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Radiomics has become an area of interest for tumor characterization in
18F-Fluorodeoxyglucose positron emission tomography/computed tomography

(18F-FDG PET/CT) imaging. The aim of the present study was to demonstrate how

imaging phenotypes was connected to somatic mutations through an integrated analysis

of 115 non-small cell lung cancer (NSCLC) patients with somatic mutation testings

and engineered computed PET/CT image analytics. A total of 38 radiomic features

quantifying tumor morphological, grayscale statistic, and texture features were extracted

from the segmented entire-tumor region of interest (ROI) of the primary PET/CT images.

The ensembles for boosting machine learning scheme were employed for classification,

and the least absolute shrink age and selection operator (LASSO) method was used

to select the most predictive radiomic features for the classifiers. A radiomic signature

based on both PET and CT radiomic features outperformed individual radiomic features,

the PET or CT radiomic signature, and the conventional PET parameters including the

maximum standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor

volume (MTV), and total lesion glycolysis (TLG), in discriminating between mutant-type

of epidermal growth factor receptor (EGFR) and wild-type of EGFR- cases with an

AUC of 0.805, an accuracy of 80.798%, a sensitivity of 0.826 and a specificity of

0.783. Consistently, a combined radiomic signature with clinical factors exhibited a

further improved performance in EGFR mutation differentiation in NSCLC. In conclusion,

tumor imaging phenotypes that are driven by somatic mutations may be predicted by

radiomics based on PET/CT images.

Keywords: epidermal growth factor receptor mutation, 18F-FDG PET/CT imaging, non-small cell lung cancer,

prediction, radiomics

INTRODUCTION

Lung cancer is one of the most frequently diagnosed malignancies worldwide, and is the
leading cause of cancer-related death, with a 5-year survival rate of only 15% (1). Non-small
cell lung cancer (NSCLC) accounts for more than 80% of all primary lung cancers (2). From
a genetic perspective, NSCLC is significantly driven by somatic mutations in some critical
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oncogenes, such as epidermal growth factor receptor (EGFR)
(3). Subsequently, several EGFR tyrosine kinase inhibitors (TKIs)
have been developed as small molecule targeted therapeutic
agents for the treatment of NSCLC (4–6). However, only some
groups of patients harboring an EGFR mutation have benefited
from EGFR TKI therapy, even with a high percentage of
EGFR expression in NSCLC (7, 8). Given the predictive role of
EGFR mutational status in the efficacy of EGFR-TKI treatment,
identification of EGFR mutational status in advance is crucial for
selecting the most effective therapeutic strategy to achieve precise
medicine (9). Currently, the assessments for EGFR mutational
status are based on biopsies of tumor tissue or surgical resection
acquisition (10, 11). Therefore, molecular testing to identify
the mutational status may be limited by invasive procedure,
long processing time, tissue sample availability and sampling
error due to tumor heterogeneity. Thus, a non-invasive, direct
radiographic method for the early detection of EGFR mutational
status is needed.

