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Predictive Power Control for PV plants with Energy
Storage

Emilio Pérez, Hector Beltran,Member, IEEE Néstor Aparicio,Member, IEEE

and Pedro Rodriguez,Senior Member, IEEE

SPECIAL ISSUE ON “APPLICATIONS OF SOLAR ENERGY TO POWER SYSTEMS”

Abstract—This work presents a model predictive control
(MPC) approach to manage in real-time the energy generated
by a grid-tied photovoltaic (PV) power plant with energy storage
(ES), optimizing its economic revenue. This MPC approach
stands out because, when a long enough prediction horizon is
used, the saturation of the ES system (ESS) can be advanced
by means of a prediction model of the PV panels production.
Therefore, the PV+ES power plant can modify its production so
as to manage the power deviations with regard to that committed
in the daily and intraday electricity markets, with the objective
of reducing economic penalties. The initial power commitment
is supposed in this work to be given by a higher level energy
management operator. By a proper definition of its objective
function, the predictive control allows to economically optimize
the PV+ES power plant performance. This control strategy is
tested in simulations with actual data measured for different
days with varying meteorological conditions. Results provide a
good reference on the economic benefits which can be obtained
thanks to the MPC introduction.

Index Terms—Energy storage, photovoltaic systems, predictive
control.

I. I NTRODUCTION

GLOBAL warming and climate change are nowadays
understood to be a serious problem for the planet which

have much to do with electric power generation [1]. Thus,
environmental together with geopolitical concerns are among
the main reasons for the huge increase experienced worldwide
in the use of renewable energy sources (RES) during the last
decade [2], [3], with wind and solar power standing out in
particular.

Solar photovoltaic (PV) power is one of the fastest-growing
technologies in the RES domain. This is partially due to the
support policies received in many countries in the form of
premiums and feed-in tariffs. This trend will pose in brief a
problem for the balance and stability of the power system in
some countries [4] as a consequence of the variability of the
solar irradiation [5], [6]. This intermittent character istherefore
a clear drawback for this technology which, although being
statistically predicted in an averaged mode, is stochasticin the
short-term. Different solutions are already being implemented
to mitigate this intermittency. These consider the geographical
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dispersion of PV systems across regions to reduce clouds’
effect [7], or the integration of energy storage (ES) systems
with RES [8]–[12]. The latter empowers RES with extended
capabilities such as production shifting [13], peak shaving or
the possibility to provide ancillary services [14]. There are
nowadays several ES technologies available in the market [14],
[15]. All of them still expensive for PV applications though.
Therefore, an accurate ES sizing calculation and an optimized
control strategy for the PV+ES power plant turn to be key
issues for the future economic viability of these hybrid plants.
Thus, different proposals have been recently published to drive
PV power plants with ES [9], [16]–[20]. However, most of
them are focused on isolated grids and microgrids or rely on
basic control approaches which require of a large ES system
(ESS).

This paper presents an advanced control approach designed
to manage in real-time the power production of a grid-tied
PV+ES power plant with a reduced ESS capacity which
participates in the electricity market. The main contribution
of this control proposal lies on the fact that it can anticipate
future saturations of the ESS (likely to occur with reduced
rating) and, therefore, modify the response of the hybrid
power plant so as to minimize the economic penalties due
to the power production deviations referred to the power
committed in the electricity pool. This control approach is
tested through simulation with actual data for various days
with varying meteorological conditions and predictions with
different degrees of accuracy.

The paper starts by describing the problem of integrating PV
plants into the electricity market and with a proposal to solve it
taking advantage of an advanced control methodology. Section
III overviews some of the most important electricity markets
configurations worldwide. After that, Section IV presents
the control methodology with its mathematical formulation.
Section V is devoted to the discussion of the results obtained
when this control approach is applied. The differences in
the power plant performances and the economic improvement
achieved are analyzed. Finally, some conclusion remarks are
discussed in Section VI.

II. PROBLEM DESCRIPTION

As just introduced, the work presented here focuses on
defining a control strategy to manage the generation of a grid-
tied PV power plant which takes part in the electricity market.
Therefore, the plant must regularly commit a constant-by-
hours power production with some hours before the real-time
delivery instant.
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Given the non-controllable and stochastic nature of the solar
resource, and hence that of its corresponding PV power pro-
duction, a natural solution is the use of an ESS which allows
accumulating the surplus energy in those periods in which
solar production is higher than the plant power commitment
and delivering it back in the opposite situation.

