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ABSTRACT

We present an algorithm for data delivery to mobile
sinks in wireless sensor networks. Our algorithm is based
on information potentials, which we extend to account
for mobility. We show that for local movement along
edges in the communication graph, the information po-
tentials can be adapted using a simple iterative dis-
tributed computation. However, for non-local move-
ment, the potential field might change significantly, and
iterative computation leads to packet loss and packet
delivery delays. We address this problem by introduc-
ing the mobility graph, which encodes knowledge about
likely mobility patterns within the network. The mo-
bility graph can be extracted from training data and is
used to predict future relay nodes for the mobile node.
Using the mobility graph, we can precompute and ef-
ficiently store additional routing states in the network.
This enables the algorithm to maintain uninterrupted
data streams. We analyze the benefits of computing
and maintaining a mobility graph, and show that the
information contained therein can be used to improve
routing reliability in experiments involving mobile sinks.

Categories and Subject Descriptors: C.2.4 [Com-
puter -Communications Networks|: Distributed Systems

Keywords: Sensor Networks, Mobile Routing
General Terms: Algorithms, Prediction, Routing

1. INTRODUCTION

While routing in static settings is well-explored, rout-
ing in the presence of significant mobility must still be
considered an open problem. This is particularly true
for routing in wireless sensor networks, where high link
volatility, scarcity of computational resources, as well as
energy constraints further complicate the problem.
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There have been significant advances in dealing with
the above-mentioned problems in static sensor networks,
and compact and reliable routing schemes have been de-
veloped [8], 28] |34]. These approaches, however, cannot
compensate for the drastic connectivity changes that re-
sult from moving network nodes. Nevertheless, data de-
livery to a mobile node is an important problem in prac-
tice. For example, janitors can improve their efficiency
by using live data in a building equipped with monitor-
ing sensors, vineyard workers can access mildew, humid-
ity, or chemical soil analyzing sensors during their daily
check-ups in the field, or biologists can do exploratory
research in the field with the help of habitat monitoring
Sensors.

In this paper, we address the problem of data delivery
to a mobile node in a wireless sensor network. For this
purpose, the sensor network is considered semi-static,
and while individual links may experience high volatil-
ity, its long-term connectivity changes only gradually.
The mobile nodes roaming through the network act as
data sinks only, and are not used to forward informa-
tion. Finding a route from anywhere within the network
to a mobile node is accomplished by finding a route to a
relay node in the network which is within radio distance
of the mobile node.

Thus, the problem can be decomposed into two parts:
finding a good relay node and finding a route to the re-
lay node. Network connectivity of a mobile user changes
rapidly at higher speeds. Therefore, setting up the route
must be fast to avoid high latency or packet loss. Fur-
ther, depending on the network topology, the route can
change significantly even if the relay node moves a short
distance. Packets already en route will be lost unless
additional mechanisms ensure delivery.

The routing algorithm that we present is based on a
routing tree which is implicitly defined as the gradient
of information potentials [26]. Information potentials
can be computed in a lightweight, distributed fashion.
Their convergence, however, is slow and they have been
thought to be impractical for moving sinks. We analyze
the routing trees induced by information potentials and



show that, if the movement of the sink is local, the infor-
mation potential converges after very few iterations and
defines a valid routing tree. If the movement of the sink
is non-local, however, the potential field has to change
significantly, requiring a large number of iterations un-
til convergence. The problem of adaptation of routing
data structures in situations when their local update
is insufficient is interesting in a broader aspect. We are
not aware of any previous work that analyzes when such
situations occur and what steps can be taken to improve
performance of routing protocols.

We introduce the mobility graph, a structure that en-
codes the movement patterns of mobile nodes. By an-
alyzing its differences with the connectivity graph, we
can determine the relay node transitions that can be
handled by iterative computation of the information po-
tential and the transitions that would require too many
iterations to converge without packet loss. For such non-
local transitions, we precompute information potentials
and store them in-network. To further improve routing
reliability, we use the mobility graph to predict future
relay nodes. Information potentials for the predicted
nodes are computed while the old route is still valid,
enabling an instantaneous switch to the new relay node.

We evaluate the routing algorithm with and without
prediction, and show that prediction significantly im-
proves reliability. We present a detailed analysis of the
effect of mobility on information potentials.

In summary, our contributions are the following:

e We introduce the mobility graph, a structure that
encodes knowledge about the possible movements
of agents roaming the area covered by a sensor net-
work. We show how to compute a mobility graph
from measured data, and demonstrate its utility
for routing and prediction.

e We propose a method for mobility prediction that
computes future relay nodes based on knowledge of
the mobility graph, as well as RSSI traces that rep-
resent the edges of the graph. Experiments show
that the best relay node for a mobile user can be
predicted with up to 90% reliability seconds before
the transition to that node happens.

e We extend routing based on harmonic information
potentials [26] to support mobile nodes. We show
that the routing trees induced by the information
potentials quickly stabilize for local movement of
the data sink, making the approach practical for
mobile nodes.

e We use the above to implement the predictive rout-
ing scheme optimized for data delivery in sensor
networks. The prediction is used to compute new
routing potentials before the old route becomes
useless. We show in simulations that prediction

increases the reliability of data delivery by up to
50% for mobile nodes at walking speeds. The al-
gorithm is robust to prediction errors.