As a functional imaging modality, non-invasive 18F-
Fluorodeoxyglucose positron emission tomography/computed
tomography (18F-FDG PET/CT) is widely used for the diagnosis
and staging of oncology, playing an increasingly important role
in the evaluation and management of cancer (12). Concurrently,
18F-FDG PET/CT imaging has been suggested as a part of the
standard initial regimen for NSCLC patients (13). Different
metabolic phenotypes captured in 18F-FDG PET/CT images
represent different glucose metabolism styles associated with
somatic mutation (14, 15). As previously reported, active
mutations in EGFR could activate relevant intracellular signaling
pathways to enhance tumor glycolysis; consequently, intense
18F-FDG uptake manifestation in PET images was observed
(15). Previous studies conducted by other groups have also
demonstrated a positive correlation between the oncogene
mutational status and the maximum standardized uptake value
(SUVmax) in PET images (16–18). Nevertheless, there have
been conflicting results (19). Even though it is a widely accepted
semi-quantitative imaging parameter derived from 18F-FDG
PET/CT, SUVmax was the main cause of the controversy in
these investigation. As a single pixel value, SUVmax is not
able to reflect the glucose metabolism of the whole tumor.
Metabolic tumor volume (MTV), defined as the volume of tumor
tissues with high glycolytic activity, and total lesion glycolysis
(TLG) are increasingly being recommended as a volumetric
or quantitative measurement of tumor cells to overcome the
partial volume effects and statistical bias induced by the usage
of SUVmax (20, 21). Apart from all of these traditional PET
imaging parameters, more useful information than what can be
seen with the naked eye, can be captured in standard medical
images (22). In particular, an accurate quantification of the
spatial relationships between image voxels is significantly
helpful to describe the degree of tumor heterogeneity (23).
Fortunately, radiomics, which is an advanced mathematical
model to quantify the spatial relationships between image voxels,
is now an emerging area of interest in medical imaging (24).
The high-throughput extraction of radiomic features from
medical images w allows for a quantitative assessment of tumor
imaging phenotypes to achieve individualized therapy and

precise medicine (25). An emerging field that is closely related
to radiomics is radiogenomics, which integrates imaging and
genomic data to attain biological interpretation for imaging
phenotypes (25). Somatic mutations affect the ability of cells to
grow in otherwise non-permissive conditions. For example, a
mutation in EGFR (26, 27) and/or KRAS (28, 29) may induce
increased glycolysis and promotes glucose consumption via the
activation of the Akt signaling pathway, and these alterations
in glucose metabolism may be captured and reflected in PET
imaging. Based on the assumption that the extracted radiomic
metrics from medical images are linked to the molecular profile
of the tumor lesion, such as some key oncogene mutational
status, an increasing number of studies aim to investigate the
association between somatic mutations and radiomic features
in NSCLC (30–33). However, the majority of the investigations
have focused on the texture analysis in CT (34–36) and/or
magnetic resonance imaging (MRI) (37); whereas few studies in
relation to PET/CT radiogenomics are conducted (38–40).

In the present study, we established a radiomic signature based
on PET/CT images to reveal the predicative role of PET/CT
radiomics in EGFR mutation status. The radiomic signature
based on PET/CT images, especially when in combination with
a clinical model, is believed to be capable of predicting the
EGFR mutational status as a minimally or non-invasive imaging
biomarker to complement the molecular test in identification of
somatic mutational status.

MATERIALS AND METHODS

Study Design and Patient Selection
This retrospective investigation was conducted with the approval
of Tianjin Medical University Cancer Hospital Institutional
Ethics Committee. NSCLC patients with a single pulmonary
lesion (diameter > 1 cm) who underwent somatic mutation
testing and diagnostic 18F-FDG PET/CT imaging prior to any
treatment between June 2016 to July 2017 were included in this
study. Histological diagnosis of primary NSCLC was confirmed
by pathological examination of pulmonary surgical resection
specimen. Patients were excluded if they were pregnant, lactating
or had any or had any malignancies before. In addition, A total of
25 patients with NSCLC were excluded because the radioactivity
accumulated in their lesions which were mainly composed
of ground glass density components was too weak to be
automatically measured by PET VCAR software (GE Healthcare,
USA). Written informed consent was obtained from all the
patients in this study, and all of the general clinicopathological
characteristics of the eligible patients included were collected
and summarized in Table 1. This study was performed in
compliance with the Declaration of Helsinki and the relevant
ethical guidelines.

Patients Imaging
Briefly, the appropriate patient preparation (fasting for at least
6 h) and adequate blood glucose levels (<140 mg/dL) were
requested before an intravenous injection of 4 MBq/kg of 18F-
FDG was administered to all of the included patients. Then
whole body PET/CT imaging on a GE Discovery elite (GE

Frontiers in Oncology | www.frontiersin.org 2 October 2019 | Volume 9 | Article 1062

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. PET/CT Radiomics in NSCLC

TABLE 1 | Demographics and clinicopathologic characteristics of eligible NSCLC

patients with results for EGFR mutation status included in this study.