Although most of the work in the existing literature re-
garding the operation of PV+ES systems focuses on iso-
lated networks, several approaches [9], [12], [16], [18] are
already devoted to grid-connected systems. Each of those
proposals pursues different control objectives (mainly peak-
shaving). To the authors’ knowledge, the field of grid-tied
market participant PV+ES power plants is still emerging.
However, some contributions have been made for combined
wind-storage systems in the electricity market which could
be extended to other non-programmable RES such as PV. In
[21], the authors use an optimization scheme similar to the one
proposed here, although solved by dynamic programming. In
[22], an iterative methodology, based on technical or market-
based criteria, is proposed. Although related to our proposal to
some extent, those works still have a crucial difference: they
focus mainly on the day-ahead scheduling stage, and not on
the real-time operation. For this stage, all those works share
a common strategy, i.e. they define a power reference to the
plant,Pref , and compute the power exchange with the ESS,
PES , according to the following equation:

PES(t) = Pref (t)− PPV (t) (1)

wherePPV is the actual PV panels production. If the com-
putedPES(t) exceeds the admissible power or if it produces
the ESS saturation, it is reduced to an adequate value.

The described strategy is valid for the control objectives
defined on those works, but for the problem considered in this
paper, it brings some difficulties. This is so because the power
plants attending the electricity market must provide a power
commitment in advance, when the actual PV production during
the power plant operation is still not known with precision.
Thus, it can only be approximated with a certain degree of
accuracy. In this context, when the delivery time arrives, it
might happen that, even with the presence of the ESS, the
committed power cannot be achieved because of the ESS
saturation. This fact forces the PV+ES plant to feed directly
to the grid the power generated in the PV panels, incurring an
economic penalty. Therefore, with the basic strategy described
in (1), this event occurs at a non-controlled moment, which can
be very detrimental from the economic point of view (because
of the energy cost during that period of time).

In this paper, a different strategy based on the Model
Predictive Control (MPC) philosophy is proposed to control
these systems. This proposal substitutes the basic approach
in (1) and computesPES(t) not only considering thePref (t)
andPPV (t) at that given moment, but also taking into account
what are the future references,Pref (t+ k), the predicted PV
power production,̂PPV (t+k), and the future energy prices in
the electricity market, Fig. 1. As this MPC-based strategy is
performed in real-time, it can use much more accurate short-
term PV power predictions. This characteristic enables the
control system to detect ESS saturation in advance and modify

ESS
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Fig. 1. Model Predictive Control scheme.

the operation of the power plant so as to optimally reduce
economic penalties.

The application of MPC has already been treated in the
context of RES. In [23] and [24], authors proposed an electric
energy system integrating various RES (combining PV and
wind installations) and used the MPC to optimize an eco-
nomic objective function with the possibility to include also
environmental costs. Those proposals differ substantially from
the one presented here, since the goal in those cases is to use
the RES to respond quickly to sudden increases in the power
system demand, avoiding the use of high-price coal plants.
This implies that the energy from the RES is not fully profited,
contrary to the goal of the present work. Furthermore, there
is no ES introduction and the PV power prediction is done in
a period too short to be used with market participation goals.

A more similar approach to the one proposed in this work
is found in [25], where the authors propose an analogous
formulation applied to a wind farm with ES. However, the
control target in that work is not to enable the system to
participate in the electricity market, but to smooth the wind
production. Furthermore, the stochastic nature of wind power
production only allows forecasting a few steps ahead, which
is not compatible with market participation. In this sense,
the different electricity market designs highly influence the
problem presented here. That is the reason for the market
analysis introduced in the following.

III. M ARKET PARTICIPATION

In order to properly test the PV+ES operation improvement
achieved with this new control approach, it is important
to know the electricity market structure and its scheduling
configuration. These mainly depend on the different countries
and their corresponding regulations. In this sense, countries
with restructured electricity industries usually have forward
markets where, depending on the market design, electricityis
traded either centralized on a power exchange or bilaterally
directly. Electricity is traded in intervals (hereinafterreferred
to as settlement periods) that may be one hour long or less.
Market participants can modify their bids and offers for any
settlement period before the gate closure. After that pointit is
no longer possible to change the energy committed for certain
coming settlement periods. Each settlement period is settled
independently of the periods around it. Some regions run
continuous markets with gate closures some minutes before
actual delivery (5 min in Australia, 60 min in the United
Kingdom and in some U.S. markets). On the contrary, other
regions have daily markets (especially suited for the unit
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commitment of thermal generators) that close in the day-ahead
of the energy delivery.

