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Predictive Self-Assembly of Polyhedra
into Complex Structures
Pablo F. Damasceno,1* Michael Engel,2* Sharon C. Glotzer1,2,3†

Predicting structure from the attributes of a material’s building blocks remains a challenge and central
goal for materials science. Isolating the role of building block shape for self-assembly provides insight
into the ordering of molecules and the crystallization of colloids, nanoparticles, proteins, and viruses.
We investigated 145 convex polyhedra whose assembly arises solely from their anisotropic shape. Our
results demonstrate a remarkably high propensity for thermodynamic self-assembly and structural
diversity. We show that from simple measures of particle shape and local order in the fluid, the assembly
of a given shape into a liquid crystal, plastic crystal, or crystal can be predicted.

T
he spontaneous organization of individual

building blocks into ordered structures

is ubiquitous in nature and found at all

length scales. Examples include simple and com-

plex crystals in atomic systems, liquid and plastic

crystals in molecular materials, and superlattices

of nanoparticles and colloids. Understanding

the relation between building blocks and their

assemblies is essential for materials design be-

cause physical properties depend intimately on

structure. The formation of atomic materials

structures can be rationalized, to first approxima-

tion, from geometric considerations (1), and with

growing length scale, the shape of the building

blocks becomes increasingly important. For col-

loidal particles interacting through the excluded

volume arising from their shape (2–5), thermo-

dynamic equilibrium structures (“phases”) reported

were relatively simple (6–10). The simulation

prediction of a dodecagonal quasicrystal with

tetrahedra (11) demonstrated the unexpected

complexity that could be achieved for particles

solely with hard interactions. Since then, ordered

structures have been reported for various polyhe-

dra (11–16), which are now routinely synthesized

as nanocrystals (4, 5, 13, 17). However, the a

priori prediction of structure from particle shape

has yet to be demonstrated.

The thermodynamic behavior of hard particles

can be understood through entropy maximization

(18). Packing efficiency plays an increasingly

important role toward higher density and induces a

preferential alignment of flat facets (13, 19, 20).

Because packing efficiency increases with contact

area, the alignment can be interpreted as the result

of an effective, many-body directional entropic

force (14) arising from the increased number of

configurations available to the entire system,

causing suitably faceted polyhedra to order. This

notion of directional entropic forces and their

relation to particle faceting suggests that particle

shape can be used to predict assembled structures.

To establish clear quantitative trends, however,

requires data on many different shapes. We present

thermodynamic Monte Carlo simulations of the

self-assembly of 145 different polyhedra, including

all the Platonic, Archimedean, Catalan, and Johnson

solids and some zonohedra, prisms, and antiprisms,

and we show that we can use particle shape to

predict the general category of ordered structure

that forms.

The polyhedra simulated, classified accord-

ing to the structure(s) they assemble into from

the dense fluid, are shown in Fig. 1. The names

of each polyhedron simulated and additional

details can be found in fig. S1 and table S1 (21).

We group polyhedra into three assembly cat-

egories (12): (i) crystals, (ii) plastic crystals,

and (iii) liquid crystals. Polyhedra that are not

observed to form ordered structures are grouped

as (iv) disordered solids (glasses). The catego-

ries are further subdivided into classes based

on the type of order and crystallographic sym-

metry. All structures reported form repeatedly

from disordered fluid phases at packing frac-

tions between 0.49 and 0.63, depending on

particle shape. We first note that 101/145 ≈ 70%

of the polyhedra simulated assemble on the time

scale of our simulations, which demonstrates a

strong propensity for order in systems of poly-

hedra, even in the absence of explicit attract-

ive interactions.

For crystals, we find five different Bravais

lattices [hexagonal, cubic, body-centered tetrag-

onal (BCT), rhombohedral, and orthorhombic].

The lattice shear we findwith truncated cubes has

been observed in experiments (13, 22, 23). The

A5 lattice, graphite structure, honeycomb lattice,

diamond structure (14), and “supercube” lattice

are periodic and have only a few particles in the

unit cell. The quasicrystals have been reported

previously with tetrahedra (11) and triangular bi-

pyramids (24). A new type of hexagonal random

tiling forming independent layers is observed for

the bilunabirotunda, a two-dimensional version

of the random tiling seen in a molecular net-

work (25).

Both the diversity and structural complexity

possible with polyhedra are demonstrated by 12

representative structures. Four examples of crystals

are analyzed in more detail. Dürer’s solids form

a simple cubic crystal (Fig. 2A), which is unusual

because it is a degenerate crystal (26). Particles

align randomly in four equivalent orientations.

