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Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this

article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics

data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network

inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict

regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene ex-

pression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we

predict ~300,000 regulatory edges in a network of ~600 TFs and 12,000 target genes. We validate our predictions using

known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and

three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for

hundreds of previously uncharacterized genes, including many in nervous system development, which are independently

confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene

expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks

than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory

interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and

demonstrates the power of data integration for network inference and studies of gene regulation at the systems level.

[Supplemental material is available for this article.]

Transcriptional regulatory networks describe the regulatory pro-

gram of individual genes by specifying the transcription factors

(TFs) that regulate and determine the context-specific expression

of a gene. In multicellular organisms, regulatory networks co-

ordinate response to diverse extracellular signals and play a major

role in the development andmaintenance of living systems. These

regulatory programs are often conserved across species, while their

differences can form the foundation for morphological changes in

animal body plans (Erwin and Davidson 2009). Therefore, regu-

latory network inference efforts—both experimental and compu-

tational—are critical to predicting cellular response and for un-

derstanding the role of gene regulation in development, evolution,

and disease.

Reconstructed regulatory networks can be broadly catego-

rized into physical regulatory networks and functional regulatory net-

works. A physical regulatory network is one where edges represent

a physical interaction between a TF and a target as detected in

chromatin immunoprecipitation (ChIP) assays or predicted using

sequence-based DNA binding models (regulatory motifs). The

edges in such a network may not necessarily lead to functional

changes in gene expression. In contrast, a functional regulatory

network is one where edges between TFs and their targets are

supported by functional changes of downstream gene expression

(Capaldi et al. 2008), even if these relationships may be indirect.

The reconstruction of high-quality, genome-scale regulatory

networks requires integration of both physical and functional

evidence.

Substantial progress has been made in the assembly and

analysis of regulatory networks in unicellular organisms such as

Escherichia coli and Saccharomyces cerevisiae. For example, Reg-

ulonDB provides a literature-curated physical regulatory network

for E. coli (Gama-Castro et al. 2008). Integration of the known

regulatory interactions with coexpression data and sequence

motif–inferred targets have enabled the reconstruction of genome-

wide functional regulatory networks for E. coli (Ernst et al. 2008). In

S. cerevisiae, physical regulatory networks have been assembled

using ChIP for 203 TFs (Harbison et al. 2004) and conserved reg-

ulatory sites (MacIsaac et al. 2006), and a genome-wide compen-

dium of physical, metabolic, genetic, and regulatory interactions

has been generated using diverse functional data sets (Park et al.

2010).

The fruit fly Drosophila melanogaster provides an ideal model

organism for the inference and study of functional regulatory

networks in multicellular organisms. First, >100 yr of genetic

experiments have resulted in a rich body of literature about reg-

ulatory relationships, which have resulted in small, but high-

quality networks of known regulatory interactions such as REDfly

(Halfon et al. 2008). Second, comparative sequencing of 12 Dro-

sophila species (Drosophila 12Genomes Consortium 2007; Stark et al.

2007) has provided a wealth of sequence information, which can be
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used to distinguish regulatory motif instances under purifying

evolutionary selection that are thus more likely to be associated

with functional edges (Kheradpour et al. 2007). Third, D. mela-

nogaster has been the target of several recent studies mapping the

in vivo binding of TFs, providing genome-wide target regions for

a growing number of TFs (Zeitlinger et al. 2007; Li et al. 2008,

MacArthur et al. 2009; Zinzen et al. 2009). Fourth, the availability

of genome-wide data sets measuring mRNA expression levels for

all genes across the developmental stages in D. melanogaster en-

ables the identification of functional relationships between TFs

and their targets.

These rich data sets saw a further dramatic improvement

with the launch of the Drosophila Model Organism Encyclopedia

Of DNA Elements (modENCODE) project (Celniker et al. 2009;

The modENCODE Consortium et al. 2010). These include high-

quality RNAseq time-course data sets measuring genome-wide

transcriptional levels during development (Graveley et al. 2010),

numerous histone modifications in two cell types (Kharchenko

et al. 2011), as well as histone modifications and TF binding

across the D. melanogaster developmental stages (Nègre et al.

2011). Together, the modENCODE project has assembled one of

the most comprehensive collections of functional data sets for

a single organism, which can greatly facilitate our ability to an-

notate functional elements of an animal genome and understand

its regulatory circuitry.

Here, we present a network-based approach for large-scale

functional data integration to understand gene regulatory mech-

anisms.We construct integrative regulatory networks, which leverage

both physical and functional data sets to identify regulatory re-

lationships between TFs and target genes, and use these networks

for gene function and gene expression prediction. For the network

inference component, we develop a machine-learning framework

for inferring regulatory edges between TFs and target genes using

both physical and functional data sets as input features. We use

both supervised and unsupervised inference approaches, the for-

mer trained using the REDfly database (Halfon et al. 2008). We

further introduce novelmetrics to assess the biological relevance of

inferred regulatory connections, based on known regulatory re-

lationships, protein–protein interactions (PPIs), gene expression,

tissue expression, gene ontology (GO) annotations, and Genome-

Wide Chromosome Conformation Capture (Hi-C) contact maps

showing three-dimensional contacts between chromosomal seg-

ments (Sexton et al. 2012). We use these metrics both to assess the

contribution of different types of data sets toward network in-

ference and also to compare the overall quality of both integrative

networks and single-feature input networks.

We also leverage the integrative networks to gain insights

into the regulatory properties of D. melanogaster. We characterize

the topological properties of the resulting networks, evaluate their

power for genome-wide prediction of candidate gene functions

(GOprocess annotations), and studywhether the expression levels

of target genes can be predicted using linear combinations of the

expression levels of their regulators, as dictated by the learned

regulatory network. In contrast to previous methods for gene ex-

pression prediction (Bonneau et al. 2007; Bussemaker et al. 2007;

Chikina et al. 2009) and gene function prediction (Zhang et al.

2004; Macskassy and Provost 2005; Sharan et al. 2007; Costello

et al. 2009), we take a two-step approach here, in which regulatory

networks are first inferred by data integration, and then prediction

parameters are learned using the learned network topology. This

enables us to learn predictive models using many fewer data sets,

once the network topology is fixed.

Our results provide several new insights into gene regulatory

networks:

• We find that the two types of evidence used in regulatory network

inference are complementary: Physical information (TF binding,

motif conservation) and functional information (coordinated ex-

pression and chromatin patterns) show little overlap, while their

combination captures known regulatory edges themost accurately.

• We find that while physical information (TF binding, motif

conservation) is the most informative feature for network in-

ference as benchmarked against the known REDfly network, it

alone shows almost no functional enrichments or predictive

power for gene expression levels.

• We develop a set of novel validation metrics that can be used to

assess the quality of inferred regulatory networks, which go

beyond assessment based on known interactions and GO en-

richment typical of previous network validation work.

• We provide new functional annotations for hundreds of pre-

viously unannotated genes, including several noteworthy ex-

amples in nervous system development (NSD) that are

independently confirmed by their tissue-specific expression

patterns in neuronal precursor tissues.

• We find that a linear regressionmodel of predicting target gene

expression level from TF expression level can predict the ex-

pression of ;17% genes, and these ‘‘predictable’’ gene expres-

sion patterns are also more reproducible between different

experiments.

• We find that the genomic regions of distal coregulated genes

tend to be colocalized in three-dimensional chromosome con-

formation capture experiments, confirming that our regula-

tory predictions also reveal functional colocalization of

genomic segments.

• We make both regulatory networks and the functional pre-

dictions available, together with source code for network in-

ference and validation, to enablewider applicability ofmachine-

learning methods in regulatory genomics.

Overall, the framework introduced here is general and

should be applicable in any species. While we demonstrate the in-

tegrative approach to network reconstruction using the Drosophila

modENCODE data sets, our approach will be particularly relevant

as the human ENCODE project moves from 1% coverage in its

pilot phase (The ENCODE Project Consortium 2007) to genome-

wide coverage (The ENCODE Project Consortium 2011), which

should enable functional comparisons between flies, worms, and

mammals.