During real-time, i.e. after gate closure, generators pro-
duction may differ from the one committed in the market
and also demand may change. Thus, system operators must
continuously balance the sum of all individual imbalances
(system net imbalance) through balancing mechanisms. The
cost of the regulating energy required by the balancing
mechanisms is usually assigned to those market participants
who are responsible for the net imbalance. This mechanism
mainly affects intermittent energy sources due to their inherent
unpredictability.

Therefore, market design has a clear influence in the im-
balance settlement of intermittent energy sources such as PV.
In this way, this will vary depending on the possibilities to
reschedule production with updated forecasts, the price system
or whether RES are fully charged for their imbalances.

Among the different market configurations, the Spanish
market has been selected for the simulations performed in
this work. It has some particular characteristics such as a
special intraday market (which permits to reschedule with
updated production forecasts in the next hours) that instead of
being continuous is divided into six sessions. On each of these
sessions, the power exchange of the daily market is repeated
for the settlement periods still to come in the delivery day.
In addition, the Spanish market has a two-price system for
the imbalances settlement. The imbalance price is the market
price for producers that do not contribute to the system net
imbalance and a penalty for those that do contribute. Moreover,
since 2007, all generators (including RES) are fully charged
even if they do not participate in the electricity market (i.e.
receive feed-in tariffs).

IV. M ODEL PREDICTIVE CONTROL APPLIED TOPV
PLANTS WITH ENERGY STORAGE SYSTEM

A. Model Predictive Control

Model Predictive Control (MPC) is a controller design
technique based on the following strategy [26]:

1) The future outputs for a given horizonN , called the
prediction horizon, are predicted at each instantt using
the process model. These predicted outputsy(t + k|t)
depend on the known values of past inputs and outputs
and on the future control signalsu(t+ k|t).

2) These control signals are calculated by optimizing a
determined criterion dependent on the predicted future
trajectory and control signals.

3) Although a complete sequence ofN future control
signals is computed, onlyu(t|t) is effectively sent to
the process, because at the next sampling instant a new
output y(t + 1) is known. This is known as receding
horizon.

MPC presents a series of advantages over other control
methods [26], [27]: multivariable cases can be systematically
designed by assigning a different relative importance to each
input and output, allowing an intuitive tuning of the controller;
constraints can automatically be taken into account and, when
future references or disturbances are known, this information

can be used by the controller, allowing a performance im-
provement.

On the contrary, the main drawbacks of MPC are the need
for an accurate prediction model of the controlled outputs
and the computational effort required to solve a constrained
optimization problem, which can be too consuming for fast
process applications.

B. Problem formulation

The problem described in Section II can be approached by
means of an MPC strategy. The main idea is to maximize a
given economic objective function,JN , defined within a future
horizonN , while the problem constraints are satisfied.

Unlike for the case of the basic subtraction strategy (1), if
predictive control is applied to the system, the predictionof
the future solar production is updated in real-time. Therefore,
limitations to track future power commitments can be detected
in advance, making it possible to shift the power reference
tracking failure to other moments when economic penalties
are lower.

Similarly, if the solar production is higher than expected
and this fact is detected in advance by the MPC system, the
energy exceeding the plant production commitment can be fed
to the grid during those periods when the energy market price
is higher.

In accordance with the previous considerations and the MPC
formulation, the objective function to be maximized can be
written as:

(2)JN =

N
∑

k=0

λ(k)c(t+ k)T (Pgrid(t+ k)− Pref (t+ k))

+ csoc(t+N + 1)EES(t+N + 1)

where:
• Pref (t + k) is the future constant-by-hours power pro-

duction committed by the PV plant.
• Pgrid(t+k) is the power fed to the grid at instant(t+k),

that isPgrid(t + k) = PPV (t+ k) + PES(t + k), being
PPV (t + k) the panel production andPES(t + k) the
power exchanged with the ESS.

• EES(t+N+1) is the energy stored in the ESS at instant
(t+N + 1).