Total Mutant-

type

EGFR

Wild-type

EGFR

P-value

Number 115 64 51

Age, median

(range)

63 (28–77) 62.5

(33–77)

63 (28–74) 0.588

Smoking history

(yes)

36 (31.3) 15 (23.4) 21 (41.2) 0.042

Gender 0.347

Male 53 (46.1) 27 (42.2) 26 (51.0)

Female 62 (53.9) 37 (57.8) 25 (49.0)

Stage 0.968

I–II 90 (78.3) 50 (78.1) 40 (78.4)

III–IV 25 (21.7) 14 (21.9) 11 (21.6)

Adenocarcinoma

predominant

subtype

<0.001

Lepidic 12 (10.4) 9 (14.1) 3 (5.9)

Acinar 44 (38.3) 29 (45.3) 15 (29.4)

Papillary 9 (7.8) 4 (6.3) 5 (9.8)

Micropapillary 7 (6.1) 5 (7.8) 2 (3.9)

Solid 13 (11.3) 0 (0) 13 (25.5)

Mucinous 2 (1.7) 0 (0) 2 (3.9)

Not avaliable 28 (24.4) 17 (26.5) 11 (21.6)

Location 0.271

Upper lobe 69 (60) 40 (62.5) 29 (56.9)

Middle lobe 9 (7.8) 7 (10.9) 2 (3.9)

Lower lobe 34 (29.6) 15 (23.4) 19 (37.3)

Overlapping

lesion

3 (2.6) 2 (3.2) 1 (1.9)

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer.

P value < 0.05 was considered to indicate a statistically significant difference.

HealthCare, Waukesha, WI, USA) was performed 60min after
the 18F-FDG injection. Prior to the PET scan, a low-dose CT
scan (helical pitch 0.75:1, 5mm slice thickness, 120 kV and 50–
80 mAs) was acquired for anatomical correlation and attenuation
correction. A PET emission scan of 2min per bed position in
a three-dimensional mode was performed to integrate with the
corresponding CT images. After reconstruction via an iterative
algorithm, all PET imaging data were converted into SUV units.
The SUV was calculated using the formula: [region of interest
activity (mCi/mL)]/[injected dose (mCi)/body weight (g)]. All
PET images were reviewed in consensus by two experienced
PET/CT imaging-specialized experts. The volume of interest
(VOI) was determined using an isocontour threshold method
based on SUV using a commercial software (PET VCAR; GE
Healthcare, USA) on GE Advantage Workstation 4.6 (AW 4.6).
SUVmax, SUVmean and SUVpeak were calculated automatically
within the VOI.MTVwas defined as the tumor volume with 18F-
FDG uptake segmented above a threshold SUV of 2.5. If SUVmax
of the primary tumor was lower than a threshold SUV of 2.5,
we regarded the MTV of the lesion as 0. TLG was calculated by
multiplying MTV by SUVmean.

Somatic Mutation Assessment
Tissue samples submitted for mutational analysis were obtained
through biopsy or surgical resection. Genomic DNA of the tumor
specimen was extracted using amicrodissectionmethod based on
the manufacturer’s protocols. The nucleotide sequences encoding
the kinase domain (exons 18–24) of EGFR were amplified via
a quantitative real-time polymerase chain reaction (PCR)-based
method (qPCR). The presence of an appropriate PCR product
was confirmed by resolving the PCR products on a 2% agarose
gel. After purification, corresponding fragments on the gel were
sequenced in both sense and antisense directions using an
ABI PRISM R© 9700 and ABI PRISM R© 310 Genetic Analyzer
(Applied Biosystems, USA). The sequenced data using SeqScape
(Applied Biosystems) were analyzed and compared with the
archived human sequence of EGFR (GenBank accession no.
NG_007726.1), to identify the mutation. Of the 115 patients who
were tested for somatic mutations, 64 patients were mutant-type
of EGFR, whereas 51 patients tested negatively for the EGFR
mutation (wild-type of EGFR).