The remainder of this paper is structured as follows:
After we discuss related work in Section [2] we address
the problem and give an overview of our method in Sec-
tion [3] Section [4] discusses the mobility model and in-
troduces the mobility graph, before we describe our ap-
proach for prediction of future relay nodes in Section
We describe our routing scheme in Section [6] Finally,
Section [7] presents an experimental evaluation of the ap-
proach and discusses the results.

2. RELATED WORK

Our work has two main components: mobility predic-
tion and routing to mobile sinks. In the following, we
discuss the most relevant related work in those areas.

Mobility Prediction.

We use prediction to find future relay nodes based
on past observations. Similar problems have been ap-
proached using Markov models. Liu and Maguire [27]
predict user movements in cellular networks. Paths are
matched to a database using similarity measures taking
into account positions, speeds, and recurrence frequen-
cies. While their model is simple, its predictive power
stems from its heavy customization to individual user
profiles and large movement databases. Similar models
have also been used for prediction in IP networks [13]. In
simulations using the Dartmouth College wireless net-
work usage data [20], the method improves packet re-
ception ratios as well as latency. A 2 year long experi-
ment presented in [32] contains Wi-Fi traces of mobile
users. The authors have shown that Markov models can
predict the next wireless access point with around 70%
accuracy for a median user. Lempel-Ziv text compres-
sion algorithms were also successfully applied to local
prediction problem by treating it as a strictly domain-
independent problem in [4].

Markov-style predictors are particularly well suited
for applications involving large networks in which users
move in a repeatable, non-random way [22]. However,
these algorithms use only a tiny fraction of the avail-
able data, ignoring signal strength measurements and
performing the prediction based on current and past
states alone. In smaller, less structured environments,
using all available data is essential. Research in the field
of robotics has developed tracking algorithms based on
signal strength measurements |29, 37].

An interesting class of algorithms uses clustering and
path matching to determine likely future trajectories
(e.g. 31114, [35]). These algorithms define routes through
a collection of trips which are similar to each other. Sim-
ilar to our approach, the prediction algorithm calculates



similarity of the current trip to the past trips and re-
turns the closest match.

Routing to Mobile Sinks.

In recent years, several routing protocols for networks
of mobile nodes (MANETS) have been developed [6], 7}
30,131]. These provide point to point routing capabilities
in networks in which all nodes are considered mobile.
While this requires only minimal assumptions on the
mobility of nodes or traffic patterns, routes have to be
recomputed frequently, an inefficient solution if parts of
the network are static.

On the other end of the spectrum, data delivery pro-
tocols for sensor networks [5, 133, [38] assume (mostly)
static networks that may be subject to link volatility. A
lot of effort is spent on optimizing link and route qual-
ity estimates which makes these algorithms inefficient
in adapting to mobile users.

Researchers have sought algorithms for special net-
work setups involving mobile nodes: If the mobility of
some nodes can be controlled, nodes can be moved to
optimize energy efficiency of the network |12} |17, 36]. If
the mobility can only be predicted, but not controlled,
mobility can be used to transport data |18 |19].

In this work, we will treat a commonly seen case:
a mobile sink communicates with the sensor network.
While the sensor network nodes are static, the sink is
not. For this problem, we need a data delivery sup-
porting a moving sink. Our routing scheme is based on
information potentials [26]. While we assume no con-
trol over the movement of the mobile sink, we use (im-
perfect) prediction to compute fresh routes before old
routes become useless.

The small state and weak synchronization require-
ments for information potentials are in sharp contrast
to most other methods for data delivery to mobile users
[1, 12, |10} [11} [24], which use global data structures.

3. OVERVIEW

We treat the problem of data delivery to a mobile sink
in wireless sensor networks. Sensor nodes are thought
to be static (i. e. not mobile), but otherwise subject to
constraints typical for a wireless sensor network. In our
approach, one sensor node, called the relay node, is des-
ignated as a proxy to the mobile node, through which
the data is forwarded to the user. Thus the relay node
becomes the data sink for all traffic destined to the mo-
bile node. Data can become available at any network
node, and at arbitrary times, so that all nodes must be
able to send data to the relay node at all times.

Routes to the mobile user are defined implicitly via
the gradient of information potentials [26]. The poten-
tials are iteratively calculated in the network in a dis-
tributed fashion. Whenever the relay node changes, the
information potentials have to be adapted.