• c(t+ k) is the imbalance cost at instant(t+ k).
• csoc(t +N + 1) is the value of the energy stored in the

ESS at instant(t+N + 1).
• λ(k) is a weighting sequence.
• T is the sampling period of the MPC.

Note that the energy stored in the ESS at any future instant
EES(t+ k) can be calculated as:

EES(t+ k) = EES(t+ k − 1)− TPES(t+ k − 1) (3)

The objective function (2) consists of two terms: a weighted
summation of the cost of the future power deviations referred
to the plant commitments in the prediction horizon and a term
which values the energy stored in the ESS after that horizon.

The first term aims to value the economic revenues obtained
from the power fed to the grid in the prediction horizon. As
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described in Section III, in the Spanish electricity marketthe
system operator settles imbalances by means of a two-price
system. Therefore, the imbalance cost at any given instant must
adopt different values depending on the imbalance sign:

c(t+ k) =

{

cp(t+ k) if Pgrid(t+ k) ≥ Pref (t+ k)

cn(t+ k) if Pgrid(t+ k) < Pref (t+ k)
(4)

wherecp andcn are the constant-by-hours positive and nega-
tive imbalance costs, respectively.

The different summands in this term are adjusted by means
of a weighting sequence defined asλ(k) = α−k, with α

taking a value between 0 and 1. The introduction of such a
sequence is useful because otherwise the optimization could
present multiple solutions with the same maximum, due to the
constant-by-hours nature of the costs. The proposed weighting
sequence, which increases withk, gives more relevance to the
economic benefits obtained in instants of time further from the
current moment than to those obtained in closer instants. The
reason for this is that, as will be discussed in Section IV-D,
the prediction of the solar production is more accurate as time
goes by, and therefore, it is more convenient to save up energy
for future moments which keep the same imbalance costs.

Regarding the second term of the objective function (2),
it is introduced in the optimization in order to take into
account that the remaining energy in the ESS after the control
horizon still presents a value. Otherwise, the optimization
would always tend to empty the ESS, which obviously is not
always the optimal strategy. However, it is not straightforward
to determine this energy value,csoc(t + N + 1), as there
are many different prices depending on the future instant
of time in which this amount of energy would be sold.
Furthermore, it is also difficult to decide whether this energy
should be valued at a positive or negative imbalance price,
as future imbalance signs are unknown a priori. If positive
imbalance prices are taken, the optimization will generally
tend to discharge the ESS. Conversely, if negative imbalance
prices are chosen, it will be more conservative. Note that with
the latter, the optimization might even decide to produce a
negative imbalance during the optimization horizon in order
to avoid a potentially more expensive imbalance after it. As
this is not a desirable behavior, the energy stored is valuedat a
positive imbalance price, i.e.csoc(t+N+1) = cp(t+N +1).

Apart from the objective function, it is also necessary to
define some constraints on the power to be fed to the grid in
future instants:

• For an efficient performance of the ESS, its state of
charge (SOC) must be kept between a minimum and a
maximum level:EES,min andEES,max.

• The power exchanged by the system with the ESS (in
both possible directions) is limited by the converter’s
rated power capacity,PES,max = −PES,min.

The proposed predictive controller can be obtained by
solving the optimization problem (5), which includes the
previous constraints to be satisfied in all the future instants,
together with a receding horizon strategy (applying only the
first power exchange with the ESS,PES(t), and solving a
new optimization problem every time new measured data are

received).

J
opt
N = max JN (5)

subject fork = 0 . . .N to:

Pgrid(t+ k) = P̂PV (t+ k) + PES(t+ k)

EES(t+ k + 1) = EES(t+ k)− TPES(t+ k)

PES,min ≤ PES(t+ k) ≤ PES,max (6)

EES,min ≤ EES(t+ k) ≤ EES,max

Note that all variables included in the constraints of the
system and in the objective function are known in advance,
except for the future solar production,PPV (t + k), and the
future imbalance and energy costs,cp, cn andcsoc. Therefore,
models to predict each of them are needed. Discussion on
these models will be performed in following subsections.

C. Optimization problem

The application of the proposed MPC involves solving, at
every sampling instant, the constrained optimization problem
(5) in order to compute the power to be exchanged with
the ESS. This is the most demanding operation in terms of
computational cost for any predictive controller and the one
that can prevent the use of this technique for applications with
low sampling periods.