Measurement and Extraction of PET/CT
Based Radiomic Features
All segmentation was performed by two experienced PET/CT
imaging-specialized experts using ImageJ 1.50i software
(National Institute of Health, USA) to manually outline the
contour of the region of interest (ROI) which was delineated
on PET images using a 42% threshold of SUVmax. Any
disagreement was resolved by consensus. All radiomic features
were calculated by applying an existing automated computer
program (MATLAB, The MathWorks Inc., USA). Over the
segmented tumor region, a set of 38 quantitative radiomic
features were extracted for each patient. The 38 features
included: (1) morphological features (41, 42), such as area,
perimeter, diameter, and concavity. Area was defined as the
number of pixels in the tumor region; perimeter was determined
by counting the number of pixels in the tumor boundary;
diameter was determined by counting the maximum number of
pixels between any two points; and concavity rate was defined
as (A-B)/B, where A is the cross-sectional area of the tumor
and B is the area of the convex hull calculated for the lesion
region; (2) grayscale statistic (GSS) features (43) calculated from
the histogram of the tumor voxel intensities, such as the mean,
standard deviation, skewness, kurtosis, the fifth and sixth center
moment, energy, and entropy; (3) texture features for quantifying
intra-tumor heterogeneity calculated using the gray level co-
occurrence matrix (GLCM) (44): Prior to the computation of
texture features, the full intensity range of the tumor region
was quantized to a smaller number of gray levels 16. For angles
= 0◦, 45◦, 90◦, and 135◦, we computed four values for each of
the above texture measures. Each feature was computed using
a distance of one pixel. Then for each feature the mean values
were used as the feature sets; Gray level-gradient co-occurrence
matrix (GGCM) (45): It takes into account the information
of both gray level and gradient among each pixel in an image;
Gray level difference statistics (GLDS) (46): The features were
calculated for displacements δ = (0, 1), (1, 1), (1, 0), (1, −1),
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FIGURE 1 | A schematic representation of a typical radiomic workflow used in this study for EGFR mutation prediction based on PET/CT images in NSCLC. EGFR,

epidermal growth factor receptor; PET, positron emission tomography; CT, computed tomography; NSCLC, non-small cell lung cancer.

where δ = (1x,1y), and their mean values were taken (45, 46).
All the formula used to calculate GSS, GLCM, GGCM, and
GLDS features were provided in Supplemental Document S1.
The ensembles for boosting machine learning scheme were
employed for classification, and the least absolute shrinkage
and selection operator (LASSO) method (47) was used to select
the most predictive features for the classifiers. LASSO is a
regression analysis process utilized to identify the top-ranked
or most predictive features to minimize the predicting error of
outcome by altering the model fitting process. Three multivariate
radiomic signatures based on PET alone, CT alone and combined
PET/CT radiomic features were developed in the present study.
Finally, a subset of 7 PET radiomic features and 2 CT radiomic

features were finally identified and included in the PET/CT
radiomic signature establishment. More importantly, several
clinical factors, including age, gender, smoking status, clinical
stage and lesion location, were also combined with these three
developed radiomic signatures to create the corresponding
integrated signatures. The typical radiomic flowchart used in this
investigation is presented in Figure 1.