We define the mobility graph, a data structure that
allows for seamless transition to a new relay node, re-
sulting in significant improvements in routing reliability.
We describe how the mobility graph can be extracted
from radio signal strength (RSSI) traces of users in the
environment. By associating RSSI traces with edges of
the mobility graph, we can predict future relay nodes
and time to the transition. We use dynamic time warp-
ing (DTW) to match the current RSSI trace of the mo-
bile node to the traces recorded in the past.

To minimize the impact of mobility, our routing algo-
rithm updates information potentials for both the cur-
rent and the predicted relay node, guaranteeing that the
new information potential is ready once it is needed. We
show that if the current and predicted relay nodes are
close in network topology, the new information poten-
tials require only very few iterations to define a valid
routing tree. Thus in this typical case, the relay node
prediction provides relatively small improvements of the
routing algorithm.

Prediction is extremely beneficial when users move
along edges in the mobility graph that correspond to
multi-hop paths in the network. In these cases, iter-
ative updates of network potentials do not yield good
routes quickly enough. We therefore store precomputed
information potentials at strategic points in the mobil-
ity graph. Thus, the routing algorithm can update its
potential field to the precomputed field instantaneously,
providing us with valid, near optimal routes to the relay
node at all times.

4. MOBILITY PATTERNS

Assuming that we can observe users as they go about
their everyday activities over a certain period of time,
it is possible to extract mobility patterns of the users
in the observed environment. In this section, we define
the mobility graph, a data structure that encodes these
mobility patterns.

More specifically, we assume that users carry a mo-
bile computing device that actively communicates with
surrounding sensor nodes. This allows us to observe tra-
jectories of the users indirectly via RSSI trace&ﬂ of their
communication links. Formally, we assume that N co-
operating infrastructure nodes measure signal strength
r;(t),i=1... N for each packet from a user U received
at time t. A location of the user at time t corresponds
to an observation vector

R(t) = (r1(t), ..., rn(1)).
At each point in time, we define the best connected node

B(t) = argmax 7;(t)

i=1...N

1Or in general, traces of any other link quality estimator.
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(a) Mobility Graph

(b) Network Connectivity Graph

Figure 1: The differences between mobility and connectivity graph. (a) Note the additional (blue)
edges in the mobility graph in regions where the network provides no coverage. (b) The connectivity
graph is significantly more dense (red edges) in areas where movement is constrained by walls.

as the node measuring the highest signal strength at a
given point in time.

In the discrete setting, the trajectory of a user corre-
sponds to an observation sequence

Rt : ty) = R(t1)R(ts) ... R(t1).

Given such an observation sequence, we can define the
sequence of best connected nodes

B(ty : ty) = B(t1)B(t2) ... B(ty).

Note that we do not assume the ability to measure
locations of the users directly, nor do we assume any
relation between the location of the user and the mea-
sured signal strengths. However, we do assume that if
the user follows the same trajectory at different times,
the corresponding observation sequences will be simi-
lar (after resampling). In essence, we assume that the
environment does not change drastically over time and
we aim to optimize routing protocols for the case of
frequently repeated mobility patterns. Even though we
require the training phase in our current approach, data
aging techniques can be used to relax this assumption.

4.1 Mobility Graph

The mobility graph is a high level data structure that
encodes mobility patterns learned from observation se-
quences. Formally, the mobility graph is defined on a
set of IV vertices, corresponding to the infrastructure
nodes. Two vertices v, and v, are connected by a (di-
rected) edge if there exists an observation sequence such
that at some point, the best connected node switched
from m to n:

i : {B(t;) = m} A {B(tiz1) = n}.

Intuitively, an edge in the mobility graph is inserted
whenever the user moves from node v,, to v,. This edge
assignment essentially cuts the observation sequences
into short segments, each segment corresponding to the
transition between two nodes. For a trajectory R;, each

edge e, ., connecting vertices v,, and v, is associated
with the segment R}'~™ = R;(t;,,t;,,) for which the
best connected node is n:

Bi(tj,—1) #n A
thn S t S tj7n : Bz(t) =n A
Bi(tj,,+1) = m.

This defines a set of segments S, for each graph edge e.

Although other ways of associating the data with the
graph exist, we found this to be most useful for routing
and prediction as described below.

Mobility Graph vs. Network Connectivity Graph.

Even though the mobility and network connectivity
graphs are defined on the same set of vertices, they can
have substantially different edge sets (see Fig. . On
one hand, the mobility graph can contain edges that are
not present in the connectivity graph, if a user moves
through areas without network coverage. On the other
hand, the connectivity graph can contain edges that are
not present in the mobility graph, since radio signals
can bypass obstacles, or travel through walls.

Using the Mobility Graph.