This computational cost mainly depends on the size and
kind of problem, determined by the objective function and
the constraints. In this case, the size of the problem under
consideration is determined by the control horizon,N . On the
other hand, the system constraints are linear, being the simplest
kind of constraints, but the objective function is neither linear
nor quadratic, making the problem difficult to solve in its
straightforward form. This is due to the fact that the imbalance
cost (4) is a piecewise function, which depends on the sign of
the power deviation.

One possibility to solve this problem is to formulate it as a
hybrid system, introducing a binary variable to cope with the
piecewise objective function. This kind of problems has been
an active research topic in the field of predictive control inthe
recent years [28]. However, for a general case, they requireto
solve a mixed integer linear program (MILP) which would
be computationally prohibitive for the size of the proposed
problem.

Therefore, an alternative approach, based on transforming
the objective function into a linear one, is proposed. The main
idea is to substitute the variablePgrid(t+ k) by two different
ones,Pp(t+k) andPn(t+k), which replacePgrid for the cases
when this is higher or lower thanPref (t+ k), respectively:

Pgrid =

{

Pp if Pgrid ≥ Pref

Pn if Pgrid < Pref

In order to avoid this piecewise representation, the same
equation can be written as a a linear expression with the
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appropriate constraints:

Pgrid(t+ k) = Pp(t+ k) + Pn(t+ k)− Pref (t+ k) (7)

Pp(t+ k) ≥ Pref (t+ k) (8)

Pn(t+ k) ≤ Pref (t+ k) (9)

(Pp(t+ k)− Pref (t+ k)) · (Pn(t+ k)− Pref (t+ k)) = 0
(10)

where (10) is introduced to force that eitherPp(t + k) =
Pref (t+ k) or Pn(t+ k) = Pref (t+ k) and, therefore, from
(7) Pgrid(t+ k) = Pn(t+ k) or Pgrid(t+ k) = Pp(t+ k), re-
spectively. This transformation allows to rewrite the objective
function as a linear one:

(11)
J ′

N =
N
∑

k=0

α−kT [cp(t+ k) (Pp(t+ k)− Pref (t+ k))

+ cn(t+ k) (Pn(t+ k)− Pref (t+ k))]

+ csoc(t+N + 1)EES(t+N + 1)

With this new formulation, the optimization problem (5) can
be rewritten as:

(12)J
opt
N = maxJN = maxJ ′

N

subject fork = 0 . . .N to:
EES(t+ k + 1) = EES(t+ k)− TPES(t+ k)

PES,min ≤ PES(t+ k) ≤ PES,max

EES,min ≤ EES(t+ k) ≤ EES,max

(13)
Pp(t+ k) + Pn(t+ k)− Pref (t+ k)

= P̂PV (t+ k) + PES(t+ k)

Pp(t+ k) ≥ Pref (t+ k)

Pn(t+ k) ≤ Pref (t+ k)

(Pp(t+ k)− Pref (t+ k)) · (Pn(t+ k)− Pref (t+ k)) = 0

At this point, the original problem with a non-linear objective
function and linear constraints has been transformed into an
equivalent problem with a linear objective function, several
linear constraints and a single non-linear constraint, (10). This
new problem may not be simpler than the original one in a
general case. However, it is interesting to consider now the
particular problem under study. To do so, let us first calculate
EES(t+N+1) by recursive application of (3) and substitution
of (13):

EES(t+N + 1) = EES(t)− T

N
∑

k=0

PES(t+ k)

= EES(t)− T

N
∑

k=0

(Pp(t+ k) + Pn(t+ k)

− Pref (t+ k)− P̂PV (t+ k))

Substituting on (11) and grouping terms:

J ′

N =

N
∑

k=0

T
[(

α−kcp(t+ k)− csoc(t+N + 1)
)

Pp(t+ k)

+
(

α−kcn(t+ k)− csoc(t+N + 1)
)

Pn(t+ k)
]

+ C

(14)

whereC contains all the terms inJ ′

N which do not depend
on the decision variables,Pp(t+ k) andPn(t+ k).