Statistical Analyses
Results were expressed as the mean ± standard deviation for
quantitative variables, whereas numbers and percentages were
used for categorical variables. The Wilcoxon rank-sum test was
used to determine whether there was a significant difference in
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FIGURE 2 | Comparison of conventional PET variables between EGFR mutated cases and wild type EGFR cases in NSCLC. (A) Box plots for SUVmax, SUVmean,

SUVpeak, MTV, and TLG between EGFR mutations. As illustrated, significant differences were exhibited for SUVmax, SUVmean, SUVpeak, and TLG between EGFR

mutations. Whereas, no marked variations were observed for MTV between the EGFR mutation positive (EGFR+) subgroup and the EGFR mutation negative (EGFR-)

subgroup. (B) Receiver operating characteristic (ROC) curves for the prediction of EGFR mutations using the identified significant conventional PET parameters,

including SUVmax, SUVmean, SUVpeak, and TLG. The area under the curve (AUC) was calculated for SUVmax, SUVmean, SUVpeak, and TLG, respectively. AUC,

the area under the curve; EGFR, epidermal growth factor receptor; PET, positron emission tomography; CT, computed tomography; NSCLC, non-small cell lung

cancer; SUV, standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis.

the feature values between EGFRmutated cases and cases without
the EGFRmutation. The correlations between conventional PET-
derived parameters and radiomic features based on PET images
were evaluated using the Spearman’s coefficient r value. The
predictive performance of each feature in classifying patients
according to their EGFR mutation status was evaluated and

quantified using the area under curve (AUC) in receiver-
operating-characteristic (ROC) curve analysis. The value of AUC

ranged from 0.5 to 1.0, where a value of 0.5 was interpreted
with the same probability as a random guess and a value

of 1.0 indicated a perfect classification. We used a Noether’s
test to determine whether the value of AUC was significantly
greater than a random guess (AUC = 0.5). Considering the
relatively small sample size included in this study, a 10-fold
cross validation was utilized and repeated 10 times to calculate

an average classification performance of the developed radiomic
signatures. To correct for multiple comparisons, all P-values
from the Wilcoxon rank-sum test were adjusted for multiple
hypothesis testing by using the Benjamini-Hochberg procedure
(48) [false-discovery rate (FDR)], with a significance threshold
of 10%. Analyses were performed using R statistical software
(version 3.2.2) and Statistical Package for Social Science 21.0
version (SPSS, Inc., USA).

RESULTS

Comparison of Conventional PET
Parameters Between EGFR Mutations
Of the 115 NSCLC patients with results for EGFR mutational
status assessment included in the present study, 56% (64/115)
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of patients harbored a EGFR mutation (EGFR+), whereas 44%
(51/115) of patients tested negatively for the EGFR mutation
(EGFR-; Table 1). To assess the association between conventional
PET parameters (SUVmax, SUVmean, SUVpeak, MTV, and
TLG) and EGFR mutational status, we first compared the
conventional PET values between the mutant-type of EGFR
and wild-type of EGFR subgroups, and then conducted ROC
analyses to evaluate their performances in distinguishing the
EGFR mutation. For EGFR mutated NSCLC patients, the
SUVmax, SUVmean, SUVpeak, and TLG were found to be
underrepresented in comparison with the EGFR- subgroup,
whereas no significant difference existed in theMTV between the
EGFR+ and EGFR- subgroups (Figure 2A). Using ROC analyses,
AUCs were assessed to evaluate the ability of the four significant
conventional PET parameters to predict EGFR mutational status
in NSCLC. As illustrated in Figure 2B, all three of the SUV
parameters were able to significantly discriminate the mutant-
type of EGFR subgroup from the wild-type of EGFR subgroup
[AUC = 0.621 (P = 0.026), 0.624 (P = 0.023), and 0.615 (P
= 0.035) for SUVmax, SUVmean, and SUVpeak, respectively],
but TLG did not exhibit significant predictive power for EGFR
mutation status in NSCLC [AUC= 0.597 (P = 0.074)].