We use the mobility graph in two ways. The mobility
graph constrains future location of a user in the network.
We show in Section [5| that if we store typical signal
strength observation sequences at edges of the mobility
graph, both future relay nodes for a mobile user as well
as the time to transition to that node can be predicted
with high accuracy.

Edges in the mobility graph that do not exist in the
connectivity graph are the basis for the predictive rout-
ing algorithm described in Section [6} We use the dif-
ferences between the two graphs to identify regions in
the network for which routing information needs to be
precomputed.

We believe that the mobility graph is a valuable data
structure, independent of the uses laid out in this paper.
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Figure 2: Extracting the mobility graph from an observation sequence. Left: The layout of our office
with 10 infrastructure nodes. The trajectory is shown by a dotted line, arrows show the extracted
mobility graph. Right: RSSI data recorded during the experiment. An edge between nodes 2 and 1
is highlighted. This corresponds to the data segment in which node 2 is the best connected node.

For example, the differences between the mobility and
connectivity graph can guide network administrators in
deploying additional nodes or redeploying existing nodes
to improve the quality of the network coverage, or to
understand data traffic patterns.

4.2 Mobility Graph Extraction

The mobility graph is extracted from a set of obser-
vation sequences R = {R;(t;1 : t;2)} that correspond to
users moving in the environment. We assume that the
sequences are preprocessed and the set R contains only
continuous, densely sampled observation sequences. An
example of one such trajectory is shown in Fig.

Since the vertex set of the mobility graph is defined by
the set of infrastructure nodes, we only have to decide
which edges should be present in the mobility graph.
We determine the edges solely from the observation se-
quences. Given an observation sequence R;(t; : tg), we
add an edge in the mobility graph whenever the corre-
sponding best connected node B;(t) changes.

In practice, this algorithm might construct a large
number of edges in the mobility graph due to the noise
in the link quality measurements. Mobility of the users
exacerbates the effects of reflections and signal fading in
structured buildings or other urban environments. We
have implemented a number of filters that prevent con-
structing unnecessary edges.

The observation sequence is low-pass filtered and the
nodes in the best neighbor sequence are retained only
if they provide a high quality link for at least two sec-
onds. The obtained mobility graph is further pruned
by removing its infrequently observed edges. This final
filtering step can be adapted to provide a simple yet
efficient data aging mechanism: as new measurements
are taken, rarely visited edges in the mobility graph are
deleted, enabling the mobility graph to adapt to gradual
changes in the environment.

The filtering criteria are motivated by a cost analysis
of the routing algorithm. The cost of briefly losing a

connection to a node (a link failed because we did not
choose the “best” node with the highest signal strength)
is much lower than the cost of setting up a new con-
nection (if we switch nodes for less than two seconds).
Other applications may dictate other criteria, resulting
in a slightly different mobility graph.

5. MOBILITY PREDICTION

As we will show in Section[6} prediction of user mobil-
ity can significantly improve routing performance. We
use the mobility graph as defined above to predict fu-
ture relay nodes. We use pattern matching to determine
the current position in the graph.

With each edge e of the mobility graph, we associate
a set S, of observation sequence segments that are rep-
resentative for this edge. This set is determined in the
training phase during which the mobility graph is ex-
tracted. Set S, contains all segments that witnessed
the mobility edge e, normalized to the same transmis-
sion powerﬂ While the network is deployed, new data
can be added to the graph, and data aging techniques
can be applied to adapt the graph to gradual changes
in the environment.

The prediction problem can then be stated as follows:
At each time ¢, we know the current position of the
mobile user in the mobility graph, given by the current
relay node v;. Given the current RSSI measurements
R(to : t) since the last change of relay node, what is the
next relay node and when will the transition occur?

Using the mobility graph extracted in the training
phase, we can restrict the search by only considering
the set of outgoing edges £_. (v¢) from the current graph
vertex v;. In order to determine the correct edge, we
match the current RSSI trace to the stored RSSI seg-
ments of all edges in £_,(v;). The edge enin associated

2We simply calculate the mean segment-wise RSSI value for
each segment and scale the segments to have the same mean.
This way, the mobility prediction algorithm works even if the
transmitted signal had variable signal strength.
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Figure 4: Dynamic time warping: Left: The best
match between two sequences R and R defines
pairwise matches between individual samples. If
one sequence is significantly shorter, its last sam-
ple is matched to the remainder of the longer se-
quence (red correspondences). Right: The warp
distance Dprw in matrix form. The warp path
W is shown in red. In case of a partial match, W
reaches the edge of the cost matrix.

with the best-matching segment is chosen, and its end-
vertex is the predicted next relay node.

emin = argmin min Dprw (R, Rg)
e€€_, (ve) Rg€S.

The distance function Dprw is discussed below. Fig.
illustrates the matching algorithm.