Now note that,cn(t+k) > cp(t+k) at any moment because
of the nature of the electricity markets, as it has been discussed
in Section III. Indeed,cn(t+k) is the price at which a market
participant has to buy energy to the system if it is not able
to supply all the energy committed, and therefore it is paid at
a price higher than the market one (cm(t + k)). Conversely,
cp(t+ k) is the price at which the extra energy exceeding the
commitment has to be sold to the market, which is therefore
lower than the market one. Consequently, for the same instant
(t+ k):

cn(t+ k) ≥ cm(t+ k) ≥ cp(t+ k) (15)

From (14) and (15) it can be deduced that, whenever it
is possible, it is more beneficial to increasePn(t + k) than
Pp(t + k). Now, observe that, apart from constraints (8), (9)
and (10), both variables appear always as a summation. This
means that, when regarding the charging and discharging of
the ESS, it is the same to increase one or the other. Obviously,
as Pn produces a higher increase in the objective function,
where possible, the optimizer will leavePp at its minimum,
Pp = Pref . On the other hand, if it is not possible to satisfy all
the constraints, the optimizer will leavePn at its maximum,
Pn = Pref , and will start increasingPp.

This means that, by the same nature of the problem,
constraint (10) is implicitly satisfied when the rest of con-
straints are met, thus it is redundant. Therefore, it can be
eliminated from the formulation of the problem. Note that this
mathematical fact has a physical interpretation. If, for the same
instant of time(t + k), both Pp(t + k) andPn(t + k) were
different thanPref (t + k), there would be simultaneously a
positive and a negative imbalance.

After dropping constraint (10) from (12), the optimization
problem to be solved by the predictive controller can be finally
defined as a linear program (LP), which is easily solvable with
standard optimization tools.

D. Solar production prediction

In order to define a proper̂PPV model which assures
an optimal problem resolution, standard irradiation curves
provided by official databases such as the PVGIS [29] are
used. These are continuously adjusted by the actual PV
production measured till the moment of calculation. Given
that PVGIS data are statistically-averaged during the years and
provide monthly-averaged irradiation profiles, these haveto be
adjusted every day to adapt them to the actual meteorological
conditions and, thus, generate a realisticP̂PV model for that
day. Here is proposed an adjustment based on the real-time
calculation of the PV energy produced by the panels through-
out the day until a given instant of time,(EPV (t)) and on
its comparison with the ideal energy(EPV GIS(t) , according
to the PVGIS model for real sky conditions) which should
be expected at any moment [30]. The quotient among these
two energy values provides an instantaneous daily weather-
dependent coefficient which varies throughout the daytime.
This parameter has been called Cloudiness Coefficient (CC)



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, JUNE 2012 6

8 10 12 14 16 18 20
0

200

400

600

800

1000

Time of day

P
ow

er
 (

kW
)

 

 

PVGIS model
Prediction at 11 h
Prediction at 15 h
Actual irradiation

Fig. 2. Solar irradiation on the panels and predictions. Cloudy day.
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Fig. 3. Solar irradiation on the panels and predictions. Sunny day.

and is defined as:

CC(t) =
EPV (t)

EPV GIS(t)

As the day goes on,CC(t) gets more stable and closer to the
value that it will take at the end of the day. Combining this
fact with the well-known profile of the production according
to PVGIS, which exactly definesEPV GIS(t), the prediction
model is capable to progressively estimateP̂PV (t + k) more
accurately according to the following equation:

P̂PV (t+ k) = CC(t) · PPV GIS(t+ k)

Fig. 2 shows the proposed PV power prediction for a cloudy
day at two different instants of time,11 h and 15 h. Both
predictions given by the proposed model are quite accurate.
On the other hand, Fig. 3 shows the PV power prediction at the
same instants of time for a sunny day with some clouds during
dawn. In this case, the prediction at11 h is quite far under
the actual PV production. However, the prediction at15 h, is
much more accurate because as it is later in the daytime,CC

is more precise.
It is important to notice that, because of the nature of the

problem and the proposed controller, it is not necessary to
have a very accurate pointwise-in-time prediction of the PV
production, but rather an estimation of the energy given by the
PV panels in a period of time, i.e. the area under the power
curves. Therefore, the proposed prediction model is useful.

Note also that more complex weather forecasting systems,
such as satellite images [31] or Doppler radar systems [32],
[33], could be incorporated to the proposed MPC philosophy,
as long as they can provide a numerical PV production
prediction at every sampling time. However, the analysis and
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Fig. 4. Average energy prices in the Spanish market.

efficiency of the weather forecast techniques are beyond the
scope of this paper.

