
investigated, to the best of our knowledge.

Although temporal correlations are exploited in encoder and
decoder of neural audio/speech coding by convolutional or
recurrent neural networks, these operations can be seen as a
kind of open-loop prediction or nonlinear transformation (See
Fig. 1 (a)). After quantization, the temporal correlation at the
decoder side is broken to some extent. We found that for better
recovery from quantization noises at low bitrates, the neural
network tends to preserve some redundancy in the learned
latent representation. Nevertheless, by employing closed-loop
prediction as in our predictive coding (see Fig. 1 (b)), such a
redundancy is eliminated in encoded features but the recovery
capability is not affected for closed-loop prediction. The
learned latent features are sparse, and the decoding process can
achieve high-quality recovery by utilizing the same prediction
employed during encoding.
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This paper is the first to introduce predictive coding into the
VQ-VAE framework for neural speech coding. To reduce the
delay, this predictive coding is performed in latent domain as
shown in Fig. 1 (b). Unlike traditional predictive video/audio
coding, which subtracts samples from predictions, we intro-
duce a learnable extractor to fuse the prediction with encoder
features, obtaining sparse “new” information for coding of
each frame. All modules are end-to-end learned with adver-
sarial training. Moreover, unlike most previous neural codecs
that take time-domain input, we introduce the time-frequency
input with a learnable compression on the amplitude. This
allows the network to automatically balance the attention paid
to main and detailed components at different bitrates (see Fig.
1 (b)), largely boosting the quality at a bitrate as low as 1
kbps for low-latency speech coding.

The main contributions of this paper are summarized as
follows:

• We propose TF-Codec, a low-latency neural speech codec
that, to the best of our knowledge, is the first real-time
codec to report high quality at 1 kbps.

• We introduce predictive coding into the VQ-VAE-based
neural speech codec, which largely reduces the temporal
redundancy and therefore boosts the coding efficiency.

• We introduce a learnable compression on time-frequency
input to adaptively adjust the attention paid to main and
detailed components at different bitrates.

• We introduce a differentiable vector quantization mech-
anism based on distance-to-soft mapping and Gumbel-
Softmax to facilitate rate control and achieve better rate-
distortion optimization.

• We discuss ways to enhance the robustness of predictive
neural speech coding under packet losses, which have
achieved promising results.

II. RELATED WORK

A. Neural Audio/Speech Coding

Generative model-based audio coding With the advance-
ment of generative models in providing high-quality speech
synthesis, researchers have recently proposed leveraging them
for speech coding as well [1]–[5], such as WaveNet [22]
and LPCNet [23]. WaveNet was the first to be used as a
learned generative decoder to produce high quality audio from
a conventional encoder at 2.4 kbps [1]. Some researchers
[5] improved Opus speech quality at low bitrates by using
LPCNet for speech synthesis. Lyra [2] is a generative model
that synthesizes speech from quantized mel-spectrum using
an auto-regressive WaveGRU model, producing high-quality
speech at 3 kbps. While these methods have achieved good
quality at low bitrates, the full potential of neural audio coding
has not yet been exploited.

End-to-end audio coding This category learns the en-
coding, vector quantization, and decoding in an end-to-end
manner based on the VQ-VAE [13] framework [6]–[12]. In [6],
a VQ-VAE encoder and a WaveNet-based decoder are jointly
learned end to end, yielding a high reconstruction quality
while passing speech through a compact latent representation
corresponding to very low bitrates. The recently proposed

SoundStream [8] achieves superior audio quality at a wide
range of bitrates from 3 kbps up to 18 kbps with end-to-end
learning and a mix of adversarial and reconstruction losses.
More recently, an end-to-end audio codec with a cross-module
residual coding pipeline was proposed for scalable coding
[10]. Unlike previous methods based on the waveform input
with 1D convolutions, the recent TFNet [12] takes a time-
frequency input with a causal 2D encoder-temporal filtering-
decoder paradigm for end-to-end speech coding. Among all
these methods, the latent features from the encoder are mostly
blindly learned without any prior and there are typically
temporal correlations remaining in them. In this paper, we
propose predictive coding to further remove the redundancies.

B. Predictive Coding

Classical audio compression Predictive coding is widely
used in classic audio coding [18], [19], [24]. As successive
audio samples are highly correlated, instead of independently
quantizing and transmitting audio samples, the residual be-
tween the current sample and its prediction based on past
samples is encoded. The DPCM [18]/ADPCM [19] typically
use backward prediction (also known as closed-loop predic-
tion) where past reconstructed samples are used to get the
prediction, possibly with some adaptation to the predictor
and quantizer in ADPCM. Another widely used technique in
speech coding and processing, linear predictive coding (LPC)
[24], leverages a linear predictor to estimate future samples
based on the source-filter model. The linear filter coefficients
in LPC are computed in an open-loop manner with forward
prediction, where original samples rather than reconstructed
ones, are used for prediction. The residuals, along with the
linear coefficients, are quantized and encoded.

Classical video/image compression Traditional video cod-
ing standards [15]–[17] always take a predictive coding
paradigm for removing temporal redundancies, where a pre-
diction is generated by block-based motion estimation and
compensation, and the residual between the original frame and
the prediction is transformed, quantized, and entropy coded.
In image coding [14] and intra-frame coding of video [15]–
[17], reconstructed neighboring blocks are used to predict the
current block, either in the frequency or pixel domain, and the
predicted residuals are encoded.

Deep video compression In neural video coding, a typical
approach is to replace handcrafted modules, such as motion
estimation, with neural networks, while still adhering to a
predictive coding paradigm. DVC [20] provides more accurate
temporal predictions by jointly training motion estimation
and compensation networks. The residual information after
prediction is then encoded by a residual encoder network.
The most relevant work, DCVC [21], instead proposes a
paradigm shift from predictive coding to conditional coding. It
introduces rich temporal context information as a condition for
both the encoder and the decoder, largely improving coding
efficiency.