5.1 Matching Segments Using DTW

We use dynamic time warping (DTW) [23] to find
a reliable match in the presence of significant differ-
ences in speed. Since mobile users move through a
dynamic environment, and each mobile user has differ-
ent characteristics (the most obvious is different natural
walking speeds), the measured RSSI sequence is warped
non-linearly in the time domain. The DTW algorithm
provides a similarity measure between two non-linearly
warped sequences as well as the optimal pairwise match
within the sequences. While the plain DTW algorithm
assumes that both sequences are complete, in our case
the current RSSI trace should be matched to the first
part of the stored data. We therefore use a variant of
DTW supporting partial matching. An additional out-

put of the matching algorithm is the estimated time to
transition.

In the following discussion, we will denote the cur-
rent RSSI trace as R(t; : t) and a trace stored in the
mobility graph as Rg(t] : ¢]).

To compute a matching, we first calculate the matrix
of element distances D by comparing each RSSI sample
from R to each sample from Rg:

Di; = d(R(t;), Ra(t})), (1)

where i € {1,...,k}, j € {1,...,1}, and d(-,-) is a dis-
tance function operating on vectors of RSSI samples; we
simply use the £2 distance.

The warp path distance matching the first ¢ samples
of R to the first j samples of Rg can then defined re-
cursively by

DDTW(i»j) = Dij + min [DDTW(i — 1,j) + «,
Dprw(i—1,7—1),
Dprw(i,j — 1)+ 8].

The penalties o and § are applied when a sample is
skipped in the stored or current data, respectively. The
traditional warp distance assuming a complete match
is now Dprtw (k,1). The path taken by the recursion
defines matches between individual samples in the se-
quences. We will write it as a sequence of index pairs
W =1[(1,1),...,(k,1)]. Fig.Hd|illustrates the matching.

By default, DTW matches the complete sequence and
computes errors accordingly. This behavior favors se-
quences of equal length. Since we are interested in par-
tial matches, we consider only the error incurred until
R is fully matched: we find the first sample an,in, of Rg
that matches the end of R, amin = min{a| (k,a) € W}
(see Fig. | for an illustration). The final DTW distance
for the partial match is then Dprw (k, Gmin)-

In our experiments, we have obtained the best results
penalizing stretching of longer sequences, and compres-
sion of shorter sequence. Thus, if ¢, —t; < t) — ¢}, we
use a = 50 and B = 0, while otherwise we use o = 0
and # = 50. The results, however, are not very sensitive
to the choice of these parameters.

Expected Time to Transition.

In order to synchronously change the routing behavior
throughout the network, it is useful to have advance
warning when the relay node changes. Using the partial
DTW matching outlined above, we can easily compute
an estimate. As before, we are given the current RSSI
trace R(t1 : t) and the best match Rg(t] : ¢]). Using
the match for the end point of R, ami,, we can estimate
the remaining time At until the end of Rg as
[ — Amin

At = (t, — t1)

Gmin



We use this information to synchronously change the
routing state of the whole network when necessary.

6. ROUTING

Our routing algorithm addresses the mobile user via
a relay node which is part of the static network. The
relay node temporarily becomes sink for all user data
packets and we will use the terms sink and relay node
interchangeably in the rest of this paper. We use infor-
mation potential based routing [26] to deliver messages
from any node in the network to the sink.

An information potential is a real function on the
nodes that is defined for a specific node, which in our
application is the relay node. It is defined to be the func-
tion that meets the following requirements: its value is
(a) 1 at the sink, (b) 0 at some other node (which we
ensure can never be the relay node), (c) at any other
node, the function value equals the average value of its
neighbors. It can be shown that there is a unique such
function for any given sink (it is the harmonic function
meeting the specified boundary conditions). The infor-
mation potential is a ‘smooth’ function with no local
extrema [21]. It is stable to small changes in network
connectivity.

Alternative interpretation of the information poten-
tial value at some node is the probability that a ran-
dom walk starting from that node will hit the sink be-
fore it hits network boundary. In particular, potential-
based routing takes into account not only the length
of the shortest path to the sink, but also the ‘robust-
ness’ of that path, i.e. the number of alternative, per-
haps slightly suboptimal paths that lead to the sink. It
prefers a path to the sink which may be a little longer
but follows a wide corridor, to a possibly short but thin
path, which can be fragile under link volatility. We feel
that this robustness property is important in wireless
network setting.

The above definitions imply that forwarding a packet
to the neighbor with the highest potential value, i. e. fol-
lowing the gradient of the potential guarantees packet
delivery to the sink. More precisely, an information po-
tential induces a routing tree whose edges connect each
node to the neighbor with the highest potential value.
For a more detailed description of information potentials
and a detailed discussion of their properties in static
routing, we refer to [26]. In the following, we will briefly
describe how we compute the potential, before address-
ing our extensions regarding dynamic updates.