The space-filling gyrobifastigium assembles into

a crystal isostructural to b-Sn, the metallic form

of tin (Fig. 2B). Six square pyramids assemble

into cubes (“supercubes”) and then into a slightly

sheared simple cubic lattice (Fig. 2C). The super-

cubes demonstrate the possibility of hierarchical
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assembly, similarly to a face-centered cubic (FCC)

crystal reported for paired hemispheres (27). Pen-

tagonal orthobicupola have a disklike shape and

arrange with their five-fold symmetry axes aligned

into the b-U crystal with the tiling (3.4.32.4). A

periodic approximant to a dodecagonal quasi-

crystal, this tiling is known as the sigma phase

and has been observed in micelles (28, 29) and

colloids (30), but with different decoration of

the tiles (Fig. 2D)

We find that 66 of the 145 polyhedra crys-

tallize into plastic crystals [rotator phases (31)] in

which the particles are free to rotate about their

lattice positions. The plastic crystals we find all

correspond to the crystallographically dense pack-

ings FCC (or hexagonally close-packed, HCP),

body-centered cubic (BCC), and three topological-

ly close-packed (TCP) polytetrahedral structures

isostructural to b-W, b-Mn, and g-brass. We do not

distinguish between FCC and HCP, because simu-

lations of these structures often contain high densi-

ties of stacking faults. In a TCP structure, lattice

sites are coordinated by distorted tetrahedra. We

always observe plastic crystals for these three types

of crystals.

In Fig. 2E, we show that rhombic dodecahedra

(the Voronoi cell of FCC) order into an FCC

plastic crystal. We observe that the plastic crystal

transforms into a nonrotator phase at higher

packing fractions. Elongated triangular cupolas

assemble a plastic BCC crystal (Fig. 2F). The

formation of a high-symmetry phase is counter-

intuitive given the asymmetric shape of the cupola.

The paradiminished rhombicosidodecahedron

has two large parallel faces and forms a plastic

TCP phase isostructural to b-W (Fig. 2G). This

phase, also known as the A15 structure, is fre-

quently observedwithmicelles (32). Dodecahedra

assemble into the complex b-Mn structure (Fig.

2H). Because the distribution of Bragg peaks in

the diffraction pattern resembles eight-fold sym-

metry, b-Mn can be interpreted as an approximant

of an octagonal quasicrystal (33). Indeed, we often

observe eight-fold symmetry in the diffraction

pattern during intermediate stages of crystalliza-

tion. Truncated dodecahedra form g-brass (Fig. 2I).

With 52 atoms per unit cell, it is the most complex

periodic crystal observed in this study.

A nematic liquid crystal is formed by the pen-

tagonal pyramid, which has a plateletlike shape

(Fig. 2J). The up-down orientation of the pyramid

relative to the director is random. The elongated

square pyramid assembles into smectic layers

(Fig. 2K). We confirmed that there is no preferred

orientation or long-range translational order within

the layers. Like all regular prisms and antiprisms

with five-fold or higher symmetry, the pentagonal

prism assembles a columnar phase (34). Particles

are free to both shift along and rotate around the

column axis (Fig. 2L).

Forty-four polyhedra never self-assemble into

an ordered structure on the time scale of our

simulations, despite run times more than an order

of magnitude longer than that needed for the

slowest formation of a crystal. Instead, the par-

ticle dynamics becomes gradually slower with

increasing packing fraction, which eventually

produces a glassy state without discernible rota-

tional or translational order. Because studies of

dense packings of these polyhedra (34) yield

crystals with higher packing fractions, we expect

that the 44 particles have ordered “ground states”

in the limit of infinite pressure. As in other ex-

amples (11, 24), those ordered states may not be

kinetically accessible in experiments. It is inter-

esting to note that 41 of the 44 that form glasses

are Johnson solids, and most are not centrally

symmetric. Johnson solids are typically less sym-

metric than Platonic and Archimedean solids,

which all order in our simulations. This agrees

with the intuition that highly symmetric polyhe-

dramight bemore easily assembled than nonsym-

metric ones. A complete investigation of assembly

kinetics and propensity requires a careful analysis

of the equations of state (10, 15, 24, 35). Pre-

liminary data suggest that particles from the same

assembly category have a comparable entropy

gain DS at the transition. For instance, liquid crys-

tals have DS = (1.8 T 0.5)kB and plastic crystals,

DS = (1.0 T 0.5)kB, where kB is the Boltzmann

constant. No clear trend is observed for shapes

that assemble into crystals.