Predictive neural speech coding There have been some
attempts in this line of work that are most relevant to our
work. The concurrent work [25] introduces predictive coding
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in the parametric domain, where a gated recurrent unit (GRU)
based predictor is adopted to predict the LPC coefficients from
the past. However, as it is based on LPC analysis under the
source-filter assumption, its potential is not fully exploited,
and it cannot be easily extended to other signal domains
such as music. Another relevant work, the two-stage cognitive
coding of speech [26], leverages predictive coding in the latent
space as a representation learning strategy. Different from our
motivation, it focuses on representation learning without taking
prediction as a coding module.

In light of these methods, we introduce predictive coding
into the VQ-VAE framework for neural audio coding, to
better remove temporal redundancies and achieve better coding
efficiency. Unlike [25], the predictive coding operates in the
latent domain and is trained with other VQ-VAE modules end-
to-end, thus extensively exploring its potential.

C. Autoregressive Model

Autoregressive generative models have demonstrated strong
capabilities in speech synthesis [22], [27]. They typically
generate audio samples one at a time in an autoregressive way,
where previously generated samples are used in generating
the current sample. Our predictive coding also employs an
autoregressive approach, but in contrast to sample-domain
autoregression, it operates in the latent domain to reduce the
delay by the autoregressive loop. This loop crosses only the
quantization layer and does not require passing through the
decoder to obtain the output for autoregression.

D. Vector Quantization

Vector quantization (VQ) is a fundamental technique that
is widely used in traditional audio codecs such as Opus [28]
and CELP [29]. Recently, it has also been applied to discrete
representation learning [13] and serves as the basis of end-to-
end neural audio coding [6]–[12]. As quantization is inherently
non-differentiable, several methods have been proposed in
the literature to enable end-to-end learning in neural audio
coding, including the one with commitment loss in VQ-VAE
[13], EMA [13], Gumbel-Softmax based method [30] [31] and
the soft-to-hard technique [32]. VQ-VAE [13] approximates
the derivative by the identity function that directly copies
gradients from the decoder input to the encoder output. The
codebook is learned by moving the selected codeword, found
through some distance metric, towards the encoder features.
In contrast, the Gumbel-Softmax and soft-to-hard methods
introduce the probability of selecting a codeword into the VQ,
enabling the selection of discrete codewords in a differentiable
way. However, the former employs a linear projection with
Gumbel-Softmax to get the probability, which lacks an explicit
correlation with quantization error. The latter maps distance to
probability and uses soft assignment with annealing during
training, potentially leading to a gap between training and
inference. Motivated by these works, we propose a Distance-
Gumbel-Softmax scheme with rate control that explicitly maps
quantization error to probability while uses hard assignment
during training and inference.

III. THE PROPOSED SCHEME

A. Overview

Let x denote the time-domain signal to be encoded and
x̂ the recovered signal after decoding. The optimization of
neural audio coding aims to minimize the recovered signal
distortion Dist(x, x̂|Θ) under a given rate constraint, i.e.
R(x|Θ) ≤ Rtarget. Θ denotes the neural network parameters.
In this paper, we focus on low-latency speech coding.

As shown in Fig. 2, we employ an encoder to extract latent
representations XR = {xR

0 ,x
R
1 , ...,x

R
T } from x, where xR

t

is the speech feature at frame t, and T is the total number
of frames. For each frame xR

t in XR, a prediction xP
t is

learned from past reconstructed latent codes X̂R through a
predictor fpred with a receptive field of N past frames, given
by xP

t = fpred(x̂
R
t−i

∣∣i = 1, 2, ..., N). This prediction serves
as a temporal context for both encoding and decoding. For
encoding, an extractor fextr learns residual-like information
xN
t from both xR

t and xP
t by xN

t = fextr(x
R
t ,x

P
t ), which

is “new” to past frames. With this autoregressive operation,
the temporal redundancy can be effectively reduced. The
extracted residual-like feature XN = {xN

0 ,xN
1 , ...,xN

T } is
then quantized through a codebook learned by Distance-
Gumbel-Softmax and entropy-coded using Huffman coding.
For decoding, the quantized residual-like feature x̂N

t in X̂N

is merged with the predicition xP
t through a synthesizer

fsynr to get the current reconstructed latent code x̂R
t , given

by x̂R
t = fsynr(x̂

N
t ,xP

t ). Then, a decoder is employed to
reconstruct the waveform x̂. We apply adversarial training to
achieve good perceptual quality. In the following subsections,
we will describe these techniques in detail.

B. Learnable Input Compression

The input waveform x is first transformed into the frequency
domain with the short-time fourier transform (STFT), yield-
ing a time-frequency spectrum X ∈ R2×F×T , where T is
the number of frames, F is the number of frequency bins,
and 2 denotes the imaginary and real parts of the complex
spectrum. We take frequency domain input instead of the time
domain widely adopted in previous works [8], [13], because
the frequency domain aligns well with human perception.
In this domain, some characteristics of speech (such as the
fundamental frequency, harmonics and formants) are explicitly
expressed, making it easier for the encoder to learn features
related to human perception for coding. As the frequency
domain input typically exhibits a high dynamic range and a
highly unbalanced distribution due to harmonics, we employ
an element-wise power-law compression on the amplitude part
given by |X|p, where |X| is the magnitude spectrum of X ,
while the phase is kept unchanged, resulting in the compressed
time-frequency spectrum Xcprs ∈ R2×F×T . The compression
acts as a form of input normalization, balancing the importance
of different frequencies and ensuring more stable training.
Furthermore, we make the power parameter p learnable during
training, enabling the model to adapt to different bitrates. To
be specific, at low bitrates a higher p may be preferred because
it leads to more attention on main components, while at high
bitrates, more attention might be paid to details with a lower

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.