Results

Integrative inference of regulatory networks

To reconstruct the integrative regulatory network of D. melanogaster,

we used a machine-learning framework to combine both func-

tional and physical regulatory interactions (Fig. 1). The physical

TF–DNA regulatory interactions consist of (1) evolutionarily con-

served instances of TF binding site motifs across 12 Drosophila

genomes (Kheradpour et al. 2007; Stark et al. 2007) for 139 TFs

with known motifs, and (2) experimentally defined TF binding

occupancy profiles from ChIP studies for 76 TFs (Zeitlinger et al.

2007; Li et al. 2008; MacArthur et al. 2009; Zinzen et al. 2009;

Nègre et al. 2011). The functional data sets are summarized in

Table 1 and consist of (1) profiles of chromatin modifications and
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general transcriptional regulators in two cell types and across the

developmental time-course (Kharchenko et al. 2011; Nègre et al.

2011), and (2) gene expression profiles across the developmental

time-course (Hooper et al. 2007; Nègre et al. 2011).

To enable integration across these diverse types of data, we

represented each data set as a directed, weighted network, with

edges from TFs to target genes and weights proportional to the

strength of regulation evidence (see Methods). This resulted in six

feature-specific networks, which form the basis for the integrative

functional regulatory networks. The two physical feature-specific

networks, referred to as the motif regulatory network and binding

regulatory network, are based on evolutionarily conserved motif

instances and TF occupancy data sets, respectively. Theweights of

the motif network come from the strength of the evolutionary

conservation (Kheradpour et al. 2007). The binding network has

binary weights, based on the presence of ChIP binding peaks.

Both motif instances and ChIP binding peaks are restricted to

a window of 6500 bp around the transcription start site (TSS) of

a target gene. The four functional feature-specificnetworks are based

on two expression and two chromatin profile data sets (Table 1).

Weights in the expression- and chromatin-based networks are

given by the correlation between TF and target gene expression

profiles and chromatin profiles, respectively (see Methods).

We used both an unsupervised and a supervised method to

combine the six feature-specific physical and functional net-

works to infer an integrative regulatory network (Fig. 1). We es-

timated an edge ‘‘weight’’ for each possible TF-target pair, as

a function of the six feature-specific weights provided by the in-

put networks. For the unsupervised network, we used the average

of all the input weights across the six networks (see Fig. 1B;

Methods). This approach was chosen for its simplicity, as a base-

line for comparison with the supervised network. For the super-

vised network, we trained a logistic regression classifier based on

known regulatory interactions from the REDfly database, version

2.2 (Halfon et al. 2008), using 10-fold cross-validation (see Fig.

1C; Methods). This resulted in two integrative networks, one

supervised and one unsupervised, each showing high coverage

and connecting ;600 TFs with over 12,000 target genes (Sup-

plemental File 1).

Network overlap and recovery of known

regulatory interactions

To assess how informative individual feature-specific networks

are for predicting regulatory edges between TFs and their target

genes, we compared their edges with edges from REDfly. Each

Table 1. Number of genes, conditions, and type of measurements for expression and chromatin modification data sets

Data application Type Protocol Conditions No. of genes No. of conditions Reference

Network inference Gene expression RNA-seq Developmental time-course 13,567 11 Nègre et al. 2011
Network inference Gene expression Microarray Developmental time-course 11,990 28 Hooper et al. 2007
Network inference Histone marks ChIP-chip Developmental time-course 13,494 12 Nègre et al. 2011
Network inference Histone marks ChIP-chip Cell lines 13,494 2 Kharchenko et al. 2011
Validation Gene expression RNA-seq Developmental time-course 13,596 30 Graveley et al. 2010
Validation Gene expression RNA-seq Cell lines 13,596 4 Graveley et al. 2010
Validation Gene expression Microarray Cell lines 14,428 25 Cherbas et al. 2011

Figure 1. Overview of inference methodology for supervised and unsupervised functional regulatory networks. (A) The four types of input features to
the network inference algorithms are: evolutionary conservedmotifs (red) and ChIP-based binding (orange) of TFs near the transcription start site (TSS) of
target genes (physical features), and correlation of chromatin (green) and expression (blue) profiles between TFs and target genes (functional features). (B)
Unsupervised network inference: An integrative network is formed by adding the evidence from each input feature with equal weight (sum-rule). (C )
Supervised network inference: The input features are used in a classifier that predicts for every TF–target pair the presence or absence of a regulatory
interaction. The classifier is trained on a literature-curated set of known interactions (REDfly).
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feature-specific network showed significant similarity to the

REDfly network, with edges present in each network significantly

more likely to also be present in the REDfly network than would

be expected by chance (Fig. 2A, rightmost column). Among the

feature-specific networks, the network based on evolutionarily

conserved motif instances showed the strongest enrichment

for REDfly edges (threefold enrichment). Note that the motif

network is the only feature-specific network that integrates an

evolutionary conservation score, which may explain its high

enrichment: Evolutionary conservation is known to be a strong

predictor of functional regulatory elements (MacIsaac et al. 2006;

Kheradpour et al. 2007). The integrative networks that combine

the evidence of all feature-specific networks, however, had the

strongest enrichment for REDfly edges (supervised, 3.7-fold; un-

supervised, 3.9-fold), demonstrating that integration of diverse

features leads to higher recovery of true regulatory relationships.

The recovery of REDfly edges by the different feature-specific

networks (Fig. 2; Supplemental Fig. 1), as well as the weights

assigned to these features by the supervised algorithm (Fig. 2C),

show that the evolutionarily conserved motifs were the most

informative, followed by TF binding (ChIP), chromatin marks,

and expression data.

We next compared the feature-specific networks to each

other and to the integrative networks (Fig. 2A). The integrative

networks showed the strongest enrichment for the motif net-

work, followed by the ChIP binding network and chromatin

networks, suggesting that these are the strongest contributors.

We found that feature-specific networks were more similar to the

integrative networks than to other feature-specific networks,

suggesting that our features are complementary and also that our

integrative networks have captured their complementary prop-

erties. The only exception was a strong pairwise enrichment

between the two chromatinnetworks (6.7-fold vs. 5.2- and 5.4-fold

enrichment for the two integrative networks); a moderate enrich-

ment was also found between the two expression data sets (2.9-

fold), but this was still smaller than their average similarity to the

integrative networks (3.7-fold). Remarkably, the motif-based,

chromatin-based, and expression-based feature-specific networks

also showed, on average, higher similarity to REDfly edges than

to feature-specific networks of different types of evidence (i.e.,

between expression, chromatin, motifs, and binding), again em-

phasizing the power of integrating diverse data types for re-

covering true regulatory edges. The only exception was the TF

binding–based networks that showed higher similarity to chro-

matin networks, likely due to previously reported nonspecific TF

binding in regions of accessible chromatin (The modENCODE

Consortium et al. 2010).

We also assessed how varying the cutoff for predicting in-

teractions in the feature-specific and integrative networks af-

fected the recovery of edges in the REDfly network.We found that

both integrative networks recovered a higher number of REDfly

edges than any feature-specific network (Fig. 2B). For example,

the top 100 predictions of our integrative networks recover 20

REDfly edges compared with less than four expected at random.

In contrast, only five to 13 are recovered in the top 100 pre-

dictions of the feature-specific networks.

In summary, the fact that the REDfly edges were among the

highest-scoring predicted edges of the integrative networks con-

firms both the importance of integration of different features for

regulatory network inference and that our approach is able to do

this successfully.