Several parameters have been used in the litera-

ture to analyze the shape of polyhedra (12, 19, 34).

A parameter that is sufficiently sensitive to large

shape changes, but not too sensitive to small de-

formations, is the isoperimetric quotient, defined

as IQ = 36pV2/S3, where V is volume and S is

surface area (36, 37). IQ can be calculated easily

from the vertex vectors and is closely related to

the shape factor used in equations of state of hard

convex bodies (38). A second parameter, the co-

ordination number CNf, accounts for the local

arrangement of particles in the fluid phase before

crystallization. In the case of glasses, we measure

the coordination number at packing fraction 55%,

which is the packing fraction where we typically

observe crystallization of polyhedra that do not

form glasses.

A correlation between the parameters IQ and

CNf and the assembly categories of Fig. 1 can be

seen in Fig. 3A. We divide the parameter space

into three regions. In the rightmost region (IQ >

0.7), 58 of 59 highly spherical polyhedra are

observed to form plastic crystals. In the bottom-

most region (CNf < 2), 21 of 24 polyhedra with

few neighbors form liquid crystals. Finally, 16 of

18 particles in the center region (IQ ≤ 0.7 and

CNf ≥ 2) assemble into crystals. Thus, based on

Fig. 1. Polyhedra are separated into four categories of organization as indicated by different colors:
liquid crystals, plastic crystals, crystals, and disordered (glassy) phases. Subcategories (classes) are
indicated by shades. The assembly category of liquid crystals contains the classes discotic columnar,
smectic, and nematic (different shades of pink). Plastic crystal classes are FCC (dark blue), BCC (blue), and
TCP (light blue). In the case of crystals, we distinguish Bravais lattices (dark green) and non-Bravais
lattices (light green). RT stands for random tiling. For the glasses, no assembly is observed, and we
distinguish those that strongly order locally with preferential face-to-face alignment (light orange) from
those with only weak local order (dark orange). The pie chart in the center compares the relative frequency
of the 10 observed classes. In each of the classes, polyhedra are listed in decreasing order of the
isoperimetric quotient. A polyhedron is included multiple times if it was found to assemble into more than
one ordered structure.
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Fig. 2. Systems of 2048 polyhedra were assembled starting from the
disordered fluid. In each subfigure, a snapshot of the simulation box (left), the
bond-order diagram for nearest neighbors (inset), the polyhedron shape and ID
(top right), a small group of particles or the diffraction pattern (middle right),
and the crystallographic characterization consisting of name or atomic proto-

type, Pearson symbol, and Strukturbericht designation (bottom right) are shown.
The snapshots depict crystals (A to D), plastic crystals (E to I), and liquid crystals
( J to L). Some low index planes (A to C, E, and F), tiling descriptions consisting of
squares and triangles (D and G to I) and structural features (K and L) are
highlighted in the simulation snapshots by different colors.

Fig. 3. (A) The coordination number in the fluid phase, CNf, is correlated
to the isoperimetric quotient (IQ) of the polyhedron. Here, IQ is a scalar
parameter for the sphericity of the shape and coordination number is a
measure for the degree of local order. Data points are drawn as small
polyhedra. Polyhedra are colored and grouped according to the assem-

blies they form. (B) Polyhedra have, in most cases, nearly identical co-
ordination number in the ordered phase (CNo) and the fluid phase (CNf)
close to the ordering transition. Because of this strong correlation, com-
bining CNf and IQ allows for prediction of the assembly category expected
for most cases.
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IQ and CNf alone, the assembly of 95/101 = 94%

of the polyhedra studied into crystals, liquid crys-

tals, or plastic crystals is predicted. The outliers

either lie within boundaries between regions, or

they are nearly space-filling, which favors crys-

tals over liquid or plastic crystals. We expect the

shaded regions in Fig. 3A to become further

refined as additional shapes are investigated. For

example, the liquid crystal region is expected to

expand upward for prolate particles (not studied

here), which have a higher CNf than oblate par-

ticles yet still have a low IQ.

Wecompare the coordination numbermeasured

close to the ordering transition in the fluid (CNf )

and in the ordered structure (CNo) in Fig. 3B.