This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author’s version
which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2023.3277693

(a) Encoding (b) Decoding

Fig. 2. Encoding and decoding modules for proposed method.

Fig. 3. Architecture of the encoder and the decoder. D-Conv denotes
depthwise convolution.

p. This technique has proven to be particularly effective for
very low bitrate coding, such as 1 kbps, in our experiments.

C. Encoder and Decoder

The encoder takes the compressed time-frequency spectrum
Xcprs ∈ R2×F×T as input. As shown in Fig. 3, five 2D causal
convolutional layers are first employed to decorrelate it in two
dimensions (F, T ) with a kernel size of (5, 2), output channels
of 16, 32, 32, 64 and 64, and a stride of 1, 2, 4, 4 and 2 along
the frequency F dimension. The temporal dimension T is kept
without any resampling. The output dimension after the five
convolutional layers is C ′ × F ′ × T , and we then fold all
frequency information into the channel dimension, yielding
X ′ ∈ RC×T , C = C ′ × F ′.

To capture long-range temporal dependencies, we further
employ a temporal convolutional module (TCM) [33] with
causal dilated depthwise convolutions followed by a gated
recurrent unit (GRU) block on X ′, as in [12], to capture
both short-term and long-term temporal dependencies. A final
1D convolutional layer with a kernel size of 1 is used to
change the channel dimension to Cd for quantization with
predictive coding. The encoder finally yields an output XR =
{xR

0 ,x
R
1 , ...,x

R
T } ∈ RCd×T .

The decoder is the opposite of the encoder, reconstructing
x̂ from the reconstructed features X̂R = {x̂R

0 , x̂
R
1 , ..., x̂

R
T } ∈

RCd×T . For better restoration, more TCM modules are used
in the decoder than in the encoder. Specifically, one TCM
module, one GRU block, and another TCM module are used
in an interleaved way to capture local and global temporal
dependencies at different depths. Causal deconvolutions are
employed to recover the frequency resolution to F , and the

(a) Convolution-based predictor

(b) Adaptive predictor

Fig. 4. The network structure of the predictor.

decoder outputs a feature X̂cprs ∈ R2×F×T . After inverse
amplitude compression and an inverse STFT, the waveform x̂
is finally reconstructed. The entire process is causal so that it
can achieve low latency.

D. Latent-Domain Predictive Coding

As predictive coding is autoregressive, to reduce the delay
we only investigate it in the latent domain, as shown in Fig.
1 (b) and the encoding/decoding split in Fig. 2.

Predictor The predictor provides a prediction
of the current frame from the past, given by
xP
t = fpred(x̂

R
t−i

∣∣i = 1, 2, ..., N) ∈ RCd , with a window of
N frames. As shown in Fig. 4, We investigate two methods
for this prediction: (1) Convolution-based predictor, which
uses two 1D convolutional layers activated by parametric
ReLU (PReLU) [34] to achieve a receptive field of 280 ms.
(2) Adaptive predictor, which learns the prediction kernel
from the past to adapt to the time-varying speech signal. The
kernel is deduced from the past based on the assumption
that the linear prediction coefficients are locally constant.
Specifically, it employs a mechanism similar to self-attention
[35] with the query Qt, key Kt and value matrices Vt,
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defined as follows
Qt = [x̂R

t−1]
T ∈ R1×Cd

Kt = [x̂R
t−2, x̂

R
t−3, ..., x̂

R
t−N ]T ∈ R(N−1)×Cd

Vt = [x̂R
t−1, x̂

R
t−2, ..., x̂

R
t−(N−1)]

T ∈ R(N−1)×Cd

(1)

It learns an attentive weight matrix Wt ∈ R1×(N−1) which
serves as the prediction kernel by

Wt = Softmax(Qt · (Kt)
T/

√
Cd), (2)

where Softmax(·) is the softmax function. The attentive
weight matrix is then multiplied with Vt to get the prediction
by [xP

t ] = (W t·Vt)
T ∈ RCd×1. This method is similar to self-

attention in how it adaptively captures attention weights from
input features, but here we extend it as a kind of prediction.
We will show the comparison between these two types of
predictors in the experimental section.

To guide the predictor to yield a good temporal prediction
for redundancy removal, a prediction loss is introduced in the
training as

Lpred = Ex[
1

CdT

T∑
t=1

||xP
t , sg(x

R
t )||22], (3)

where sg(·) is the stop-gradient operator. At the early training
stage, when both the encoder and predictor tend to perform
poorly, Lpred forcing xR

t close to xP
t may make the encoder

to be confused about generating better representations for
reconstruction. Thus, we add the stop-gradient operator on
the encoder output xR

t for more stable training and better
reconstruction.

Extractor and synthesizer Both the extractor fextr and
the synthesizer fsynr consist of a 1D convolutional layer
with a kernel size of 1 and a stride of 1, followed by batch
normalizaton (BN) and parametric ReLU as the nonlinear
activation function.

Training algorithm As discussed earlier, the predictive
loop operates in an autoregressive manner in the latent domain,
as the predictor needs the reconstructed context in X̂R for
prediction. It is not straightforward to use teacher-forcing for
latent-domain autoregression as the vector quantization noise
is not easy to model in end-to-end optimization. Instead, we
adopt a strategy that facilitates parallel training to improve
training efficiency. Specifically, at each iteration, we leverage
the model from the previous iteration to get X̂R for prediction
in the current iteration. Then the predictive loop can be trained
in parallel in the current iteration, thereby speeding up the
training process.