Functional enrichments of regulatory networks

In addition to the recovery of known regulatory relationships, we

assessed the biological relevance of the physical and integrative

Figure 2. Comparison of known, predicted, and single-feature networks. (A) Pairwise network comparison based on the enrichment for common in-
teractions among feature-specific networks (physical, chromatin, gene expression), the integrative networks (supervised and unsupervised), and the REDfly
network. (Black) Enrichment values that are statistically significant (P < 0.05, hypergeometric); (gray) enrichment values not statistically significant. Enrichment
of each feature-specific network with REDfly tends to be stronger than its enrichment to other feature-specific networks of different types (between physical,
chromatin, expression), suggesting that these features are capturing complementary sets of interactions. Integrative networks show the strongest enrichment
for known edges. (B) Recovery of known REDfly edges at different thresholds for both integrative and feature-specific networks. (Curves) The fraction of the
204 REDfly edges recovered versus the fraction of predicted interactions considered (the expected number of edges recovered by chance [random; dashed
line] is kP/T, where k is the number of edges considered, P is the number of REDfly edges, and T is the total number of possible edges). Integrative networks
reach significantly higher recovery rates than single-feature networks, highlighting the importance of data integration. (C ) Relative importance of the different
input features in the supervised integrative network evaluated as the percentage contribution to the increase in scores of the top 10,000 edges (seeMethods).
Evolutionarily conserved motifs are the strongest contributor, followed by TF binding data (ChIP), chromatin marks, and expression data.
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networks based on the tendency of genes targeted by similar TFs

(coregulated targets) to exhibit similar functional properties. For

each network, we measured the enrichment of coregulated genes

in five independent data sets: (1) GO functional annotations, (2)

tissue-specific gene expression patterns, (3) an independent ex-

pression time-course that was not used for network inference, (4)

PPI networks, and (5) contact maps of three-dimensional chro-

mosome conformation.We also computed these measures for the

REDfly network, both to validate our evaluation methodology

and to compare the performance of our networks to the gold-

standard, but much lower-coverage curated, network.

First, we evaluated whether pairs of genes targeted by com-

mon regulators show similar GO annotations, reasoning that

coregulated genes may participate in similar processes or have

similar functions. We extracted pairs of target genes that share

>50% of their regulators and computed enrichment for common

GO terms (as well as corresponding P-values; see Methods). As

expected, the REDfly network showed the highest fold enrichment

for cotargeted genes to show similar GO terms (approximately

twofold vs. randomized networks), which confirms the relevance

of this metric (Fig. 3A). The two integrative networks were also

significantly enriched (;1.5-fold), while including;10-fold more

TFs and;100-foldmore targets than REDfly. In contrast, themotif

and bindingnetworks show relatively lower enrichment (1.07- and

1.23-fold, respectively). These enrichments in the independent

GO data sets support the functional relevance of the integrative

networks.

Second, we reasoned that coregulated genes might be local-

ized to similar tissues. To assess this, we used the Image Gene

Ontology (ImaGO) of 145 distinct tissue terms (Tomancak et al.

2007), which describes the spatial pattern of gene expression based

on in situ hybridization on whole-mount embryos. We computed

the enrichment of ImaGO annotations among pairs of genes

having >50% of their regulators in common (see Methods). Al-

though the REDfly network reaches the highest fold enrichment

(2.4-fold vs. randomized networks), it did not pass the significance

test due to its small size (Fig. 3B). The two integrative networks had

similar, high enrichment (about twofold), while the motif and

binding networks had none or weak enrichment, suggesting that

our integrative networks are highly relevant for determining tis-

sue-specific expression.

Third, we reasoned that coregulated genesmay bemore likely

to be expressed at similar developmental stages. We computed the

average coexpression level of genes with >50% common TFs across

a 30-time-point RNA-seq developmental time-course (Graveley

et al. 2010), whichwas not used as an input feature for the network

construction. The strongest enrichment was again observed in the

two integrative networks and REDfly (about threefold) (Fig. 3C),

although for the small REDfly network the enrichment is not sta-

tistically significant. In contrast, physical networks showed weak

enrichment (<1.5-fold) that was not significant, confirming the

relevance of our integrative networks for determining de-

velopmental expression.

Fourth, we reasoned that physically interacting genes should

tend to be coregulated, as has been previously observed in yeast

(Yeger-Lotem et al. 2004). Thus, we evaluated the overrepre-

sentation of PPIs for genes that are coregulated, using a set of high-

confidence PPIs from the literature (Pacifico et al. 2006; seeMethods).

Indeed, the REDfly network showed strong enrichment for PPIs

among coregulated genes (10-fold) (Fig. 3D). The two integrative

networks were also significantly enriched (;1.9-fold), while

the physical networks showed weak or no enrichment, again

supporting the functional relevance of the inferred integrative

networks.

Fifth, we evaluated whether the regulatory information cap-

tured in our networks relates to three-dimensional chromosome

organization in the nucleus. By using chromosome conformation

capture followed by high-throughput sequencing (Hi-C), a recent

study has produced high-resolution contactmaps of fly embryonic

chromosomes, revealing that chromosomes are organized hierar-

chically in a functional manner (Sexton et al. 2012). We used the

resulting data sets to evaluate whether the genomic regions of

Figure 3. Functional enrichment and coverage of regulatory networks. Functional enrichment of coregulated genes for annotation with similar
functions (A), colocalization in tissues (B), coexpression in an independent developmental time-course (C ), physical interactions between coregulated
genes (D), and colocalization in three-dimensional chromosome conformation (E). (F) Coverage of the networks. The manually curated REDfly network
shows strong enrichment for coregulated genes to be annotated with similar functions, colocalized in tissues, coexpressed in development and to
physically interact, thus supporting the relevance of these metrics, although it did not pass the significance test in B,C, and E due to its small size. The
integrative networks show significant enrichment for all five metrics, while including ;10-fold more TFs and ;100-fold more targets than REDfly. In
contrast, the two physical networks (conserved motifs and ChIP binding) show relatively lower enrichment.
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distal coregulated genes are enriched for nuclear colocalization in

the Hi-C contact map (see Methods). Indeed, we found that both

the supervised and unsupervised integrative networks are signifi-

cantly enriched for nuclear colocalization of coregulated genes

(1.3- and 1.2-fold, respectively) (Fig 3E). In contrast, the motif

network and binding networks show none or weak enrichment,

and the REDfly did not contain any coregulated genes within

colocalized regions.

Taken together, the observed enrichments in all five data sets

considered strongly confirm the biological significance of the in-

tegrative networks.

Structural properties of regulatory network

We next analyzed the structural properties of the integrative

networks. We found that the number of targets for each TF (out-

degree) exhibited a scale-free distribution expected for biological

networks and similar to those previously observed in E. coli

(Balázsi et al. 2005) and S. cerevisiae (Supplemental Fig. 2; Guelzim

et al. 2002; Stewart et al. 2009). There are large variations in the

number of targets per TF, with some TFs targeting several thou-

sand genes (e.g., ;6000 targets for Myb) and many others only

few genes (Supplemental Files 3,4). The integrative networks also

showed high clustering coefficients and small characteristic path

lengths (Supplemental Fig. 3) characteristic of small-world net-

works (Jeong et al. 2000; Ravasz and Barabási 2003; Potapov et al.

2005; Lancichinetti et al. 2010). The genome-scale nature of our

regulatory network also enabled us to study the distribution of

the number of TFs for each target, which is difficult in TF-centric

approaches such as ChIP-seq and ChIP-chip, which analyze only

a few TFs at a time. We found that the number of TFs for each

target (in-degree) also obeyed a scale-free distribution consistent

with E. coli and S. cerevisiae. Most genes are targeted by few reg-

ulators (50% have #10 regulators), while a handful of genes are

heavily targeted by hundreds of regulators (e.g., 180 regulators for

predicted zinc-finger regulator CG15514). The heavily targeted

genes are enriched in a range of GO biological processes related to

gene regulation, including cell cycle, regulation of gene expres-

sion, and regulation of metabolic processes (Supplemental File 5).

This suggests regulatory feedback and signal integration, as the

most heavily targeted genes are themselves regulators. Indeed,

these networks were also enriched for feed-forward and feedback

loops and other motifs suggesting extensive cooperation and

combinatorial control (Supplemental Fig. 4B; Supplemental Note

1), as well as high interconnections with miRNAs (Supplemental

Fig. 4A).

Prediction of candidate functions for genes lacking

functional annotations

As a demonstration of the utility of the regulatory information

captured in the inferred networks, we sought to predict likely GO

process terms for previously uncharacterized genes using a ‘‘guilt-

by-association’’ approach (Macskassy and Provost 2005). In this

approach, GO process categories of unannotated genes are pre-

dicted based on the GO categories of other genes with similar

functional properties. However, while previous approaches had

only used expression evidence (Zhang et al. 2004), protein in-

teraction networks (Sharan et al. 2007), or genetic interactions

(Costello et al. 2009), we combined regulatory information and

expression information to leverage the ‘‘coregulation’’ infor-

mation captured by our regulatory networks (see Methods).