6.1 Computation of Information Potentials
To compute and maintain information potentials, each
node only has to communicate to its 1-hop neighbors, so
the total per-node state is minimal. Specifically, we use
the Gauss-Seidel iterative method, in which each node
holds its own potential value, and periodically updates
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Figure 5: Convergence of routing trees induced
by information potentials under local sink move-
ment. We computed information potentials for
1000 random networks with 400 nodes each. The
plot shows the number of iterations until the
routing tree is valid (all nodes are reachable), af-
ter the sink has moved within its 1-hop, 2-hop,
and 3-hop neighborhood.

it to be the current average value of its neighbors (un-
less it is the sink or a fixed 0-node, in which case it does
nothing). Initial values can be arbitrary, which is useful
for dynamic updates, as we explain below. These up-
dates can also be asynchronous; as long as they happen
in regular enough intervals, the values will eventually
converge to the true potential.

6.2 Updates for Mobile Sinks

Whenever a node moves, the information potential
has to be adapted to the new sink. Most of the time,
the new sink v is a 1-hop neighbor of the old one w in
the communication graph. In that case, we expect only
a few edges in the routing tree induced by the poten-
tial to change, mainly those near v and v (a version of
this statement can be formally proved, using theory of
resistive electrical networks). In particular, nodes that
are far away from the mobile node can use the old rout-
ing tree with minimal performance penalty. Even if the
routing tree is still changing, packets that are en route
will eventually reach their destination, although they
may take a short detour. Very few iterations suffice to
repair the potential.

Fig. || illustrates our convergence claim for random
networks with 400 nodes: If the sink moves to a neigh-
boring node, we need an average of 3.8 iterations until
the computed potential defines a valid routing tree for
the complete network.

To further improve the routing performance, we can
use mobility prediction. If we know ahead of time which
will be the next relay node, we can start computing its
information potential before it is active. In practice,



Figure 6: Potentials are precomputed at only
few nodes and used by all nodes in a 2-hop neigh-
borhood around these nodes, reducing the over-
all number of stored potentials.

each node stores and updates two potentials, the current
potential used for routing, and the predicted potential,
which is used once the transition to the predicted node
took place. Thus, we start computing the new poten-
tial for a longer time, and the induced tree is likely to
have converged even before the potential is needed for
routing.

6.3 Precomputed Potentials

Calculating information potentials for the predicted
relay node solves the mobility problem for local move-
ment, however, we know that local movement in the
real world may be non-local within the network, as in
the bridge example shown in Fig.[6] We use information
contained in the mobility graph to determine where and
when such non-local movement can occur.

To each edge (u,v) of the mobility graph we can as-
sign a stretch, which is length of the shortest network
path connecting v and v. The problem of the update
method described in the previous section is that for
higher stretch edges, the information potential for u
is not a good start value for the potential of v, and
the induced routing tree will need many iterations to
converge. We therefore precompute potentials for some
nodes, so that in all cases, a good start value for the
iteration is available. Note that we only have to pre-
compute potentials for nodes that are the endpoints of
mobility graph edges with high stretch.

To reduce the storage requirements even further, a
cluster of endpoints of high stretch edges can share a
common potential (see Fig. @ When deciding where
to store potentials, we apply the following criterion: if
a node requires a stored potential because it is the end
point of a mobility graph edge with high stretch, we
first check whether a potential is stored in its k-hop
neighborhood. If there is such a potential, no additional
potential is required. Otherwise, the potential for this
node is precomputed. This simple clustering technique

leads to a very efficient sampling of the network with
precomputed potentials. The number of potentials that
we need to store depends on the topology of the envi-
ronment, specifically, the number of large holes. In our
experiments in Section [7.2] only 4 precomputed poten-
tials are actually stored. Note also that each potential
requires only one real value per node, which makes this
technique extremely lightweight.

6.4 Implementation

In our system, we implement the above ideas as fol-
lows: Each node stores two active potentials, one for
the current relay node and one for the predicted relay
node. These potentials are continuously updated. We
use a frequency of four iterations per second.

Two events change the state of the network: a new
prediction is available or the relay node changes. Both
events are propagated from their source (the mobile
node) by network-wide flood. We piggyback this flood
on the messages that periodically update the informa-
tion potentials. On one hand, this limits the speed of
the flood to the speed of the potential updates, but on
the other hand, no extra messages are introduced. The
flood contains four pieces of information: the current
relay node ID, the predicted relay node ID, the precom-
puted potential ID (if any) and the estimated time to
transition.

All these fields are provided by the mobile node (who
performs the prediction), and passed on by all nodes
in the network. If a node is named as current relay,
it changes its own field value for the current informa-
tion potential to 1 and does not change it in iterations.
If a node is named as predicted relay node, it changes
its predicted information potential to 1 and does not
change it in iterations. Finally, all nodes set an internal
timer to the estimated time to transition, such that the
network switches to the new potential in a synchronous
manner. Even though the accuracy of synchronization
is not critical in this case, note that synchronous coor-
dinated action in WSNs can be achieved to within a few
microseconds accuracy [25].