E. Vector Quantization with Rate Control

As discussed in Section II.D, Gumbel-Softmax [30] [31]
and soft-to-hard [32] methods introduce the probability of
selecting a codeword, thereby making rate control feasible.
However, Gumbel-Softmax employs a linear projection to
select the codeword without explicitly correlating it with the
quantization error, as illustrated in Fig. 5 (a). The weighted
average operation in the soft-to-hard method can easily lead
to a gap between training and inference. In light of these

(a) Gumbel-Softmax (b) Distance-Gumbel-Softmax

Fig. 5. Vector quantization mechanism. (a) Gumbel-Softmax in [30]. Latent
xN
t is projected to logits zi through a linear projection and turned into prob-

abilities with Gumbel-Softmax. (b) Our Distance-Gumbel-Softmax. Distance
between latent xN

t and codewords ei is first calculated and then mapped to
probabilities with Gumbel-Softmax.

limitations, we propose a Distance-Gumbel-Softmax method,
as shown in Fig. 5 (b), for quantization, which leverages the
advantages of both methods to provide a quantization-error-
aware assignment with rate control.

Distance-Gumbel-Softmax-based VQ As shown in Fig.
5 (b), given a codebook with K codewords E =
{e1, e2, ..., eK} ∈ RCd×K , we first compute the distance
between the current latent vector xN

t ∈ RCd and all K
codewords as

dt = [ℓd(x
N
t , e1), ..., ℓd(x

N
t , eK)] ∈ RK , (4)

where ℓd is a distance metric, and we use ℓ2 in our implemen-
tation. Then, the distance is mapped to logits zt, given by zt =
−α · dt, where α is a positive scalar to control the mapping
from distance ℓd(x

N
t , ek) to logits zt,k such that the codeword

closer to the current feature xN
t will have a higher probability

of being selected, and we set α to 5. Then, we employ
the Gumbel-Softmax to get the probability µt for codebook
assignment, given by µt = GumbelSoftmax(zt) ∈ RK .
Thus, the probability for selecting the k-th codeword ek to
quantize xn

t is given by

µt,k =
exp((−α · dt,k + vt,k)/τ)∑K
i=1 exp((−α · dt,i + vt,i)/τ)

, (5)

where τ is the temperature of Gumbel-Softmax, which is
exponentially annealed from 2 to 0.5 in our experiment, and
vt,k ∼ Gumbel(0, 1) are samples drawn from the Gum-
bel distribution. During the forward pass, the hard index
argmaxk∈{1,2,..,K}µt,k is selected; thus, there is no gap
between training and inference. During the backward pass,
the gradient with respect to logits zt is used.

Entropy estimation and rate control As entropy serves
as the lower bound of actual bitrates, we leverage entropy
estimation to control the bitrate R(x|Θ) towards a given
target Rtarget, motivated by the work in [10], [32]. Using
the Distance-Gumbel-Softmax based VQ, we can calculate the
sample soft assignment distribution µ̃, by summing up the
Softmax probabilities to each codeword within a minibatch
µ̃t,k,b as

µ̃k =
1

BT

B∑
b=1

T∑
t=1

µ̃t,k,b, k ∈ {1, 2, ...,K}, (6)

where B and T represent the batch size and the num-
ber of frames in each audio clip, respectively, and µ̃t,k,b
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is the Softmax distribution probabilities given by µ̃t,k,b =
Softmax(zt,k,b) over K codebook entries. Then, we can
estimate the “soft entropy” on the soft assignment distribution
µ̃ ∈ RK as

H(µ̃) ≈ −
K∑

k=1

µ̃k log µ̃k. (7)

The rate control is conducted over each minibatch with the
following loss function Lrate:

Lrate = |Rtarget −H(µ̃)|. (8)

This loss Lrate not only constraints the bitrate but also
performs rate-distortion optimization by LRD = Dist(x, x̂)+
λ · Lrate. When the current entropy is higher than Rtarget,
it will push similar features to be quantized to the same
codeword through a trade-off between rate and distortion;
whereas when it is lower than Rtarget, similar features may
be quantized to different codewords to retain higher quality
but at a higher rate. It should be noted that although there
are some estimations here, we found that the actual bitrate is
controlled well during testing.

To reduce the codebook size for easy optimization, group
vector quantization [31] is employed. Specifically, each frame
xN
t ∈ RCd is split into G groups along the channel di-

mension, yielding x
′N
t ∈ R

Cd
G ×G, and each group is quan-

tized with a separate codebook containing K codewords
{e′1, e′2, ..., e′K} ∈ R

Cd
G ×K . Moreover, four overlapped frames

(40 ms new data) are merged into one for quantization so
the codeword dimension is Cd

G × 4 for each codebook. Unlike
common codebook settings in existing neural codecs [8] [36],
we establish a larger codebook size so that it can capture
the real distribution of the latent features through the rate-
distortion optimization. For example, at 3 kbps, each 40 ms
new data is expected to consume 120 bits. The codebook
parameters G and K are set to 16 and 1024, respectively,
where G · log2(K) = 16 · log2(1024) = 160 > 120. The
real bitrate is then controlled by Eq. 8 to achieve 3 kbps.
This is quite different from the diversity loss in Gumbel-
Softmax based method [30], where a uniform distribution is
enforced on the codeword usage. Table I shows the codebook
configurations G and K at various bitrates in our experiment.

F. Adversarial Training

Adversarial training has been shown to be very effective
in high-quality speech generation [37] [38]. For high recon-
structed perceptual quality, we also employ adversarial training
in our scheme with a frequency-domain discriminator. It takes
the complex time-frequency spectrum of the input waveform
as input. The magnitude spectrum is power-law compressed
with a power of 0.3 to balance the relative importance of
different components. The phase is kept unchanged. Four
2D convolutional layers with a kernel size of (2, 3) and a
stride of (2, 2) are used to extract features with progressively
reduced resolutions in both frequency and time dimensions.
The channel numbers are 8, 8, 16 and 16, respectively. Each
convolutional layer is followed by an instance normalization
(IN) and a Leaky ReLu [39]. A linear transformation is used

to fold all frequency information into channels and reduce the
channel dimension to 1. Finally, we use a temporal average
pooling layer with a kernel size of 10 and produce the final
downsampled one-dimensional logits of size Td in the time
dimension.