To combine coexpression with coregulation, we first grouped

genes into 34 similarly expressed clusters using a Gaussianmixture

model, where each gene was probabilistically assigned to a cluster

based on the similarity of its expression profile with the average

expression profile of the cluster. We also defined a regulatory

similarity score for every pair of genes based on the proportion of

regulators that they have in common. We then computed a score

for a given query gene to be a member of a GO process category,

based on its regulatory similarity to all genes in that category,

weighed by the probability of belonging to the same expression

cluster as the query gene (see Methods).

We used this approach to predict candidate functions for

genes with no previous GO process annotations, as well as addi-

tional candidate annotations for genes that are already annotated

with a GO process (Supplemental File 7). Only genes that are part

of the integrative networks were considered. At any score cutoff,

we estimated the false-discovery rate (FDR) of our predictions for

a givenGOprocess category (seeMethods; Supplemental Fig. 5). At

a FDR # 0.2, using the unsupervised network, our approach pre-

dicts GO process annotations for 23% of the genes with no pre-

vious annotation and additional annotations for 15% of genes

with previous annotations. Our predictions include both general

processes, such as oxidative phosphorylation and regulation of

gene expression, as well as specific developmental processes, such

as NSD and muscle structure development. Compared to using

expression information alone, the combination of network in-

formation and coexpression was able to predict more GO process

terms, especially for low FDR (Supplemental Fig. 5), suggesting that

combined evidence leads to improved predictive power.

For example, we predicted a function in NSD for 101 genes,

which included 42 recovered, knownmembers (true positives) and

59 newly predicted members of NSD. The majority of these genes

(80) belong to two main expression clusters (Fig. 4). The first

cluster comprises genes that peak in expression at embryo 4–14 h

and again in late larval and prepupal stages, as expected for NSD

genes (Levine et al. 1995). The second expression cluster comprises

genes that peak at the embryonic time points only. Moreover,

according to their ImaGO annotation (Tomancak et al. 2007), the

newly predicted NSD genes show tissue-specific expression in

neural precursor tissues (e.g., central brain, ventral cord, and dor-

sal, ventral, and procephalic ectoderm), similar to many known

NSD genes, even though this information was not used to make

the predictions (Fig. 4C). This suggests that many of the new pre-

dictions, including 29 genes that lacked any previous functional

annotation, are likely to function in NSD.

Inspired by the NSD enrichments for neural tissues, we sys-

tematically compared the tissue-specific expression of newly pre-

dicted versus the correctly recovered (known) gene members of

a GO process category, as an additional validation of our pre-

dictions. For every GO process term, we tested both the set of

newly predicted and the set of recovered, known genemembers for

ImaGO tissue enrichments, which were not used to make the GO

process predictions and thus provide an independent source of

validation. Indeed, we found that the newly predicted gene

members were generally enriched in similar tissues as the re-

covered, known gene members of a given GO term (Fig. 5A,B),

supporting the biological relevance of our predictions.

For the ImaGO tissues that were enriched in both the novel

and the correctly recovered, known gene members of a given GO

category, we further compared the fold-enrichment values in

the two gene sets. As our method leverages regulatory similarity

between unannotated and annotated genes to identify new
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members of a functional category, we should expect that newly

predicted members of a functional category are also more likely

to be coregulated, and thus we should expect enrichments that

are at least as high. In fact, we found that the ImaGO tissue en-

richment for the newly predictedmembers was actually higher, on

average, than the corresponding enrichment for the recovered,

known members of the same GO term (Fig. 5C; Supplemental File

8). For example, genes newly predicted to function in the pattern

specification process showed a 10-fold enrichment for midline

tissues, whereas recovered members of this GO category only

showed a 4.3-fold enrichment. These results not only confirm that

the newly predicted GO process annotations are consistent with

tissue-specific behavior of these genes, but they also demonstrate

the power of our integrative regulatory networks for function

prediction.

Predicting target gene expression level as a function of TF levels

Numerous studies have shown that multiple regulators can act

together in additive and combinatorial ways to determine the ex-

pression of a downstream target gene (Bussemaker et al. 2007).

These studies have typically focused on a small number of high-

confidence regulatory edges, which also are frequently coupled

with experimentally determined parameters for activation, re-

pression, and cooperation. It is not clear however, how such studies

can scale to genome-wide prediction of gene expression across

thousands of genes.

To address this question, we used regulatory relationships

captured by the integrative regulatory networks to predict the ex-

pression of each target gene as a function of the expression of its

predicted regulators. With no access to parameters for regulator

activity or motif ‘‘grammars’’ dictating cooperation (Wilczynski

and Furlong 2009), we used a simple regression model to predict

the expression level of a target gene as a linear combination of the

expression levels of its regulators (see Methods). We used expres-

sion levels in a 30 time-point developmental time-course obtained

using RNA-seq to learn the regression weights (Graveley et al.

2010), a data set thatwas specifically not used as an input feature to

our network inference algorithm, and assessed predictive perfor-

mance using 10-fold cross-validation. By use of this approach, we

learned linear models for all target genes that are part of the in-

tegrative regulatory networks and have measured expression in

the developmental time-course. The learned weights represent an

aggregate effect of trans-acting (Boulesteix and Strimmer 2005;

Boorsma et al. 2008) and cis-acting effects (Raveh-Sadka et al.

2009), which would be difficult to explicitly model individually

Figure 4. Genes predicted to function in nervous system development (NSD). Gene expression (A), regulators (B), and ImaGO tissue annotation (C ) for
correctly recovered (known) and newly predicted NSD genes. The two expression clusters comprising themajority of the predicted NSD genes are shown.
The two clusters are driven by different, but largely overlapping, sets of regulators. Within each of the two clusters, the newly predicted NSD genes show
similar expression profiles and similar sets of regulators to those of the recovered, known NSD genes. Moreover, both the recovered and the newly
predicted NSD genes show similar expression patterns in nervous system tissues, which were not used as input features.
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Figure 5. Tissue-specific expression of correctly recovered (known) versus newly predicted genes of different GO process categories. (A) The heatmaps
show, for the set of predicted gene members of each GO category (rows), the enrichment for expression in specific tissues (columns). Only those GO
processes that are significantly enriched in at least one tissue (hypergeometric test with FDR < 0.05; Methods) are shown. For most GO categories, the
correctly recovered (known) genes are enriched in specific tissues. (B) The newly predicted genes for a given GO category tend to be enriched in fewer, but
similar, tissues as the known genemembers. (C ) The scatter plot compares the fold-enrichment (seeMethods), for the ImaGO tissues that were enriched in
both the recovered and newly predicted gene members of a given GO category. For these same tissues that the known genes are enriched for, the newly
predicted genes have similar or higher enrichment.
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because we do not measure these aspects of regulation. As a rep-

resentative example, the regulatory model and expression pre-

diction of the gro target gene are shown in Figure 6 (for additional

examples, see Supplemental Fig. 6 ). We note that 30 time-points

would have probably been insufficient to learn predictive ex-

pression models de novo, but in this particular case, we have al-

ready learned the topology of the network by data integration,

and we are only using these 30 time-points to learn edge weight

parameters.

To evaluate the predictive power of the integrative networks

compared to other networks, we applied the same approach to

predict expression using the feature-specific network based on

ChIP binding, the feature-specific network based on conserved

sequence motifs, and the REDfly network. For each considered

network, we compared the average squared error across all genes

to the squared error obtained using the same learning scheme on

a randomized network (see Methods). For instance, of the 8433

target genes that were in the unsupervised network and had

measured expression in the developmental time-course, expres-

sion was predicted substantially better for 1988 genes and worse

for 787 genes compared to a randomized network, corresponding

to a 2.53-fold enrichment for higher accuracy (Supplemental

Table 1). Similar results were obtained for the supervised in-

tegrative network (2.03-fold enrichment). In contrast, the ChIP-

based and motif-based physical regulatory networks showed

almost no enrichment compared with randomized networks

(1.04- and 1.08-fold, respectively), even though they were two of

the strongest informers of the integrative network, suggesting

that they are informative but not predictive in isolation. Lastly,

the REDfly network showed the strongest enrichment compared

with random networks (3.9-fold enrichment), but due to its small

size the expression of only 76 genes was predicted, emphasizing

once more the importance of genome-wide network inference.

