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Summary

This article considers the problem of simultaneous prediction of actual and average values of the study

variable in a linear regressiol1model when a set of linear restrictions binding the regression coefficients

is available, and analyzes the performance properties of predictors arising from the methods of re-

stricted regression and mixed regression besides least squares.

1. Introduction

Generally predictions from a linear regression model are made either for the actual

values of the study variable or for the average values at a time. However, situa-

tions may occur in which one may be required to consider the predictions of both

the actual and average values simultaneously. For example, consider the installa-

tion of an artificial tooth in patients through a specific device. Here a dentist

would like to know the life of a restoration, on the average. On the other hand, a

patient would be more interested in knowing the actual life of restoration in his/
her case. Thus a dentist is interested in the prediction of average value but he may

not completely ignore the interest of patients in the prediction of actual value. The

dentist may assign higher weightage to prediction of average values in comparison

to the prediction of actual values. Similarly, a patient may give more weightage to

prediction of actual values in comparison to that of average values.

Appreciating the need of simultaneous prediction of actual and average values

of the study variable, SHALABH(1995) has proposed a composite target function

which considers the prediction of both the actual and average values together.

Using such an approach, we expose the traditional prediction methods and analyze
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their performance properties when a set of linear restrictions binding the coeffi-

cients in a linear regression model is available in the form of prior information.

The organization of this paper is as follows. Section 2 describes the linear regres-

sion model and presents the target function for the prediction of actual and average

values of the study variable. Section 3 assumes the availability of a set of exact linear

restrictions on regression coefficients. Two predictors arising from the methods of

least squares (that ignores the restrictions) and restricted regression (that incorporates

the restrictions) are presented and their efficiency properties are analyzed. Similarly,

in Section 4, we assume the availability of a set of stochastic linear restrictions and

study the performance properties of predictors stemming from pure and mixed esti-

mation methods. Finally, some remarks are placed in Section 5.

2. Specification of Model and Target Function

Let us postulate the following linear regression model:

Y = Xf3 + au (2.1)

where Y is an n x I vector of n observations on the study variable, X is an n x K

full column r~nk matrix of n observations on K explanatory variables, p is a col-
umn vector of regression coefficients, a is an unknown scalar and u is an n x I
vector of disturbances.

It is assumed that the elements of u are independently and identically distribut-

ed with mean zero and variance unity.

If b denotes an estimator of p, then the predictor for the values of study vari-

able within the sample is generally formulated as t = Xb which is used for pre-

dicting either the actual values Y or the average values E(y) = Xp at a time.

When the situation demands prediction of both the actual and average values

together, we may define the following target function

T(y) = ,1Y+ (I - A)E(y) = T (2.2)

and use t = Xb for predicting it where 0 :::;A :::;1 is a non stochastic scalar speci-

fying the weightage to be assigned to the prediction of actual and average values

of the study variable; see, e.g. SHALABH(1995).

Next, let us consider the prediction of values of the study variable outside the

sample. Accordingly, we assume that a set of nf values of the explanatory vari-
ables is given so that

(2.3)

where Yf is an nf x I vector of future values of the study variable, Xf is an nf x K
matrix of values of the explanatory variables and uf is an nf x 1 vector of disturb-

ances possessing the same distributional properties as u. Further, elements of uf
and u are stochastically independent.
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Now we may construct the predictor as if = Xfb and the target function as

(2.4)

It may be observed that the target function permits a kind of unified treatment

to the problem of predicting the actual and average values of the study variable

through its characterizing scalar A.

3. Exact Linear Restrictions

Let us suppose that we are given a set of J exact linear restrictions binding the

regression coefficients:

r=Rp (3.1)

wherer is a J x 1 vectorandR is a J x K full rowrank matrix.

If these restrictions are ignored, the least squares estimator of p is

P = (X'X)-I X'y (3.2)

which may not necessarily obey (3.1). Such is, however, not the case with re-

stricted regression estimator given by

PR = P + (X'X)-I R'[R(X'X)-I RT1 (r - RP)

whichinvariablysatisfies(3.1).

(3.3)

3.1 Prediction within the Sample

Employing (3.2) and (3.3), we get the following two predictors for the values of

the study variable within the sample:

i = Xp,

i R = XPr.

(3.4)

(3.5)

It is easy to see from (2.2) that both the predictors are weakly unbiased in the
sense that

E;.(i - T) = 0,

E).(iR - T) = O.

(3.6)

(3.7)

Further,the predictivevariancecovariancematricesare givenby

v).(i) = E(i - T) (i - T)'

= a2[A?In + (I - 2,1,)P], (3.8)
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where P = X(X'X)-l X' = XX+ and X+ = (X'X)-l X',
A A A ,

V,l(TR)= E(TR- T) (TR- T)

= £i[221n + (I - 22) P - (I - 22) X+'R'[R(X'X)-I R'r1 RX+]

whence we find

V,l(T) - V,l(TR) = a2(1 - 22)X+'R'[R(X'X)-I R'r1 RX+

which is a nonnegative definite matrix as far as (I - 22) ~ O.