We use the least-square loss as the adversarial objective,
similar to that in LSGAN [40]. The adversarial loss for the
generator G is

Ladv = Ex̂[
1

Td

Td∑
t=1

(Dt(x̂)− 1)2]. (9)

where x̂ = G(x) is the reconstructed signal. The loss for the
discriminator D is

LD = Ex[
1

Td

Td∑
t=1

(Dt(x)− 1)2] +Ex̂[
1

Td

Td∑
t=1

(Dt(x̂))
2]. (10)

We also employ a feature loss Lfeat to guide the training
of the generator for high perceptual quality [37] [38]. It is
computed as the ℓ1 difference of the deep features from the
discriminator between the generated and the original audios,
given by

Lfeat = Ex[
1

L

L∑
l=1

1

ClFlTl
||Dl(x)−Dl(x̂)||1], (11)

where Dl, l ∈ {1, 2, ..., L} is the feature map of the l-th layer
of the discriminator, and Cl, Fl, Tl denotes the channel, fre-
quency and time resolutions of Dl, respectively. We compute
the feature loss on the first four 2D convolutional layers of
the discriminator.

G. Objective Function

We employ the following loss function to guide the training
for maximized output audio quality at the target bitrate. The
total loss for the generator consists of a reconstruction term
Lrecon, a rate-constraint term Lrate, a prediction term Lpred,
an adversarial term Ladv , and a feature-matching term Lfeat,
i.e.

LG = Lrecon + λrateLrate + λpredLpred

+λadvLadv + λfeatLfeat,
(12)

where Lrate, Lpred, Ladv and Lfeat have been explained
in Eq. 8, 3, 9 and 11, respectively. The reconstruction term
is selected to achieve both high signal fidelity and high
perceptual quality. We use two frequency-domain terms for
Lrecon, as shown below

Lrecon = Lbin + λmelLmel. (13)

The first term Lbin is the mean-square-error (MSE) loss on
the power-law compressed STFT spectrum [41]. To maintain
STFT consistency [42], the reconstructed spectrum is first
transformed to the time domain and then to the frequency
domain to calculate the loss. The second term Lmel is the
multi-scale mel-spectrum loss given by

Lmel = Ex[
1

W

W∑
n=1

1

TnS
||ϕn(x)− ϕn(x̂)||1], (14)
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(a) TF-Codec vs. standard codecs
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(b) TF-Codec vs. neural codecs
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(c) Entropy

� �� �� �� �� �� �� �� 	� 
� ���
�����

����

����

����

����

���	

����

����

����

����

���	

��
�
��

��������
����

����
����

(d) The learnable power

Fig. 6. (a)(b) Subjective evaluation results. The red dotted line represents the score of the reference. The error bar denotes 95% confidence intervals. We use
Opus-1.3.1 and EVS-16.2.0 from the official release and set them to WB mode. Audios are sampled at 16 kHz for these codecs, except for Encodec which
operates at 24 kHz. For Encodec, the 16khz audio is upsampled to 24 kHz. The convolution-based predictor is used for TF-Codec in this test. It’s worth
noting that TF-Codec and Opus operate in a variable bitrate (VBR) manner. Both Lyra-v2 and Encodec operate in constant bitrate (CBR) mode in this figure.
EVS is set to source-controlled variable bitrate (SC-VBR) [44] mode at 5.9 kbps and CBR at 9.6 kbps. (c) Entropy for 40ms data during training. (d) The
learned power coefficient during training. In (c) and (d), the curves correspond to the adversarial training stage only.

where ϕn(·) is the function that transforms a waveform into the
mel-spectrogram using the n-th window size Tn. S denotes the
number of mel bins, which is set to 64 for all window lengths.
Following [43], we calculate the mel spectra over a sequence
of window-lengths between 64 and 2048. We set λrate = 0.04,
λpred = 0.02, λadv = 0.001, λfeat = 0.1, and λmel = 0.25
to balance different terms in our experiments.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed TF-Codec against
the state-of-the-art and provide a detailed analysis of each part
to demonstrate what it learns and why it works effectively.

A. Datasets and Settings

We take 890 hours of 16kHz clean speech from the Deep
Noise Suppression Challenge at ICASSP 2021 [45], which
includes multilingual speech, emotional, and singing clips.
Each audio is cut into 3-second clips with a random speech
level from [−50,−10] db for training. For evaluation, we
use 1458 clips of 10 seconds without any overlap with the
training data, covering more than 1000 speakers with multiple
languages. A Hanning window is used in STFT with a window
length of 40 ms and a hop length of 10 ms.

All the modules of the TF-Codec, including the encoding,
decoding, and quantization, can be trained end-to-end in a
single stage. For adversarial training, we first train a good
generator end-to-end and then fine-tune the generator with a
discriminator in an adversarial manner.

During training, we use the Adam optimizer [46] with
a learning rate of 3 × 10−4 for the generator in the first
stage. Then, the generator and discriminator are trained with
a learning rate of 3 × 10−5 and 3 × 10−4, respectively. We
train both stages for 100 epochs with a batch size of 100.

B. Comparison with State-of-the-Art Codecs

We first compare the proposed TF-Codec with several
traditional codecs and two latest neural codecs to demonstrate
the strong representation capability of our backbone. We

TABLE I
CODEBOOK CONFIGURATIONS AND BITRATE ANALYSIS ON TEST SET.