6.5 Extensibility to Multiple Users

Straightforward extension of our routing scheme to
several mobile users would require to store two poten-
tials per user. The communication and storage require-
ments therefore grow linearly with the number of mobile
users. Note that each potential requires only one float
value of storage space. Even with tens of users, updat-
ing all potentials is possible using a single message, thus
the communication cost for additional users would be
negligible. Therefore, the method is practical for most
sensor network deployments.

For very large networks with thousands of nodes and
hundreds of users, however, it would become prohibitive
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to maintain potentials for every user. Moreover, as we
show in the next section, information potentials do not
change significantly for distant users. Consequently, hi-
erarchical clustering techniques for users similar to
could be applied to reduce storage requirements.

7. EVALUATION

Firstly, we experimentally evaluate the mobility pre-
diction algorithm described in Section [5} We have de-
ployed a small testbed in a 750 m? indoor office space
and tested the prediction accuracy in a series of exper-
iments. In the second part, we evaluate the predictive
routing algorithm described in Section [f} We used a
map of our building to define a realistic 100 node topol-
ogy in an 9000 m? area. We implemented an extension
to TOSSIM simulator that allowed us to simulate mo-
bility of users along predefined trajectories.

7.1 Mobility Prediction

We tested the mobility prediction algorithm experi-
mentally, in a network of 10 MicaZ ﬂgﬂ motes deployed
in an office space (see Fig. [2h). We have covered the
area of approximately 30 m x 25 m, leading to a 3 hop
network. The infrastructure nodes were programmed
in TinyOS-2.1 and recorded time-stamped RSSI of
messages received from a mobile node. The mobile node
broadcasted messages with a 0.6 seconds period with
a constant transmission power throughout all experi-
ments. All experiments were taken during regular work-
ing hours, with people and equipment moving around,
doors opening and closing, and with the mobile node
moving both inside and outside of the building.

The algorithm requires a set of observation sequences
to learn the mobility graph. Altogether, we have col-
lected data for 9 different trajectories, repeating each of
them at least 5 times. We selected 5 of these trajecto-
ries for learning and used the remaining 4 for testing.
None of the testing trajectories was the same as any

learning trajectory, although learning and testing tra-
jectories overlapped in some segments. The trajectories
were collected over a one week period to account for
variance of RSSI signals over time.

The prediction algorithm needs to be able to reliably
predict the next relay node sufficiently in advance, to
leave enough time for the routing protocol to seamlessly
adapt to the new relay node. In general, prediction of
a few seconds ahead is sufficient.

We first evaluate accuracy of the prediction algorithm:
for a given observation sequence R(t; : tx), we construct
the best neighbor sequence B(¢; : tx) to obtain the
ground truth of which node is the relay node through-
out the experiment. In the online phase, we predict the
next relay node and estimate the time to transition to
the new relay node, At. We initially use only the first
observation R(t;) for prediction and incrementally con-
sider more observations R(¢; : t), until ¢t = t;. For each
prediction, we compare the predicted relay node and the
predicted time to transition to the ground truth and cal-
culate the ratio of correct predictions relay nodes. We
show the histogram of prediction accuracy depending
on the actual time to transition in Fig. [7] (a). As we
can see in the figure, the accuracy of the prediction is
initially low, since only few data points are available for
prediction. As the number of data points grows (with
decreasing time to transition), the accuracy of the pre-
diction improves significantly, ending around 90% for
prediction 1-2 seconds before the transition.

We further test how well the DTW algorithm can
compensate for speed differences. Fig. [7| (b) shows the
prediction accuracy of the same trajectory when the
walking speed in training and testing samples were iden-
tical, and when we changed the walking speed in the
testing phase by +30%. Although the prediction accu-
racy suffers, we will see that this has little impact on
the routing performance.
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Additionally, we measure the error in the estimation
of time to transition. Fig.[7](c) shows the mean error in
the estimate, along with the standard deviation of the
error. We will use this data below to build a statistical
prediction model for the routing simulation.

Finally, we explore the impact of the size and vari-
ability of the training set on prediction accuracy. First,
we discard datasets of some training trajectories (out of
the five trajectories we used in total). Fig. [8] (a) shows
that the prediction accuracy degrades significantly as
we remove trajectories from the training set. The main
reason is that the remaining training trajectories cap-
ture mobile patterns only partially and it is difficult
to predict trajectories that have never been observed.
Next, we kept all training trajectories, but removed
some of the repetitive training rounds for each trajec-
tory. Fig.[8|(b) shows that the prediction accuracy is less
dependent on the variability of the training set. Even
when removing 60% of the training data, the prediction
accuracy is quite high. Overall, this evaluation implies
that exploring the complete routes over the network
with fairly many training runs is an important factor
to achieve higher prediction accuracy.