It is thus seen that the predictor TR is at least as superior as T according to the

criterion of variance covariance matrix when 2 is less than 0.5. In other words, if

prediction of actual values of the study variable is assigned relatively lesser weight

in comparison to the prediction of average values, incorporating the restrictions in

the estimation of P for constructing predictions is surely a better procedure than

ignoring the restrictions. On the other hand if higher weightage is to be assigned

to the prediction of actual values in comparison to the prediction of average val-

ues, the incorporation of restrictions in the estimation procedure may not serve

any useful purpose. An interesting implication of this observation is that efficient

estimation of regression coefficients may not necessarily lead to efficient predic-

tions of values of study variable. .
Let us now examine the predictive risks associated with the two predictors T

and TR. When the aim is simply to predict the average values of the study variable

(2 = 0), the predictive risks of T and TR are a2K and a2(K - J) respectively.

Similarly, when the aim is solely to predict the actual values (2 = I), the predic-

tive risks of T and TR are a2(n - K) and a2(n - K + J) respectively. Thus the

predictions based on T will have smaller risk property for average values of the

study variable rather than for its actual values if n exceeds 2K. If n exceeds

2(K - J), then the predictions based on TR have this prop~. Just the reverse

will be true, Le., predictions will be more suitable for actual values of the study

variable than for its average values when n is less than 2K in case of T and

2(K - J) in case of TR.

(3.9)

4. Stochastic Linear Restrictions

Let us be given a set

regression coefficients:

r=Rp+v

of following stochastic linear restrictions connecting the

(4.1)

where v is a J x I random vector with mean vector 0 and variance covariance

matrix IJIwhich is positive definite and known.

Further, it is assumed that u and v are stochastically independent.

When the prior restrictions (4.1) are ignored and least squares method is applied

to (2.1), we obtain the pure regression estimator of p as /Jgiven by (3.2). When
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the prior restrictions are incorporated, we get the mixed regression estimator

PM = (X'X + iR'tp-IR)-1 (X'y + iR'tp-lr) (4.2)

where s2 = (y - XP)' (y - Xp)/(n - K) is an unbiased estimator of a2; see THEIL
and GOLDBERGER(1961).

4.1 Prediction within the Sample

Based on the pure and mixed regression estimators of p, one can formulate the

predictor T defined by (3.4) and the following predictor

(4.3)

Following Kakwani (1968), it can be easily seen that the predictor TM is

weakly unbiased for the target function T specified by (2.2) in the sense that

E(TM - T) = 0 provided that the mean of the predictor TM is finite and the ele-

ments of u follow a symmetric probability distribution. The exact predictive risk

will, however, be difficult to derive unless we assume any specific form of the

symmetric distribution for disturbances.

If we assume normality of disturbances, the exact expression for predictive vari-

ance covariance matrix can be derived but it will be sufficiently intricate and may

not permit us to draw any clear inference; see, e.g., SWAMYand MEHTA(1969).

We therefore propose to employ an asymptotic approximation of it employing the

small disturbance asymptotic theory.

Result 1: When disturbances are normally distributed, the predictive variance

covariance matrix of TM to order O( if) is given by
A A A ,

v't(TM) = E(TM - T) (TM - T)

= a2[;.2In+ (1 - 2A.)P] - a4
[
1 - 2

(A.+ ~ )]
X+'R'tp-IRX+ .

n K (4.4)

This result is derived in the Appendix.

Comparing (4.4) with (3.8), it is observed that the predictor TM is better than T

with respect to the criterion of predictive variance covariance matrix so long as

A.«~-n~K)
(4.5)

which implies that the predictor based on mixed regression estimation is prefer-

able when prediction of actual values of study variable receives smaller weight in

comparison to the prediction of average values. However, if prediction of average

values is at least as important as the prediction of actual values, it may not be

worthwhile to take into account the prior restrictions in the estimation of regres-
sion coefficients.
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4.2 Prediction outside the Sample

When the aim is to predict the values of study variable outside the sample, the

following predictor arising from mixed regression estimation may be used:

(4.6)

Assuming multivariate normality of U and uf, it is easy to see that TJM is un-

biased for Tf, Le.,

(4.7)

For the predictive risk of TJM,we present an asymptotic approximation employ-

ing the small disturbance asymptotic theory.

Result 2: When disturbances are normally distributed, the predictive variance

covariance matrix associated with TJMupto order O(a4) is given by
A A A ,

V,t(TJM= E(TJM- Tf) (TJM - Tf)

= if[A.21'if + Xf(X'X)-1 XI]

-a4 (1 - ~ )Xf(X'X)-1 R'rp-IR(X'X)-I Xfn-K

which is derived in the Appendix.