Bitrate Modes
(kbps)

Codebook size Huffman coding

G · log2(K)
Average bitrate

(kbps)

0.512 G=3, K=512 0.498
1 G=6, K=1024 1.014
3 G=16, K=1024 3.089
6 G=32, K=1024 6.162

conduct a subjective listening test using a MUSHRA-inspired
crowd-sourced method [47], where 10 participants evaluate
15 samples from the test set. In the MUSHRA evaluation, the
listener is presented with a hidden reference and a set of test
samples generated by different methods. The low-pass-filtered
anchor is not used in our experiment.

We take two standard codecs, i.e., Opus and EVS. for
comparison. Opus1 [28] is a versatile codec widely used for
real-time communications, supporting narrowband to fullband
speech and audio with a bitrate from 6 kbps to 510 kbps.
The EVS codec [44] is developed and standardized by 3GPP
primarily for Voice over LTE (VoLTE). We also compare
with two latest neural codecs, i.e., Lyra-v2 and the concurrent
work Encodec [36]. Lyra-v22 is an improved version of Lyra-
v1, which integrates SoundStream’s architecture [8] for better
audio quality and bitrate scalability3. Encodec4 produces high-
fidelity audio across a wide range of bandwidths and audio
types.

Fig. 6 (a)(b) shows the evaluation results, where we compare
our TF-Codec from 1 kbps to 6 kbps against standard and
neural codec baselines at various bitrates. It is observed
that our TF-Codec at 1 kbps significantly outperforms Opus
at 9 kbps, Lyra-v2 at 3.2 kbps, and EnCodec at 6 kbps,
demonstrating the strong representation capability of the TF-

1https://opus-codec.org
2https://github.com/google/lyra
3https://opensource.googleblog.com/2022/09/lyra-v2-a-better-faster-and-

more-versatile-speech-codec.html
4https://github.com/facebookresearch/encodec
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TABLE II
EVALUATION ON PREDICTIVE CODING AT 3 KBPS(W/O. ADV).

Methods PESQ STOI ViSQOL

TF-Codec w/o. Prediction 2.763 0.917 3.219
TF-Codec w. Adapt 2.774 0.914 3.332
TF-Codec w. Conv 2.895 0.917 3.345

(a) Feature visualization

(b) Non-predictive

(c) Predictive

Fig. 7. Feature visualization of predictive coding. (a) The four rows from top
to bottom show the STFT spectrum (log-scale) of the uncompressed audio,
the output of the encoder before predictive coding, the output of the predictor,
and that of the extractor, respectively. Values are linearly normalized between
0 and 1. (b)(c) T-SNE visualization of speaker information by non-predictive
and predictive coding at 3 kbps, respectively.

Codec. When operating at 3 kbps, our TF-Codec achieves
better performance than EVS at 9.6 kbps and Opus at 12
kbps, and also clearly outperforms two neural codecs. In the
higher bitrate range, our TF-Codec at 6 kbps performs on par
with Opus at 16 kbps and outperforms Encodec at 6 kbps
by a large margin. Besides, Fig. 6 (c) shows that the total
entropy of our TF-Codec is kept under control with the rate
loss Lrate during training. Table I displays the actual bitrate
after Huffman coding on the test set. We can see that the
actual bitrates are well controlled. As variable-length coding
cannot ensure constant bits for each frame, we also collect
the statistics of per-frame bit consumption. At 3kbps, the
maximum, minimum, and average bits across all frames of
the entire test set is 190, 39 and 124, respectively. For a
single audio, the variation is smaller with an average standard
deviation of 40 and a maximum of 53.

C. Ablation Study

To evaluate different parts of the proposed method, we
employ several objective metrics, including wideband PESQ
[48], STOI [49], and VISQOL [50]. Although these metrics
are not designed and optimized for precisely the same task,
we found that for the same kind of distortions in all compared
schemes, they align well with perceptual quality.

1) Predictive coding: We first evaluate the effectiveness of
predictive coding. We compare the two variations of the TF-
Codec by convolution-based and adaptive predictors, respec-
tively, with the one without predictive coding by disabling the
predictive loop. Table II shows the evaluation results where

the adversarial training is disabled for all compared methods.
It can be seen that when all operating at 3kbps, the predictive
coding improves the reconstructed audio quality in both PESQ
and ViSQOL with similar speech intelligibility as measured by
STOI. The convolution-based method outperforms the adaptive
mechanism because, after quantization, the assumption for
local constant linear prediction may not hold anymore in the
adaptive scheme.

To further look into the representations it learns, we visu-
alize the features of different modules by predictive coding
in Fig. 7 (a). The four rows from top to bottom show the
STFT spectrum of the uncompressed audio, the output of
the encoder XR before predictive coding, the output of the
predictor XP , and that of the extractor XN . It can be observed
that the prediction XP is quite similar to XR, indicating
that the predictor provides a good prediction of the current
frame from the past. We can also observe that the feature XN

after the extractor becomes much sparser than XR, indicating
that most redundant information has been removed. We also
calculate the temporal correlation coefficient of the learned
representation, i.e., the last layer output of the encoding. The
non-predictive coding without the predictive loop achieves an
average correlation coefficient of 0.37, while predictive coding
reduces it to 0.09, showing that the temporal correlation is
removed more thoroughly in predictive coding. This is also
consistent with the visualization results in Fig. 7(a).

To further explore what redundant information has been
removed by predictive coding, we show the t-SNE [51] visu-
alization of the speaker information contained in the learned
representations in Fig. 7(b)(c) for non-predictive and predictive
coding, respectively. To achieve this, we perform temporal
pooling on the learned representation, yielding one embedding
vector for each audio. The utterances of 20 randomly selected
speakers from the Librispeech dataset [52] are used for vi-
sualization. We can observe that representations from non-
predictive coding are well clustered for each speaker, showing
that they contain most speaker information. In contrast, in
predictive coding, the embeddings scatter for most speakers
indicating that the speaker information is effectively removed.
This is reasonable, as speaker-related information is relatively
constant in time and easy to predict.