Correlation Between Radiomic Features
Derived From PET Images and
Conventional PET Parameters
In order to reduce the potential redundancy among all
of the radiomic features extracted in this study, a feature
selection method called LASSO was adopted to select only
a subset of radiomic features to minimize the predicting
error of outcome. Then the correlations between the identified
radiomic features based on PET images and conventional PET
parameters were further determined in the present investigation.
As illustrated in Figure 3, among all of the identified PET
images-derived radiomic features, homogeneity, entropy and
contrast were found to be significantly correlated (P < 0.05)
with all five of the conventional PET quantitative parameters.
Spearman’s coefficients between these three radiomic features
and conventional parameters ranged from 0.336 to 0.500
(homogeneity), 0.252 to 0.388 (entropy), and −0.262 to −0.338
(contrast). Gray mean, concavity and ASM had poor or no
significant correlations (P > 0.05) with SUVmax, SUVmean,
and SUVpeak, whereas correlations between these three radiomic
features and MTV and TLG were stronger (P < 0.05), with
Spearman’s coefficients from 0.196 to 0.474. By contrast, radiomic
features called correlations were less correlated to MTV and TLG
(P > 0.05) than to SUVmax, SUVmean, and SUVpeak (P < 0.05).

Predictive Power of the PET/CT-Derived
Radiomic Signature for EGFR Mutational
Status
Tomore comprehensively evaluate the value of radiomic analysis
to predict EGFR mutational status in NSCLC, we developed
three radiomic signatures derived from PET images alone, CT
images alone and combined PET/CT images. As shown in
Table 2, among the three established radiomic signatures, the

FIGURE 3 | A heat map for the correlation between conventional PET

parameters and the identified radiomic features extracted from PET images.

PET, positron emission tomography.

one based on PET/CT images had the most predictive power
in discriminating between mutant-type of EGFR and wild-type
of EGFR cases with an AUC of 0.805, an accuracy of 80.798%,
a sensitivity of 0.826 and a specificity of 0.783. Meanwhile,
a radiomic signature based on the identified PET radiomic
features alone (AUC = 0.789) significantly outperformed a
radiomics signature based on CT radiomic features alone (AUC
= 0.667) in EGFR mutation discrimination in NSCLC. As
several clinical parameters, such as gender, smoking status, and
histopathological type, have been reported to be informative
for EGFR mutational status in NSCLC (49), we combined
several clinical parameters (including age, gender, smoking
status, clinical stage, and lesion location) with these developed
signatures to create integrated models in order to evaluate how
these clinical factors affect the performance of these radiomics
signatures. Consistently, combined radiomic signatures with
clinical factors exhibited improved performance, especially
for PET/CT radiomic signatures with an AUC of 0.822, an
accuracy of 82.652%, a sensitivity of 0.821 and a specificity of
0.823 (Table 3).

As represented in the box plots in Figure 4A, marked
differences existed between the EGFR+ subgroup and EGFR-
subgroup in regard to all of the identified radiomic features
included in the developed PET/CT radiomic signature [a total
of 7 PET-derived radiomic features (concavity, gray mean,
homogeneity, ASM, entropy, contrast, and correlation) and a CT-
based radiomic feature called gray span] except for a CT-based
radiomic feature called gray mean. The abilities of all of these
identified radiomics features to predict EGFR mutational status
in NSCLC were evaluated by assessing the AUC (Figure 4B). All
of the identified PET-derived and CT-based radiomic features
(gray span) were significantly predictive of EGFR mutational
status (P < 0.05). The discriminative power ranged from AUC=

0.609 for concavity to AUC= 0.776 for homogeneity with respect
to radiomic features based on PET images, and ranged fromAUC
= 0.590 for gray mean (P > 0.05) to AUC= 0.665 (P < 0.05) for
gray span regarding to CT images-derived radiomic features. As
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TABLE 2 | Radiomic signature to predict EGFR mutation in NSCLC.

Radiomic

signature

AUC Accuracy

(%)

Sensitivity Specificity

PET/CT 0.805 80.798 0.826 0.783

PET 0.789 79.056 0.779 0.800

CT 0.667 65.105 0.574 0.727

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; PET,

positron emission tomography; CT, computed tomography.