For each network, we defined a set of ‘‘predictable’’ genes for

which expression prediction errors were consistently lower than

random networks (six out of 10 random networks), and a set of

‘‘unpredictable’’ genes for which expression prediction errors were

consistently higher in six out of 10 random networks. We found

that the integrative networks showed more than 1000 predictable

genes, for both the unsupervised network and the supervised

network, while the motif network had fewer than 200 predictable

genes and the ChIP network actually showed an excess of un-

predictable genes (Supplemental Table 1). These results were also

supported by comparison of the squared error distributions be-

tween the true and randomizednetworks, whichwere significantly

different for the integrative networks (t-test, P < 0.05), but not for

the motif and ChIP networks (Supplemental Fig. 7). At a more

stringent threshold of eight out of 10 for predictable genes, the

supervised and unsupervised networks still show a fourfold en-

richment over motif and ChIP networks (8% and 9% vs. <2% of

predictable genes).

Last, we evaluated whether the coefficients learned in the

developmental time-course were also relevant for target gene ex-

pression prediction in independent conditions, which were not

used in model learning and were not represented in any other

expression data set.Weused twohold-out data sets of four RNA-seq

(Graveley et al. 2010) and 25 microarray (Cherbas et al. 2011) cell-

line experiments. For each predictable gene, we used the model

learned in the time-course experiment to predict its expression in

the cell lines.We found that for the integrative networks, over 66%

of predictable genes remained predictable in the RNA-seq cell line

data sets compared with <52% for the ChIP and motif networks

(Fig. 6C; Supplemental Table 1). Additionally, for the integrative

networks, over 56% of predictable genes were also predictable in

the 25 cell line data sets compared with <42% of unpredictable

genes, suggesting that both the coefficients learned and the pre-

dictability of genes were relevant in independent conditions.

It is possible that genes that were unpredictable with the

linear regression model used here could be less tightly regulated.

To test this we evaluated the reproducibility of expression patterns

across the developmental time-course of predictable and un-

predictable genes. For each set of genes, we quantified the cor-

relation of gene expression patterns between the 30-time-point

developmental expression data set (Graveley et al. 2010), and the

11-stage time-course data set sampled at longer time intervals

(Nègre et al. 2011). We found that predictable genes showed a sig-

nificantly higher correlation between the two data sets compared

with the remaining genes (P-value < 13 10�7 and 13 10�39 in the

unsupervised and supervised networks, respectively) (Supple-

mental Fig. 8), suggesting that predictable genes are also more

Figure 6. Expression prediction of the gro target gene. (A) The top five regulators of the gro gene and the magnitude of the regression coefficients.
Regulators are colored based on the sign andmagnitude of the regression coefficient (green indicates repressors; red, activators; darker, stronger). (B) True
expression (dashed orange line) and predicted expression (solid red line) for the gro gene across the developmental time-course. The remaining lines show
the corresponding expression profiles of the five regulators, colored according to panel A. (C ) True and predicted expression levels of the gro gene in four
cell lines, using the same coefficients from panel A as learned on the expression time-course. The expression levels of the five regulators are also shown.
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reproducible. If we assume that more highly reproducible expres-

sion corresponds to less noisy and perhaps more precisely regu-

lated genes, this suggests that our inability to predict gene

expression for some genes may be due to intrinsic variability in

their expression levels.

Overall, our results demonstrate the potential of regulatory

networks for gene expression prediction. While the simple linear

model used here could only predict the expression of a subset of

the genes, our results suggest that unpredictable genes may in fact

be more noisy or less tightly controlled and that predictable genes

remain predictable in new cellular conditions, suggesting that the

coefficients learned formany of our genes are biologically relevant.

While the results here are encouraging, building predictivemodels

of gene regulation remains an enormously difficult problem.

Continued advances will likely benefit frommore complexmodels

of gene regulation that potentially incorporate genome sequence

in determining the weights and combinatorial relationships be-

tween regulators in predicting the expression levels of downstream

genes.

Discussion

In this article, we integrated diverse genome-wide data sets gen-

erated by the modENCODE consortium using a machine-learning

framework to reconstruct genome-wide regulatory networks for

the model organism D. melanogaster, and investigated both su-

pervised and unsupervised learning paradigms. Our networks can

recover many more edges in the curated REDfly network than can

physical networks that rely solely on motif or ChIP data. Analysis

of input feature importance to the integrative network quality

showed that evolutionarily conserved motif instances were the

strongest contributor, followed by TF binding and chromatin

information, while coexpression information was the weakest

contributor. Enrichment of cotargeted genes in common GO

functional categories, common developmental and tissue expres-

sion, PPIs, and chromosome conformation colocalization further

confirmed the biological relevance of the predicted networks. The

integrative networks showed comparable enrichments to the

manually curated REDfly network for each of the four data sets

where its enrichment could be evaluated, while including 10-fold

more regulators (;600 vs. 73), 100-fold more targets (;10,000 vs.

76) and 1000-fold more edges (>200k vs. 204). Finally, we used

the networks to infer GO process annotations for genes lacking

a previous annotation and to predict expression levels of target

genes as a function of the expression levels of their upstream

regulators. In both prediction tasks, integrative networks strongly

outperformed all feature-specific networks and the REDfly

network.

Comparison with expression-based functional networks

Traditional network reconstruction approaches are unsupervised

in nature where the goal is to infer the edges based on the observed

expression of a node. While such approaches have been successful

in inferring functional networks (Bonneau et al. 2007; Roy et al.

2009), their success in inferring regulatory networks has been

hampered by the difficulty of distinguishing direct from indirect

interactions from expression data. These indirect links can arise

between cotargeted genes of the same TF or between a TF and

a target separated by an intermediate TF (Marbach et al. 2010), as

indirect links are likely to have a high score in coexpression driven

inference. In contrast, in network inference driven entirely by TF

binding, indirect links are all automatically discarded in the ab-

sence of physical evidence of binding. By combining expression

information with experimental and computational evidence of TF

binding (ChIP andmotifs, respectively), integrative networks limit

indirect links and recover known REDfly edges much more accu-

rately than the purely expression-based networks.

Comparison with network inference based on sequence motifs

and ChIP binding

A canonical way to reconstruct a regulatory network is to identify

instances of known TF motifs in the regulatory regions of genes

(Kheradpour et al. 2007). Themajor difficulty with this approach is

that we can infer edges only from well-characterized TFs that have

a known binding site associated with them. A complementary

approach is to perform ChIP assays for TFs of interest, followed by

motif discovery on the bound regions of the genome. While these

approaches can infer direct, physical edges, they also identify

‘‘nonfunctional’’ edges that do not result in changes in gene ex-

pression (Li et al. 2008). In our setting, we had only 139 TFs with

knownmotifs and 76 TFs with ChIP data, which constitutes about

a sixth of the TF space we wanted to span. We leveraged motif and

ChIP wherever possible, but we relied on expression and chro-

matin data to complement the physical evidence. This has the

advantage of inferring edges that are both physical and functional

and resulted in a global map with similar functional enrichments

to the hand-curated REDfly network, while having dramatically

higher coverage for TFs, targets, and edges.

Comparison with other integrative approaches

Previous integrativemethods for transcriptional network inference

were mostly centered on expression-based approaches, either in-

tegrating different types of expression data (Greenfield et al. 2010;

Gupta et al. 2011) or using an additional data source as a fixed prior

for expression-based inference (Bernard and Hartemink 2005).

Supervised inference methods were used to integrate known in-

teractions from curated databases as training data, but only used

expression data as an input feature to predict interactions (Qian

et al. 2003; Seok et al. 2010). A notable exception is the method of

Ernst et al. (2008), which uses both sequence motifs and expres-

sion data as input features. However, this method trains a local

classifier for each individual TF and is thus not well suited for

higher organisms, where little or no training data are available for

the majority of TFs. In contrast, we trained a global classifier to

predict regulatory interactions by integrating motif, binding,

chromatin, and expression data as input features. Interestingly, our

analysis showed that chromatin profiles were more informative

than the commonly used expression profiles (Fig. 2C), suggesting

that epigenomic data sets represent a hitherto underappreciated

data source for functional network inference.