7.2 Predictive Routing Simulation

We simulated a larger scale 9000 m? setup covering
one floor of our building to test performance of the
routing algorithm. Due to the layout of the building,
the network is U-shaped. Hence, the mobility graph
contains edges with high stretch. We implemented the
routing algorithm in TOSSIM as described in Section [6]
and ran experiments for 2 different paths, 6 different
speeds, and 10 different error models. For a fixed path,
speed, and error model, we simulated 1000 transmitted
packets overall and repeated each experiment 5 times
to obtain statistically significant data. Altogether, over
300 simulations were conducted to evaluate performance
of the routing algorithm under different scenarios.

To provide bounds on routing performance, we first
evaluate perfect prediction routing (using the known

Figure 9: TOSSIM deployment setup and an ex-
ample of a routing tree obtained from informa-
tion potentials. Infrastructure nodes are shown
as blue dots, the current relay node (the root
of the routing tree) is highlighted. The mobile
node moves along Path 1 and Path 2.

trajectory of the mobile user) and then disable some
components of the algorithm. This information is sum-
marized in Fig. We have tested two trajectories:
Path 1 containing non-local transition in the mobility
graph, and Path 2 that only contains local transitions.
For Path 1, using prediction and routing optimizations
improves the overall routing performance by about 50%
for the highest speed. Performance of the routing al-
gorithm for Path 2 was also above 90% for all speeds.
However, the baseline algorithm that uses no prediction
performed above 86% for all speeds, corresponding to a
modest improvement of about 4%. We do not show the
plots for Path 2 due to space constraints.

We have not implemented the actual prediction algo-
rithm in TOSSIM because it is hard to generate realis-
tic RSSI traces of mobile users in indoor environments.
Hence we used a statistical model of the qualitative pre-
diction behavior in the simulation. The error model was
built using the following parameters: the prediction ac-
curacy A, mean timing error 7, and the standard devi-
ation of the timing error o.
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7.2.1 Performance Under Failure

For the prediction of the relay node, we draw a ran-
dom number 0 < n < 1. If n < A, we predict the
correct next relay node, otherwise, we chose a random
(but incorrect) outgoing edge incident to the current
node from the mobility graph, and predict its end point
as the next relay node. Fig.[11](a) shows the effect of A
on the routing performance. In case of the timing error,
we assume it is drawn from a normal distribution with
mean 7 and standard deviation o. Fig.[11](b) shows the
effect of different values of 7. The graphs show perfor-
mance for Path 1 only. In both cases, we can see that
the quality of service achieved using our method is sig-
nificantly higher than the base case, even if the quality
of prediction is unrealistically low.

Fig. [T1] also shows an important property of the rout-
ing implementation: its performance gracefully degrades
to the original routing algorithm in the case of wrong
(or non-existent) prediction. This is because if the pre-
dicted node is different from the actual node, we discard
the predicted gradient value and adapt the existing gra-
dient field to the new relay node.

7.2.2  Convergence of the Routing Tree

It is interesting to note that the routing tree first con-
verges at the nodes close to the mobile user. This is due
to two reasons: the broadcast carrying new location of
the user is piggybacked on the potential field update
messages, and thus reaches faraway nodes slowly. Ad-
ditionally, the area around the relay node is close to
a boundary condition for the potential field (the relay
node has a fixed value of 1), and therefore converges
faster. Slower convergence at faraway nodes is not a
problem as the gradient direction at those nodes does
not depend on the accurate location of the user.

8. CONCLUSION

We have presented a sensor network data delivery pro-
tocol for mobile nodes. Our algorithm allows all nodes
in the network to send data to a mobile node. We
achieve gains in routing performance using novel com-
ponents: a mobility prediction algorithm, and a variant
of gradient-based routing that is able to adapt to a mov-
ing user, including the use of precomputed information
potentials for non-local movements.

We heavily build on the concept of the mobility graph,
a data structure that encapsulates and formalizes knowl-
edge about possible mobility patterns of users roaming
the sensor network. Especially in structured, man-made
environments, the mobility graph is a valuable tool for
understanding and optimizing wireless networks.

In the future, we aim to show the scalability of the ap-
proach to very large networks. To prevent explosion of



the routing state at each node, we need to limit the num-
ber of precomputed potentials each node stores. Since
the potentials need to be precomputed only for large fea-
tures in the environment, and since nodes do not need
to know about far away potentials, each node should
be limited to store only a few precomputed values. We
would also like to explore techniques that would allow
multiple users to share the same potential field, without
significantly increasing routing cost.

Finally, we would like to improve communication cost
of our protocol. We have shown that very few itera-
tions are required to update the potential field and that
the field changes significantly only close to the mobile
node. Consequently, a Trickle timer that exponentially
increases its period when the potential field is stable
could significantly decrease the cost of the field update.
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