TABLE 3 | Radiomic signature combined with clinical models to predict EGFR

mutation in NSCLC (Age, gender, smoking status, clinical stage, and lesion

location were included in clinical model).

Radiomic

signature

AUC Accuracy

(%)

Sensitivity Specificity

PET/CT 0.822 82.652 0.821 0.823

PET 0.774 78.182 0.807 0.740

CT 0.686 68.712 0.721 0.650

EGFR, epidermal growth factor receptor; NSCLC, non-small cell lung cancer; PET,

positron emission tomography; CT, computed tomography.

clearly presented in Figure 4B, all of the PET radiomic features
significantly outperformed the three significant conventional
PET parameters (SUVmean, SUVmax, and SUVpeak).

DISCUSSION

Due to the high incidence and mortality associated with
NSCLC, the early precise determination of some of the
most common somatic mutations, such as EGFR mutational
status, will be beneficial in improving lesion differentiation,
responses to predictions and evaluations, and prognostication
(7–9). A growing body of evidence has illustrated that
radiomic assessments of the tumor imaging phenotype captured
in integrated PET/CT images markedly facilitated tumor
management, including differential diagnosis, tumor staging,
response evaluation, and survival prediction (25, 34, 35, 38–
40). Unfortunately, few studies have focused on evaluating the
performance of radiomics derived from PET/CT in somatic
mutation prediction for NSCLC patients (30, 31, 36).

In the present study, the aim was to reveal the association
between PET/CT radiomic features with EGFR mutational
status and evaluate their ability to predict mutational status
in NSCLC. In general, radiomic signatures based on PET/CT
images indicated a stronger predictive power for the EGFR
mutation than the CT radiomic signature and conventional
PET parameters. The results revealed that tumors with EGFR
mutations tended to have a more irregular boundary (higher
concavity), an overall lower randomness and complexity in a
gray-level distribution (higher gray mean, higher ASM and lower
entropy) and a higher heterogeneity (lower homogeneity, lower
correlation, and higher contrast) in comparison with tumors
without an EGFR mutation.

Consistent with the widely acceptable notion that tumors with
a EGFRmutation aremore indolent than tumors without a EGFR
mutation (50), the metabolic parameter measurements in our
study, such as SUVmax, SUVmean, and SUVpeak, were notably
decreased in the tumors bearing EGFR mutations when in
contrast with those observed in tumors without EGFRmutations.
Results from Mak et al. and Na et al. also indicated a decreased
SUVmax in NSCLC patients with a EGFR mutation compared
with in those without a EGFR mutation (51, 52), which is in
agreement with our results. Conversely, reports fromHuang et al.
and Ko et al. suggested that a higher SUVmax was more likely to
predict the presence of an EGFRmutation (50, 53), whereas other
previous results assumed no evident correlation between EGFR
mutational status and PET metabolic parameters (54–56). The
discrepancies in these aforementioned studies may be attributed
to the patient demographics and ethnicity. Further analysis on
larger cohorts and in different countries are needed to resolve this
issue. The overall unsatisfactory performance of conventional
CT and/or conventional PET features in the prediction of EGFR
mutation status inspired us to develop superior radiomic indices
to ascertain the somatic mutational status. Depending on the
imaging modality, texture analysis of heterogeneity through
radiomics conveys different meanings. PET-based radiomic
analysis refers to the variability of the metabolic phenotype, while
CT-based radiomic analysis manifests the distribution pattern
of tissue density. Even with the presence of a larger sample
size and an external validation design for previous studies with
respect to genotype-phenotype interaction in NSCLC (30, 31,
36), these investigation merely performed CT-based radiomics
(31, 36) or PET-based radiomics alone (26) for discrimination
between patients with positive somatic mutations and those
without somatic mutation. To determine this, we performed
comprehensive radiomic analysis based on combined PET/CT
images to evaluate their performances in EGFR mutation
prediction in NSCLC. In contrast to previous reports which
chose individual radiomic biomarkers in radiomic analysis in
order to identify somatic mutations in NSCLC (30, 36), a
radiomic signature that combinedmultiple radiomic features was
established in the present study, as one single radiomic parameter
is not sufficient to detect the gross heterogeneity in tumor
lesions. The identification of a radiomic signature predictive of
EGFR mutational status would be helpful in precision medicine
for NSCLC. It was assumed that radiomic features based on
PET and CT images were complementary to each other, and a
radiomic signature based on combining PET and CT radiomic
features could substantially improve its predictive power for
EGFR mutational status. In our investigation, the developed
PET/CT derived radiomic signature exhibited a comparable
predictive value to that of the radiomic signature based on PET
images alone in differentiating the mutant-type of EGFR and
wild-type of EGFR subgroups, whereas the established radiomic
signature based on PET images alone significantly outperformed
the radiomic signature based on CT images alone. A further
study involving a larger sample size and more extracted radiomic
features is required to be able to ascertain the outperformance
of PET/CT-derived radiomic signature over PET alone based
radiomic signatures in EGFR mutation prediction in NSCLC.
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FIGURE 4 | Predictive power of the PET/CT-derived radiomic signature for EGFR mutational status. (A) Box plots for all 7 of the identified PET-derived radiomic