Comparing supervised and unsupervised learning

While there aremany computational approaches to infer networks

and to integrate data, it is not clear which particular method is

useful for the task of regulatory network reconstruction by in-

tegrating different data sets. Supervised learning approaches make

efficient use of the available interactions, whereas unsupervised

learning approaches are unbiased and applicable to organisms

lacking sufficient training data. Here, we investigated both super-

vised and unsupervised learning frameworks where each data

Marbach et al .

10 Genome Research
www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com


source served as an additional source of regulatory evidence for

inferring an edge. Interestingly, we found that the unsupervised

approach performed comparably on the REDfly network as did the

supervised approach, which was specifically trained on REDfly.

This competitiveness of the unsupervised strategy is likely due to

the very limited number of known interactions used for training

the supervised approach and shows that an unsupervised, in-

tegrative network inference approach is a promising direction to

pursue for inferring regulatory networks especially for organisms

with little or no training data. It also emphasizes the need for

continued validation of high-confidence interactions to enlarge

the size of gold-standard networks that can be used for training

computational methods.

Comparing input features

The value of data integration cannot be overemphasized for the

task of regulatory network inference. We used our integrative

framework to study the usefulness of different features for regu-

latory network inference in the context of REDfly. While motifs

were the strongest contributors to recovery of the known REDfly

network, we found that chromatin profiles of TFs and their targets

were also major contributors, enabling us to infer targets of TFs

lacking motifs or ChIP information. Previous work has shown

that networks derived from different types of datamay be affected

by different biases in inference (Marbach et al. 2012). Indeed, the

feature-specific networks were complementary to each other,

namely, those edges that could be predicted by one feature were

not necessarily predictable by the other, further demonstrating

the need to integrate complementary data sources. While some

feature-specific biases may be inherited by integrative networks,

for example, stemming from the selection of TFs that have been

experimentally profiled or contain known regulatory motifs, the

overlap of the different data sources helps reduce these potential

biases and add more confidence to the inferred edges. Overall,

integrating different types of data sets is critical for reconstructing

a reliable picture of the regulatory network, especially for multi-

cellular organisms, which have multiple layers of regulation, and

where physical edges are less directly linked to functional edges.

The role of network topology

We found that the integrative Drosophila networks exhibit scale-

free degree distributions, high clustering coefficients, short

average path lengths, and enrichment for feedback and feed-

forward loops. These structural properties have been previously

identified in regulatory networks of unicellular organisms such

as E. coli and S. cerevisiae, where they have been linked to systems-

level properties such as robustness and adaptability (Alon 2007;

Tsang et al. 2007). The integrative networks presented here will

enable an exploration of the potential role in network dynamics

and evolution of such structural properties in Drosophila.

Prediction of gene functions and expression levels

The ultimate test for a regulatory network is the ability to predict

attributes of nodes using the network connectivity patterns. Our

results demonstrate that integrative regulatory networks can be

used to predict biological process annotations and expression

levels of target genes. On one hand, integrative networks enable

accurate prediction of novel functional annotations for genes

based on their ‘‘regulatory neighborhood,’’ resulting in candidate

functional annotations for ;700 previously uncharacterized

genes. On the other hand, we leveraged the integrative networks

for gene expression prediction, by learning a linear regression

model for the expression levels of every target gene based on its set

of predicted regulators, demonstrating significantly more accurate

predictions than ChIP or motif-based networks. These results

demonstrate that integrative networks define ‘‘functional regula-

tors’’ relevant in both function and expression prediction. We

found that a linear regression function was predictive for;20% of

target genes, but we expect that higher-order and combinatorial

functions may be prevalent, although they were not tested here.

While numerous alternative methods exist to predict gene func-

tion (Zhang et al. 2004; Macskassy and Provost 2005; Sharan et al.

2007; Costello et al. 2009) and expression (Bonneau et al. 2007;

Bussemaker et al. 2007; Chikina et al. 2009), our goal was to

evaluate the predictive power of integrative networks, not to ex-

plore the space of possible regulatory functions, which merits

further investigation. More complex models of gene regulation

(e.g., Boulesteix and Strimmer 2005) may further improve the

predictive power of these integrative networks but may require

significantly richer training data sets given their increased

dimensionality.

Nuclear colocalization of coregulated genes

Our results also have strong implications for the functional hier-

archical organization of chromosomes within Drosophila nuclei

recently revealed using Hi-C chromosome conformation capture

(Sexton et al. 2012). Sexton et al. (2012) reported highly specific

chromosomal colocalization hotspots, where the three-dimensional

chromosomeconformation brings together distal regions driven by

functional relationships rather than genomic proximity. The

reported hotspots include colocalization of both active and re-

pressed domains and several examples of distal functionally

related genes. Our integrative regulatory networks show signif-

icantly stronger agreement than motif or ChIP networks, sug-

gesting a global association between colocalization and co-

regulation, which was eluded to in the Sexton et al. (2012) study

but not shown for more than a handful of examples. Our results

indeed confirm that this is the case, supporting the hypothesis

that nuclear colocalization is involved in coregulation.

Overall, our integrative regulatory networks provide an initial

summary view of the regulatory interactions of a multicellular

organism, which are undoubtedly more complex than what we

have captured here. These networks are likely tissue-specific, stage-

specific, and modulated by complex environmental interactions.

As genome-wide data sets that capture this additional complexity

become available by probing chromatin, TF binding and expres-

sion levels from specific tissues and in diverse conditions, we ex-

pect that the general network inference techniques presented here

will continue to provide useful abstractions and help gain new

insights into general principles of eukaryotic and animal gene

regulation.

Methods

Input data sets

We assembled a comprehensive compendium of genome-wide

data sets that we used as inputs for our integrative reconstruction
of the transcriptional regulatory network of Drosophila. Our first

inputs were conserved TFmotif instances for a set of 139 known TF
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binding motifs collected from the literature (Kheradpour et al.
2007). Due to the short length of motifs, many instances of

motifs in a single genome are expected to be coincidental

matches that may not be bound in vivo or have no functional

regulatory effect. As evolutionary conservation of an instance is
an indication of a functional instance, Kheradpour et al. (2007)

used a robust phylogenetic framework that accounts for the

evolutionary relationships across 12 sequenced Drosophila spe-
cies to assign a conservation score to each motif instance mea-

sured as 1-FDR and referred to as confidence.

Our second input data set consisted of a compendium of ge-

nome-wide TF binding data sets obtained from ChIP-chip and
ChIP-seq assays from the modENCODE project and from 14 pre-

viously published studies used by the modENCODE Consortium

et al. (2010). In total, these data sets include 76 TFs in a range of

tissue and cell-line samples.
Our third input data set consisted of genome-wide location

data for chromatin marks and chromatin remodeling factors,

whichwas generated by themodENCODE project using ChIP-chip
and ChIP-seq. Chromatin profiles were included for six modifica-

tions in a developmental time-course of 12 stages (Nègre et al.

2011) and for up to 20modifications in two cell lines (Kharchenko

et al. 2011).
Our fourth data set comprised gene expression profiles gen-

erated by RNA-seq and DNA microarrays. The RNA-seq data set

consists of a developmental time-course across 11 developmental

stages (Nègre et al. 2011). The microarray data sets consists of
a developmental time-course of 28 stages (Hooper et al. 2007).

These data sets cover a total of 14,444 genes, out of which 707

were considered to be potential TFs. This set of potential regulators
was predicted using InterProScan (Zdobnov and Apweiler 2001)

to search for the presence of DNA binding domains assembled

from published TF annotation efforts (Reece-Hoyes et al. 2005;

Kummerfeld and Teichmann 2006) and further refined using lit-
erature curation (SE Celniker, pers. comm.).

Constructing feature-specific networks

We derived feature-specific networks from each input data set by

assigning a weight to each TF-target gene pair. The weights range

from 0 to 1, where 0 denotes absence of interaction. If a data set
had missing values for a TF-target gene pair; the default value

of 0.1 was assigned to this interaction. We derived two physical

and four functional (two coexpression and two co-chromatin
modification) feature-specific networks from our input data sets.

Edges in these feature-specific networks have different implica-

tions: In the physical networks, edges describe binding of TFs,

whereas in the functional networks, edges indicate a functional,
possibly indirect, relationship derived from correlated patterns of

activity between TFs and their targets.

The two physical networks, motif regulatory network and

binding regulatory network, are based on the evolutionarily con-
served motif instances and the TF binding data sets, respectively.