2) Learnable input compression: To demonstrate the ef-
fectiveness of the learnable input compression, we compare it
with a fixed power-law compression where the power param-
eter is set to 0.3 as that in [41]. Table III shows that at 1 kbps,
the learnable compresssion clearly outperforms the fixed one
in all three metrics, exhibiting both better perceptual quality
and better speech intelligibility. In our subjective evaluation,
we also found obvious perceptual quality boost for very low
bitrates, such as 1 kbps. To investigate what power parameters
it learns, we also report the learned power p at various bitrates
during the training, as shown in Fig. 6 (d). We can see that the
learned power gradually decreases during the training process,
indicating that the model first mainly focuses on high-energy
bins, usually the low-frequency bands. As the epoch increases,
the model turns to pay more attention to the low-energy details
of the spectrum. It is also observed that the higher the bitrate,
the smaller the p, which means that the model tries to examine
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TABLE III
EVALUATION ON LEARNABLE INPUT COMPRESSION AT 1 KBPS.

Methods PESQ STOI ViSQOL

fixed compression 2.289 0.877 2.781
learnable compression 2.351 0.887 2.851

TABLE IV
EVALUATION ON VECTOR QUANTIZATION AT 3 KBPS.

Methods PESQ STOI ViSQOL

Gumbel-Softmax 2.738 0.910 3.204
Distance-Gumbel-Softmax 2.763 0.917 3.219

the detailed components with more bits available, yielding
better perceptual quality.

3) Distance-Gumbel-Softmax-based VQ: We compare the
Distance-Gumbel-Softmax-based VQ mechanism with the pre-
vious Gumbel-Softmax-based method in [30]. Table IV shows
that at 3 kbps, our method outperforms the previous Gumbel-
Softmax-based method in all metrics, indicating that the ex-
plict injection of distance information helps improve recon-
struction quality.

We also show the distribution of the learned codebooks
to help understand how the Distance-Gumbel-Softmax-based
vector quantization learns. Fig. 8(a) shows the usage of 1024
codewords of one codebook on the test set with 1458 audios
for both the Gumbel-Softmax-based method [30] and the pro-
posed Distance-Gumbel-Softmax mechanism. We can observe
that the codewords tend to be more uniformly distributed in
the Gumbel-Softmax-based method, while in the Distance-
Gumbel-Softmax, the codewords are distributed more di-
versely, with some codewords being used very frequently.
This is reasonable, as in the Gumbel-Softmax-based method, a
diversity loss Ldiversity is imposed on the learned codewords,
which encourages each codeword to be equally used. In
contrast, in Distance-Gumbel-Softmax, we employ a larger
codebook and use the rate loss Lrate to reach the target bitrate
in a rate-distortion optimization sense. In this way, the real
distribution of the latent features can be captured in Distance-
Gumbel-Softmax.

We also show the confidence score of selecting the best
codeword in Fig. 8(b), based on the learned soft probability
by softmax. The Distance-Gumbel-Softmax shows obviously
much higher confidence than the Gumbel-Softmax, which indi-
cates that the learned codebook in Distance-Gumbel-Softmax
has more distinct class centers. This is due to the explicit
introduction of the distance map, i.e., the quantization error,
into the soft probability, by which the codeword closer to the
current feature is encouraged to be selected, and more distinct
codewords are learned through back-propagation.

4) Adversarial training: We also conduct an ablation study
to evaluate the performance of adversarial training, as pre-
sented in Table V. We show the comparison with and without
adversarial training at various bitrates. It is observed that with
adversarial training, the PESQ, STOI and ViSQOL are largely
improved, especially at 1 kbps and 3 kbps. We also observe
that the feature-matching loss Lfeat plays an important role
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Fig. 8. Characteristics of one randomly selected learned codebook at 3 kbps.
(a) The frequency of 1024 codewords being selected. (b) The confidence score
of 1024 codewords.

TABLE V
EVALUATION ON ADVERSARIAL TRAINING.

Methods Bitrate PESQ STOI ViSQOL

TF-Codec w/o Adv. 1 kbps 2.085 0.868 2.742
TF-Codec w Adv. 1 kbps 2.351 0.887 2.851

TF-Codec w/o Adv. 3 kbps 2.763 0.917 3.219
TF-Codec w Adv. 3 kbps 3.124 0.933 3.510

TF-Codec w/o Adv. 6 kbps 3.426 0.949 3.966
TF-Codec w Adv. 6 kbps 3.547 0.953 3.841

in recovering high-frequency details in the generated audio in
our experiment.

D. Analysis

To better understand what information is learned and en-
coded at various bitrates, we conduct an analysis on the learned
representations and codebooks in this section. In this analysis,
we disable the predictive loop and choose the discrete latent
codes for visualization.

We visualize the speaker and content information contained
in the learned discrete latent codes using two datasets: (i)
the Librispeech multi-speaker dataset [52] for speaker-related
information analysis; (ii) the LJ single speaker dataset [54] for
linguistic information analysis.

Speaker information We randomly select 10 speakers from
Librispeech, each with 10 utterances. For each utterance, we
perform a temporal average pooling on the multi-frame fea-
tures, yielding a global embedding per utterance. Fig. 9 shows
the t-SNE visualization of those speaker embeddings from
0.256 kbps to 6 kbps. We can observe that the model at high
bitrates generates more compact speaker clusters, while at very
low bitrates, the cluster begins to diffuse, and speakers could
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(a) 6 kbps (b) 3 kbps (c) 1 kbps (d) 0.512 kbps (e) 0.256 kbps

Fig. 9. T-SNE of speaker information in discrete latent codes on Librispeech dataset.