C?mparing (4.8) with V,t(Tf) = a2[A.21nf+ Xf(X'X)-1 XI] the risk of the predic-

tor Tf which does not incorporate the prior stochastic restrictions, we observe that

TJMis superior to Tf as long as (n - K), the excess of the number of observations
over the number of regression coefficients, exceeds 2 which is indeed a very mild
constraint.

Setting A.= 0 and A. = 1 in (4.8), it is observed that like Tf the predictor TJM
has better performance when used for predicting average values of tIle study vari-
able.

(4.8)

5. Some Remarks

Considering the problem of simultaneous predictions of actual and average values

of the study variable in linear regression models subject to a set of linear restric-

tions connecting the regression coefficients, it is found that the least squares pro-

cedure ignoring the restrictions continues to remain unbeaten as long as larger

weight is given to the prediction of actual values in relation to the prediction of

average values. Incorporation of prior restrictions into the estimation procedure is

reasonable only when the opposite is true, Le., prediction of actual values receives

smaller weight in comparison to the prediction of average values. Interestingly

enough, all the three estimation procedures (viz., pure regression, restricted regres-
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sion and mixed regression) are found to be more suitable, under some mild con-

straint, in the sense of yielding predictions with smaller variability when the aim

is to predict the average values of the study variable rather than its actual values.
The above findings relate to the prediction of values within the sample which

essentially may reflect the success of an estimation procedure. These findings do

not carryover to the case of prediction outside the sample such as forecasting.

Although all the predictors continue to remain weakly unbiased (assuming normal-

ity), their performances with respect to the criterion of predictive variance covari-

ance matrix change. It is observed that utilization of prior restrictions is always a

better strategy than ignoring them irrespective of the weightage assigned to the

prediction of actual and average values. However, each of the three predictors is

seen to provide more efficient predictions for average values rather than for actual

values just as in case of prediction within the sample.

We have confined our attention to three simple traditional predictors. It will be

interesting to analyze the properties of other predictors; see, e.g., TOUTENBURGand
TRENKLER(1990), TOUTENBURG,TRENKLERand LISKI(1992) and RAO and TOUTEN-

BURG(1995).

A Appendix: Derivation of Results

where M = In -Po

Observing that

(PM- T) = X(bM- P) - aAu

we can write

(PM - T) (PM - T)' = a2G2 + a3(G3 + G;) + a4(G4+ G~)+ Op(a5),

(A.2)
where

G2 = [(1 - A) In - M] Uu' [(1 - A) In - M] ,

(
U'MU

)G3 = - [(1- A)In - M] U'ljlp-IRX+ ,n-K



958 H. TOUTENBURG,SHALABH:Predictive Perfonnance of Restricted Mixed Regression Estimators

G =~ (
U'MU

)2 X+'R'tp-IV1Jtp-IRX+
4 2 n-K '

- (:'~~) [(I - A) III - M] uu'X+'R'tp-IRX+ .

Utilizing the multivariate normality of U and stochastic independence of U and

v, it can be easily verified that

E(G2) = (I - A)2 III - (I - 2A) M,

E(G3) = 0,

E(G4)= - ~ [(1 - 2A)- (n ~ K)] X+'R'tp-IRX+.

Taking expectation of both the sides of (A2) and using the above results, we

obtain the expression (4.4).

For the expression (4.8), we notice that

(PfM - Tf) = Xf(bM - P) - aAuf

whence, using (AI), it follows that

(PfM - Tf).(PfM - Tf)' = a2G~+a\G~ + G~*)+ a4(G: + G4*)+ Op(~)

(A.3)

where

G~ = [Xf(X'X)-1 X'u - AUf][Xf(X'X)-1 X'u - AUtJ',

G! = (
U'MU

) [Xf(X'X)-1 X'u - AUf]";tp-IR(X'X)-I Xf,n-K

G* = ~ (
U'MU

)2 X (X'X)-I R'tp-IV";tp-IR (X'X )-1 X'
4 2 n-K f f

(
U'MU

)- - [Xf(X'X)-1 X'u - AUf]u'X(X'X)-1 R'tp-IR(X'X)-I X' .n-K f

By virtue of the multivariate normality of U and uf along with stochastic inde-

pendenceof u, uf andv, we observethat

E(G~) = A2I11j+ Xf(X'X)-1 XI'

E(G~)= 0,

E(G:) = -~ (1 - ~ )Xf(X'X)-1 R'tp-IR(X'X)-I Xf'2 n-K

Taking expectations on both the sides of (A3) and substituting the above re-

sults, we find the expression (4.8).
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Erratum

TOUTENBURG,H., SHALABH:Predictive PerfoI1llance of the Methods of Restricted

and Mixed Regression Estimators. Biometrical Journal 38 (7). 951-959.

In the Appendix (pp. 957-958), the quantities bM, PM and PfM should be read as

PM' TM and TfM,respectively.
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