features and the 2 CT-based radiomic features between the mutant-type of EGFR and wild-type of EGFRsubgroups. Except for a CT-derived radiomic feature called

gray mean, all of the identified radiomic features were significantly different between the mutant-type of EGFR and wild-type of EGFR subgroups. (B) Evaluation of the

predictive value of individual identified radiomic features for EGFR mutational status by receiver operating characteristic (ROC) analysis. *indicates that the value of the

area under the curve (AUC) was significantly greater than a random guess (AUC = 0.5). As presented, all of the identified individual radiomic features were capable of

discriminating EGFR mutated cases from cases without EGFR mutation, except for a CT-based radiomic feature called gray mean. In general, the PET-derived

individual radiomic feature outperformed the conventional PET parameters in distinguishing the mutant-type of EGFR and wild-type of EGFR subgroups. EGFR,

epidermal growth factor receptor; PET, positron emission tomography; CT, computed tomography; EGFR+, mutant-type of EGFR; EGFR-, wild-type of EGFR.

Despite the valuable results described above, there are
several limitations in the present study. First of all, owing
to the retrospective nature of the study, the acquisition,
reconstruction and delineation settings were not standardized
or optimized for the patients included in this investigation.
As reported previously, the repeatability of radiomics could
be markedly influenced by all these parameters (33, 57–60).
Secondly, partial volume effects as a result of the limited
PET spatial resolution may lead to an underestimation of
metabolic measurements in PET images (61), and probably affect
the PET-based radiomics for NSCLC patients with relatively
smaller tumor volumes. Furthermore, the lack of respiratory-
gated PET/CT imaging (62) may induce image blurring, which
consequently led to a relatively poor performance in the
quantification of the imaging phenotype. In the end, due to the
small sample size of this study, we did not perform a robust
external validation by applying a strict statistical design with
independent training and validation cohorts in a large number
of patients.

CONCLUSIONS

Tumor imaging phenotypes that are driven by somatic
mutations may be quantitatively measured by radiomic
features extracted from PET/CT images for NSCLC patients.

Radiomic features outperformed conventional PET parameters
in the prediction of EGFR mutational status. PET/CT
radiomic signatures combined with clinical factors exhibited
a further improved performance. More importantly, in
future investigations, we should be aware that intra-tumor
heterogeneity is a big challenge for imaging and genetic
correlation study. This is hard to overcome in current
radiogenomic study design. The recently proposed habitat
imaging study may have the potential to shed light on this
issue (63, 64).
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