(a) 3 kbps (b) 0.512 kbps

Fig. 10. Co-occurrence of latent codes and phonemes on LJ single speaker dataset. The horizontal axis is latent code index and the vertical axis denotes
phonemes. We obtain the phoneme-level alignments with the Montreal Forced Aligner (MFA) [53], using their pre-trained Librispeech acoustic model. The
frame-level phoneme labels are determined by the phoneme with most occurrences in the duration of each frame.

not be identified at 0.256 kbps. This indicates that at very low
bitrates, the model turns to drop speaker-related information so
as to leave bandwidth for some key information of speech. It
is worth noting that the bitrate 0.256 kbps is even close to the
estimated information rate of speech communication in [55].
At such low bitrates, linguistic information is more important
than speaker variations for real-time communications.

Linguistic information We evaluate the linguistic informa-
tion in the discrete codes by the co-occurence map between
phonemes and discrete latent codes by group vector quanti-
zation. We use all 13100 audio clips of the LJSpeech dataset
spoken by the same speaker to remove the impact by speaker
variations. Fig. 10 shows the co-occurence map at difference
bitrates. It can be seen that these discrete latent codes, learned
in a self-supervised way, are closely related to phonemes, and
many latents are dedicated to specific phonemes. For example,
a large number of discrete codewords are automatically allo-
cated to specific phonemes, e.g., AH, N, S, and T. It is also
observed that the distributions of the co-occurrence map for
0.512 kbps and 3 kbps are quite close to each other, indicating
that the latent codes at different bitrates preserve phoneme
information well. This is consistent with our hypothesis that at
extremely low bitrates, the model tries to allocate the limited
bandwidth to key content information (linguistic-related) in
speech and drop less important information (speaker-related).

E. Robustness to Transmission Errors

It is generally assumed that the predictive loop used to
reduce temporal redundancy is sensitive to transmission errors,
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(c) PLCMOS

Fig. 11. Evaluation of TF-Codec at packet loss rate 0% to 50% on synthetic
test set.

as it may introduce long-term error propagation. In this
section, we propose some ways to improve the robustness
under packet losses with loss-aware training and show some
preliminary but promising results.

We simulate packet losses with a random loss rate from
{10%, 20%, 30%, 40%, 50%}, 100 hours for each category.
We also simulate 390 hours of data with a WLAN packet
loss pattern using three-state Markov models, similar to that
in [56] for training. Under packet losses, the predictive loop at
the encoder side operates the same as before, but in decoding,
the quantized feature x̂N

t is set to zero if the packet is lost.
We split each 40ms data into two packets along the channel
dimension for better resilience. For evaluation metrics, besides
PESQ and STOI, we also use PLCMOS [57], an evaluation
tool proposed in the Packet Loss Concealment Challenge at
INTERSPEECH 2022 to measure the concealment quality.

In addition to training on simulated packet loss datasets, we
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also introduce an error-aware loss term Lerror−aware on the
predictor in the decoder loop, given by

Lerror−aware = Ex[
1

CdT

T∑
t=1

||x̃P
t , sg(x

R
t )||22], (15)

which is quite similar to Lpred in Eq. (3) but different in
that the prediction x̃P

t is performed on the decoder-side
reconstructed feature with transmission errors. This loss will
force the predictor to provide an error-resilient prediction at
decoding. We also find in our experiment that the residual-like
feature to quantize xN

t in predictive TF-Codec usually has low
energy, and the loss of features with extremely low energy
usually does not have a severe impact on the reconstruction.

Fig. 11 shows the results. It can be seen that without
loss-aware training, denoted as “Error-free TF-Codec” in Fig.
11, the quality drops sharply when there is packet loss,
showing its sensitivity to transmission errors. When training
with simulated packet loss, denoted as “Error-resilience TF-
Codec”, the robustness and restoration capability of TF-Codec
are largely improved. However, the reconstructed audio still
has perceivable artifacts, especially for burst losses, i.e., over
120ms, which can be further optimized.

It is worth mentioning that many techniques exist which can
reduce the impact of transmission errors in traditional video
and audio coding, such as intra-refresh in H.26X and forward
error protection with redundant packets in Opus. In the future,
we could consider them for further optimization towards error-
resilience neural speech coding.

F. Delay and Complexity

The proposed predictive TF-Codec has 6.37M parameters
in total, with 2.11M for the 2D encoder, 3.44M for the
2D decoder, and 0.82M for the predictive loop (including
predictor, extractor and synthesizer). We report the algorithm
delay and real-time factor (RTF) in the following.

Algorithm delay Algorithm delay refers to the delay caused
by relying on future samples for processing the current one.
All encoder and decoder layers in our codec are causal, so the
algorithm delay comes from the STFT analysis window of a
40 ms length, plus an extra 30 ms delay as we quantize and
encode four frames together.

Real-time factor RTF is calculated as the ratio between
the duration of the audio and the inference time. An RTF
greater than 1 means that the system could process the data
in real-time. When running on a single CPU (Intel® Xeon®

Processor E5-1620 v4 3.50GHz), TF-Codec could achieve
4.1× for encoding and 6.3× for decoding, achieving real-time
processing.

V. CONCLUSION

We propose the TF-Codec, a low-latency neural speech
codec that outperforms state-of-the-art audio codecs with very
low bitrates. We introduce latent-domain predictive coding into
the VQ-VAE framework to fully remove the temporal redun-
dancy. A learnable input compression is proposed to balance
the attention paid to main components and details in the STFT

spectrum at different bitrates. We also introduce the Distance-
Gumbel-Softmax mechanism for vector quantization, which
can capture the real distribution of latent features with rate-
distortion optimization. It should be noted that although speech
coding is taken as an example in this paper, the proposed
techniques could be extended to other audio signals such as
music as well. In the future, we will make such extensions.
Furthermore, we will investigate more detailed representations
in terms of not only speaker and content information but also
prosody and emotions. Another interesting point to explore in
the future is to make the input compression factor adaptive to
input content, as different contents have different frequency
responses.
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