In these two networks, interactions were added if conserved

motifs, or ChIP binding of TFs occurred near the TSS of a target

gene (in an interval of 500 bp upstream of or downstream from
the TSS, using FlyBase 5.12 genome annotation). Weights in the

motif regulatory network are defined by the motif conservation

score according to the method described by Kheradpour et al.
(2007), which ranges from 0.0 (unconserved motif instance) to

0.9 (strongly conserved motif instance). We increased this score

by 0.1 and assigned the value of 0.0 in the case where no motif

instance was present (absence of interaction). If a gene had sev-
eral motif instances of the same TF, we selected the maximum

conservation score of these instances. Weights in the binding

regulatory network are binary and were set to 0.05 if there was
no ChIP binding peak and to 0.95 if there was at least one ChIP

binding peak overlapping with the 1-kb window of the target.

The four functional networks include two coexpression net-

works and two comodification networks, based on the two expression
and two chromatin mark data sets (Table 1). In the coexpression

networks, the weights of the interactions are given by the squared

Spearman’s correlation of the TF and target gene expression pro-
files. In the comodification networks, weights are given by the

squared Spearman’s correlation of the corresponding chromatin

profiles (Fig. 1A). Chromatin modifications are commensurate

with transcriptional activity (Ernst and Kellis 2010), and analo-
gous to correlations in expression profiles, correlations in chro-

matin profiles may thus be used to infer functional relationships

between TFs and target genes. Chromatin profiles were defined

based on the presence of different chromatin modifications
(marks) in five regions for every gene: upstream of TSS, 59 UTR,

coding sequence, 39 UTR, and downstream transcription end site

(Supplemental Fig. 9).

Unsupervised network inference

The unsupervised method uses a sum rule to compute a weight for

each edge, which is the average weight of that edge across the six

feature specific networks (Fig. 1B). Out of the ;10 M possible in-
teractions (707 TFs 3 14,444 genes), only the top 2% highest

confidence edges were selected to constitute the network from the

unsupervised method, which corresponds to a similar number of

edges as obtained using the supervised method.

Supervised network inference

The supervised network inference method is based on a logistic

regression-based binary classifier, where the class label represents

the presence or absence of an edge. The logistic regressor is a gen-
eralized linearmodel that predicts the probability of a class variable

by combining the input features within a logistic function

(Mitchell 1997). For our problem of network inference, the logistic
regressor gives the probability wij of an edge between a TF and

a target:
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where the input features for the classifier are the weights of that

edge in the six feature-specific networks.
The training set was obtained from the REDfly network.

The REDfly network has 204 edges, connecting 73 TFs with 76

targets. Thus, the training set consists of 5,548 (733 76) TF–target

gene pairs, out of which 204 are positives (true interactions).
The remaining pairs are considered to be negatives (absent in-

teractions).

Learning was performed using 10-fold cross-validation. A

challenge in supervised network inference is that the number of
negatives and positives is typically not balanced in the training

data (there are many more absent than present edges) (Qian et al.

2003). We addressed class imbalance in two ways. First, we used

stratified cross-validation, which assures that the ratio of positives
to negatives is approximately the same in each fold. Second, we

weighted the positive instances in the training set, such that the

total weight of positives and negatives is balanced. Specifically,
we fixed the weight of negatives at 1 and the weight of positives at

N/P, where N is the total number of negatives and P the number
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of positives in the training data. This is equivalent to over-
sampling the positives, which is a common approach to balance

a learning set (Estabrooks et al. 2004). It forces the classifier to

better fit the positive class than the negative class, which is

a desirable feature, because negatives may correspond to true
interactions that are yet uncharacterized andmissing in REDfly.

For the final model used to predict the complete set of in-

teractions (beyond REDfly TFs and genes), we used the average
weights obtained over 1000 iterations of 10-fold cross valida-

tion. Learning was performed using the Weka library (http://

weka.sourceforge.net). We included all TF–target pairs that are

predicted to interact with a probability of 0.6 or higher in the
supervised integrative network (;300,000 edges).

Network overlap

Enrichment of common interactions between feature-specific
networks and the REDfly network (Fig. 2A) was computed as

follows. TFs and genes that are not part of REDfly were removed

from the feature-specific networks, and only the 10% highest

weight interactions were considered present. Enrichment be-
tween two networks was defined as the number of interactions

that are present in both networks divided by the number of such

interactions expected by chance. The number of common in-
teractions expected by chance is given by the mean of the

hypergeometric distribution: N1 3 N2/T, where N1 and N2 are the

number of interactions in the two networks, and T is the total

number of possible interactions. Statistical significance of the
observed number of overlapping edges was evaluated at a level of

0.05, using the hypergeometric distribution.

Relative importance of input features

The relative contribution of each input feature for the supervised

integrative network (Fig. 2C) was evaluated as the percentage

contribution to the increase in scores of the top 10,000 edges as

follows: (1) we computed the mean mall over the scores mij (see
Equation 1) of the complete list of all possible edges; (2) we com-

puted the mean mtop over the scores of the top 10,000 edges (i.e.,

the 10,000 highest scores); (3) we computed the difference be-

tween the top edges and the complete set of edges d = mtop – mall;
and (4) we determined the percentage that each input feature

contributed to the difference d. For instance, the scoresmij had an

increased value of d = 2.58 for the top 10,000 edges, and the term

corresponding to the conserved motifs (amotifwij
motif; Equation 1)

had an increased value of dmotif = 1.08 for these same edges, thus

accounting for 1.08/2.58 = 42% of the difference d that separates

the top 10,000 edges from the remaining edges. The relative con-
tribution of each input feature for the unsupervised integrative

network was computed analogously (Supplemental Fig. 10).

Functional enrichment of regulatory networks

GO annotations

For each network, we computed the enrichment of coregulated
genes for common GO annotations. We considered a gene pair

to be coregulated in the given network if the two genes had

>50% of their regulators in common. More formally, we com-

puted the Jaccard similarity coefficient between the set of reg-
ulators of the first gene and the set of regulators of the second

gene (the Jaccard coefficient is defined as the size of the in-

tersection divided by the size of the union of two sets). We
considered gene pairs with a Jaccard coefficient >0.5 to be co-

regulated. For each coregulated gene pair, we then measured the

similarity of the set of GO annotations of the first gene and the set
of GO annotations of the second gene, again using the Jaccard

coefficient. Finally, we took the average of this coefficient over all

coregulated gene pairs. The same procedure was done for 100

randomized versions of the network, and enrichment was com-
puted as the ratio of the average coefficient of the original net-

work to the average of the randomized networks. Randomization

was done by permuting the labels of all TFs and permuting the
labels of all genes. In other words, the network structure remained

identical and only the labels of the nodes were changed. This

assures that the observed enrichment is not due to potential bias

arising from structural properties of the network. Statistical sig-
nificance was assessed at a level of 0.05 using a one-sided Wil-

coxon rank-sum test to compare the Jaccard coefficients from the

original network with those from the randomized networks

(Bonferroni correction was used to account for multiple testing).

ImaGO annotations

The ImaGO database annotates genes with terms describing their
spatial localization patterns in tissues (Tomancak et al. 2007). We

computed enrichment of coregulated genes for common ImaGO

annotations using the same approach as described above for the

GO annotations.

Gene expression in the developmental time-course

Enrichment of coregulated genes for coexpression in the devel-
opmental time-course (Graveley et al. 2010) was computed anal-

ogously to the GO and ImaGO annotations described above. First,

coregulated gene pairs were identified as described. For each co-

regulated gene pair, we then computed the squared Spearman
correlation of the two gene expression profiles. Enrichment com-

pared to randomized networks was evaluated as described.

Protein–protein interactions

We considered a set of high-quality PPIs from the literature
(Pacifico et al. 2006), where high-throughput yeast two-hybrid

data were excluded. Enrichment of coregulated genes for PPIs was

computed analogously to enrichment for coexpression and co-
annotation. Specifically, we compared the number of PPIs for

coregulated gene pairs to the average number of such PPIs in ran-

domized networks, using the same definition for coregulation and

network randomization.