E. Imbalance settlement prices

Finally, the last inputs necessary for the MPC implemen-
tation are the estimation of the imbalance settlement prices.
Liberalized electricity markets have an effective public infor-
mation policy for both market participants and the general
public in order to ensure the transparency of the system op-
erator’s actions and, therefore, the electricity prices are public
and easy to find out. That is the case of the Spanish market,
explained in Section III, which uses a two-price system for
imbalance settlements. The Spanish system operator provides
relevant information about market results, including hourly
prices of daily and intraday markets, and positive and negative
imbalance settlements [34]. As starting estimation, imbalance
costs (4) are considered for the design of the controller as
the yearly-averaged price for each settlement period, shown
in Fig. 4 for year 2010. However, market participants with
improved information of electricity prices and data processing
could employ different estimation models that could take
into account particular circumstances such as seasonal trends,
holidays, and other kind of singular events.

V. RESULTS

The proposed MPC strategy has been tested by simulation
using actual irradiation data measured with a sampling period
T = 4 min in a PV installation located in Seville (Spain). The
nominal power of both the PV power plant and the ESS power
converter is 500 kW and the considered ESS has an energy
capacity of only 0.8 MWh, which is likely to saturate.

The MPC tuning parameters are given in Table I, and the
PV production is predicted bŷPPV as described in Section
IV-D. Three case studies are proposed: one in which the PV
power production is overestimated in the moment that power
commitments are settled, other in which this production is
underestimated, and a third one with an accurate estimation.
In each of them, the MPC strategy is compared with the basic
substraction strategy (1) in terms of obtained revenues. These
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TABLE I
MPC TUNING PARAMETERS.

N T λ(k) cp cn

60 4 min 0.999k as in Fig. 4 as in Fig. 4

csoc(t) PES,min PES,max EES,min EES,max

cp(t) -500 kW 500 kW 0 0.8 MWh
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Fig. 5. Overestimation of PV production case study.

are calculated considering the imbalance costs (4) and the
energy costcsoc(t) = cp(t), as discussed previously.

(16)R =

tsim
∑

t=0

T (c(t) (Pgrid(t)− Pref (t)))

+ Tcsoc(tsim + 1)EES(tsim + 1)

wheretsim is the final simulation instant.
All simulations are implemented in MATLAB in an Intel

Pentium D CPU 2.66GHz with 1 GB of RAM. The LPs are
solved by the Double Description algorithm [35], by means
of the MATLAB interface to the CDD software package [36]
provided by the MPT Toolbox [37].

A. Overestimation of PV production

As a first case study, the period of time corresponding to
sixth session of the intraday market has been considered forthe
cloudy day which PV production is shown in Fig. 2. For that
day, the energy management strategy implemented to define
the power commitments of the PV+ES plant overestimates the
PV production of the panels as indicated by the PVGIS model
curve and, therefore, it generates a set of future references,
Pref (t + k), higher than those that the system is capable to
produce. The ESS is initially at 30% SOC. Fig. 5 shows the
obtained results.

From Fig. 5, the advantages of the MPC strategy become
apparent. The basic strategy starts following exactlyPref ,
adding to the insufficient PV production the power from the
ESS, which discharges in less than one hour. On the other
hand, the MPC predicts soon that the ESS will discharge if the
committedPref are followed. Taking into account the price
structure, the control system including MPC tends to keep
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Fig. 6. Underestimation of PV production case study.

energy in the ESS in order to track the reference during the
latest hours of the intraday market session, when the imbalance
penalties are higher. That is, the MPC allows the system to
reduce its power production during the first hours in order to
charge the ESS. Moreover, it can be observed how the ESS
finishes the session completely discharged (as in the basic
strategy). Note that this is indeed the optimal behavior, as
power commitments after20 h were settled to0 because of
the PVGIS prediction, and therefore any surplus of energy
would have to be sold at a (much lower) positive imbalance
price.

If economic revenues are calculated following (16) for both
strategies, MPC’s is found to be4.4% higher, because tracking
failure is shifted to less expensive periods.

Simulation for the 5-hour period lasted a total time of
251.6 s in the aforementioned hardware, with an average
and a maximum computation time for the optimizations of,
respectively,3.26 s and3.45 s. The MPC strategy withN = 60
(and with higher horizons) is therefore fast enough to be
implemented with the proposed sampling period of4 min.