Chromosome conformation colocalization

Weevaluated enrichment of coregulated genes for three-dimensional

chromosome conformation colocalization using a high-confidence

set of intrachromosomal colocalization hotspots identified by
Sexton et al. (2012). Colocalization hotspots were defined as pairs

of distal chromosomal regions with at least 2.8-fold (log2 > 1.5)

enrichment in contact intensity over a background model ac-

counting for genomic distance and hierarchical domain folding
(Sexton et al. 2012). We derived a gene colocalization network by

drawing a weighted edge between every pair of genes that are part

of two chromosomal regions identified as a colocalization hot-

spot. Edge weights were defined as the log2 enrichment in contact
intensity (according to the definition of hotspots given above,

weights are always >1.5, while absent edges are assumed to have

zero weight). Enrichment of coregulated genes for interactions
in the colocalization network was computed in the same way

as enrichment for PPIs. Specifically, we computed the average

weight of edges in the colocalization network over all coregulated

gene pairs and compared it to the average weight of such edges
over all coregulated gene pairs in randomized networks.
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Prediction of GO process terms of unannotated genes

We developed a ‘‘guilt-by-association’’ approach to predict the bi-

ological process categories of genes with no previous GO annota-

tions as well as to predict additional functions of genes with
known annotations (Macskassy and Provost 2005). The underlying

principle of this approach is that genes that have similar biological

roles tend to ‘‘associate’’ with each other. We define association

between genes based on both the similarity of their regulatory
programs and their expressionprofiles. Thus annotation categories

of genes with no known annotation can be predicted based on

their regulatory and expression ‘‘association’’ to genes already

annotated with a given functional annotation.
To predict the function of a gene, we define a score that relies

on (1) a set of probabilistic assignments of a gene for each cluster

based on a Gaussian mixture model of clustering, and (2) nor-
malized regulatory similarity for each pair of genes i and j, based on

the Jaccard coefficient of the set of regulators associated with each

of the two genes (i.e., similarity of regulatory program). The nor-

malization term for a gene i is the sum of the Jaccard coefficients
using all other genes jwithwhich it shares at least one regulator. As

the regulatory similarity is normalized on a per-gene basis, a gene’s

contribution to regulatory similarity is split over all genes with

which it shares similarity. Thus, genes that are coregulated with
many other genes have smaller scores, whereas genes that are

coregulated with few other genes have higher scores, given they

are both connected to the same number of neighbors annotated
with a particular process of interest. Regulators for each gene were

obtained from the integrative networks. We first estimate the

contribution of every cluster to gene i’s score for a functional cat-

egory by summing the normalized regulatory similarity of all other
genes that are known to belong to the category. We then sum the

per-cluster scores across all clusters, with the contribution of each

cluster weighted by the cluster membership probability of g. Thus,

the complete score is defined as follows:

Sði; f Þ= +
c

gi;c +
j2Nc

wijIðj; f Þ

 !

;where +
c

gi;c =1:

Here gi,c is the probability of gene i belonging to cluster c. I(j,f)
is an indicator function that returns 1 if gene j is annotated with

GO process term f; otherwise, it returns 0. wij is the normalized

regulatory similarity, whichwas calculated using ametric similar to

the Jaccard coeffient between the regulator set of genes i and j, but
modified to penalize regulators that have very high out-degree. Let

Ri denote the regulator set of gene I, and let dk denote the total

number of targets of regulator k. We define the numerator of

the similarity metric between gene i and j’s regulator set as
hij =+k2Ri\Rj

1
dk

and the denominator as t ij =+l2Ri

1
dl
++m2Rj

1
dm

� hij.

Finally, wij =
hij
t ij
. Note, each regulator k contributes an amount

that is inversely proportional to the size of its target set, dk. For
the expression-only predictor, we set wij to be 1, and for the

regulatory network-only predictor, we sum over all genes, ig-

noring the cluster membership information.

For each gene, this procedure results in a score for each
functional category, which we then transform into a FDR value

based on the score distribution for previously annotated genes for

each functional category. This FDR is calculated based on the

fraction of positive predictions for this category among genes from
‘‘unrelated’’ functional categories. We defined pairs of unrelated

GO categories as follows. For each GO process term, we created

a negative set based on the union of members of all GO terms that

shared less than a specified threshold of similarity of its members
with the term in question. For each pair of GO terms, t1 and t2, we

computed fractions, f1 and f2, respectively, defined as the ratio of

the number of common genes between t1 and t2, to the total
number of genes in t1 (f1) and t2 (f2). We considered t2 as the

negative set of t1 (or t1 as the negative set of t2) if min(f1,f2) was

greater than a threshold. We experimented with different values

of this similarity threshold (0.01, 0.05, 0.1, 0.15, 0.2) and found
0.15 to give the best performance. This negative set allowed us to

define ‘‘false positives,’’ and thus compute an FDR as the ratio of

the number of false positives to the sum of the number of true
positives and false positives. While estimating the number of

genes for which we could predict function, we excluded the fol-

lowing terms that are very general: metabolic process, cellular

process, biological process, biological regulation, cellular metabolic

process, primary metabolic process, biosynthetic process, and cellular

biosynthetic process.We used this approach to predict annotations

for all genes that are part of the inferred network, have at least one

shared regulator with another gene, and have expression mea-
sured in the 30 time point developmental time-course. All pre-

dictions at FDR < 0.6 are given in Supplemental File 7.

To test if the predicted members of a GO process were
enriched for genes expressed in certain tissues (ImaGO annota-

tions), we used the hypergeometric distribution.We did these tests

for the newly predicted and correctly recoveredmembers of a given

GO process separately. Let Xp denote the set of newly predicted
gene members of GO process p at a particular FDR cutoff. Let Yt

denote the set of genes annotated with tissue t. Let kpt be the

number of genes that are in Xp and Yt, and let N be the total

number of genes in our background. Our test of GO-tissue en-
richment then uses the hypergeometric distribution to test the

probability of observing kpt genes of process p to be expressed in

tissue t, given that we draw |Xp| genes, and |Yt| of N genes are
known to be expressed in tissue t. The fold enrichment is calcu-

lated as the ratio of the foreground (kpt/|Xp|) to the background

fraction (|Yt|/N). For the newly predicted gene set, we use the

background of all genes that have a new prediction in at least one
GO process term, whereas for the correctly recovered genes, we

consider all genes that have been correctly recovered in at least one

GO process term.

Predictive models of expression of target genes from expression

of regulators

To predict expression of a target gene from the expression of its

regulators, we assume that the expression of a target gene is

a linear combination of the expression level of the TFs. We obtain

the TFs of every target gene from a given regulatory network and
learn the weights of the linear combination from the training

expression profiles of the TFs and the target. We use 10-fold cross-

validation, where we split the developmental time-course into 10

parts, use nine parts for training, and predict the expression in the
tenth. We learned these models for five networks: the ChIP

binding network, the motif network, the REDfly network, the

unsupervised integrative network, and the supervised integrative
network.

We tested each model for its ability to predict the expression

of the three time points that it had never observed, and compared

the squared errors of the predicted gene expression profiles to the
errors found by applying the same prediction scheme to 10 ran-

domized control networks of the same size and degree distribution,

generated by permuting the labels of TFs and targets as described in

the previous section for the functional enrichment analysis. We
performed two types of comparisons against random networks.

First, we estimated the average number of genes on which models

learned from the original networks had a significantly lower
squared error than random networks (one-sided t-test, P-value

<0.05). Second, we generated a list of predictable genes and a list of
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unpredictable genes that had consistently lower or higher errors
than randomnetworks. A gene was considered predictable if it had

a lower squared error in the true network than in six out of the

random networks and was considered unpredictable if it had

a higher squared error in the true network than in six out of 10
random networks.

To assess how well our predictable set of genes were able to

predict expression in a completely new setting,we used the learned
models from the time-course to predict expression in four RNA-seq

and 25 microarray cell-line experiments. For each network, we

made a prediction for cell lines for each gene using the models

learned from each fold of cross-validation. We did the same for
each random network and estimated the number of genes on

which the errors from the true networks were significantly lower

than the random network, and repeated this for all random net-

works. We report the average number of genes on which the
models learned from the true networks were better than random

(Supplemental Table 1). We repeated this procedure for the un-

predictable set.

Network and source code availability

The integrative networks, input and validation data sets, and the

source code used for network inference and validation are provided

in the online Supplemental Material and on the companion
website of this article (http://compbio.mit.edu/flynet).
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