B. Underestimation of PV production

In the second case study, we analyze the opposite situation.
That is, during the sunny day whose PV production is shown in
Fig. 3, the energy management system underestimates the PV
production as shows the PVGIS model curve. The working
period corresponds in this case to the fifth session of the
intraday market and the ESS is initially at50% SOC. The
performance of the basic and the MPC strategies are compared
in Fig. 6.

In this case, as the PV production is higher than the
committed power, the ESS starts to charge with both strategies.
The basic one charges the ESS till the moment it is completely
full, and from that moment onwards power is directly supplied
from the PV panels to the grid. On the other hand, the MPC
system detects in advance that there exists a surplus of power
production and, as the imbalance prices decrease along that
intraday session, the system releases part of that surplus before
the price changes at12 h and once again at13 h. Note that the
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Fig. 7. Accurate estimation of PV production case study.

MPC does not start selling this excess of power before (e.g.
at 11h), what would allow a smoother power profile, because
at that point the prediction does not indicate yet that some
energy is going to be left over. Contrary to the previous case,
as the energy during the control horizon is valued at a positive
imbalance price, there arrives a time (at14 h) at which storing
energy in the ESS is valued higher than if it was sold, i.e.
csoc(t+N +1) > cp(t). From this point, the optimal strategy
involves charging the ESS.

The total economic revenue (16) is in this case2.35% higher
if the MPC is implemented.

This simulation, which covered a 4-hour long intraday
market session, lasted a total of217 s with an average
and a maximum computation time for the optimizations of,
respectively,3.32 s and3.81 s.

C. Accurate estimation of PV production

Lastly, as a third case study, we analyze the situation for a
sunny summer day in which the PVGIS model and the actual
PV production are very close and the power commitments are
well defined. The working period is again the fifth intraday
market session and the ESS is initially at50% SOC. The
simulation, which is performed in206.7 s (3.33 s average and
3.59 s maximum computation times for the optimizations),
offers the results shown in Fig. 7.

It can be seen how the MPC feeds an excess of energy
to the grid just before12 h, when it is best paid, and once
again just before14 h, at the cost of leaving the ESS almost
empty. This is due to the lowcsoc compared withcp(t) in those
moments. After 14 h this situation reverts and the ESS starts
to charge. According to (16), the MPC provides a revenue
1.57% higher. However, it is important to note that although
this is the optimal strategy according to the optimization index,
in this case one might prefer a most conservative approach.
This way, as the energy surplus is paid at a positive imbalance
price, it might be considered more effective to save a higher
amount of energy to give some more flexibility to the system
in order to cope with an unexpected overestimation of future
PV production. Such behavior can be accomplished by tuning

the MPC with a highercsoc in order to give more relevance
to the stored energy.

VI. CONCLUSION

PV systems can mitigate their production variability when
they employ ESS. As these technologies are still considerably
expensive, installations need to be designed with an accurate
ESS rating. However, when a reduced capacity is imple-
mented, the ESS is more likely to saturate, which turns into
failure of the power commitment tracking and economic penal-
ties. In this sense, the implementation of an MPC controller
in a PV+ES system has clear benefits, as it allows reducing
penalties associated to imbalances. This is mainly due to the
fact that the predictive control strategy has at its disposal a
more accurate prediction of the PV production than the system
had when the day ahead bid in the daily market. This helps
to detect in advance when the ES is going to saturate and,
if the imbalance costs are known, shift the tracking failureto
the moment in time when it produces the minimal economic
penalties. Therefore, the strategy here proposed improvesthe
integration of intermittent energy sources with ES that partici-
pate in an electricity market. Although generators in countries
such as Spain receive feed-in tariffs instead of participating in
such a market, they are anyway charged for their imbalances,
so it would also be helpful for them.

The MPC technique has been tested in simulation with
actual irradiation data from a PV installation located in Seville
(Spain). Furthermore, the computational cost of the solved
optimization problems (LP) have been shown to be low enough
to allow the implementation of the MPC strategy in a real plant
with a 4-minute sampling time.

Lastly, the use of an advanced optimization similar to the
one implemented in the MPC would allow a PV generator to
submit bids into the day ahead market that try to maximize
profits (i.e. higher generation in peak hours) while it avoids
ESS saturation.
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