Both numbers are nearly identical for almost all

101 shapes that assemble. This explains why it is

sufficient to determine the coordination number

in the dense fluid, which can be obtained from

short simulations and experiments by integrat-

ing over the first peak of the radial distribution

function, to predict with reasonable accuracy the

category of structure that will form from the dis-

ordered fluid. As an independent test of Fig. 3A,

we calculated the IQ and CNf for the family of

truncated tetrahedra studied in (14) and correctly

predict that each member should form a crystal

(fig. S2).

When comparing our observations with known

crystal structures of atoms and molecules, which

can be rationalized in terms of a few parameters,

like the strength and directionality of bonds be-

tween atoms (39) and themolecular geometry (40),

we can interpret our findings as follows. First,

FCC (HCP) and BCC crystals form from highly

spherical polyhedra that have nondirectional or

weakly directional entropic interactions. TCP struc-

tures are a compromise between high density and

maintaining icosahedral local order present in the

dense liquid. The coordination geometry can be

visualized with Voronoi cells (Fig. 4, A and B).

Voronoi cells of TCP structures often have pentag-

onal or hexagonal faces. We frequently find TCP

structures with particles that resemble the Voronoi

cells, such as the (truncated) dodecahedron. The

assembly of plastic crystals is dominated by pack-

ing, and their atomic analog is metals and metal-

lic bonding. It is interesting to note that all of our

plastic crystals except g-brass are isostructural

to crystals found in elementary metals. Second,

polyhedra that form crystals are more aspherical,

with more pronounced and fewer faces. The

crystal lattice is well represented by an ordered

network of entropic “bonds” (Fig. 4, C and D).

Polyhedra assembling into crystals do not al-

ways resemble the Voronoi cells of the crystal,

but usually have strong directional entropic bond-

ing, reminiscent of covalent bonds. Third, poly-

hedra forming liquid crystals typically have an

axial shape. Alignment of the most prominent

faces is important for these phases and can be

analyzed by the alignment of the directors (Fig. 4,

E and F). In general, we expect for axial particles

to align prominent faces and long particle dimen-

sions first. The behavior of polyhedra forming

liquid crystals corresponds most closely to mo-

lecular liquid crystals. In all cases, the degree of

directional entropic bonding may be quantified

through various shape descriptors and correla-

tion functions (fig. S3).

Our results push the envelope of entropic crys-

tallization and the assembly behavior of hard

particle fluids and provide an important step

toward a predictive science of nanoparticle and

colloidal assembly, which will be necessary to

guide experiments with families of polyhedrally

shaped particles that are now becoming available.

Although we are not yet able to predict a specific

structure (e.g., BCC or diamond), the knowledge

that obtaining, e.g., the diamond structure requires

a shape with intermediate IQ or that a complex,

topologically close-packed structure like g-brass

requires a shape with high IQ provides important

predictive guidance for building block design and

synthesis. With further developments, more re-

fined future structure prediction, with the level

of detail now possible for atoms (41), should be

attainable.
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The Tides of Titan
Luciano Iess,1* Robert A. Jacobson,2 Marco Ducci,1 David J. Stevenson,3 Jonathan I. Lunine,4

John W. Armstrong,2 Sami W. Asmar,2 Paolo Racioppa,1 Nicole J. Rappaport,2 Paolo Tortora5

We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan,
driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements
of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that
Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole
gravity, at about 4% of the static value. Two independent determinations of the corresponding
degree-2 Love number yield k2 = 0.589 T 0.150 and k2 = 0.637 T 0.224 (2s). Such a large
response to the tidal field requires that Titan’s interior be deformable over time scales of the
orbital period, in a way that is consistent with a global ocean at depth.

S
ince its gravitational capture by Saturn on

1 July 2004, the spacecraft Cassini has

flown by Titan more than 80 times, carry-

ing out extensive observations of the surface and

the atmosphere by means of particle and remote

sensing instruments. In contrast, information on

the moon’s deep interior is scarce. Lacking a de-

tectable internally generated magnetic field, con-

straints on the interior of Titan come from gravity,

topography, and rotation measurements. Titan’s

main deviations from spherical symmetry are

caused by centrifugal and tidal forces, associated

respectively with the rotation about its spin axis

and the gradient of Saturn’s gravity. The moon

responds to the centrifugal and tidal potentials

with deformations that (to the lowest order)

change its quadrupole field. In a body-fixed frame

with the prime meridian pointing to the central

planet at pericenter and the z axis along the in-

stantaneous rotation axis (coinciding with the

orbit normal), only the J2 and C22 quadrupole co-

efficients are different from zero for a relaxed,

synchronous satellite. They are bound by the

constraint J2/C22 = 10/3. The satellite’s static re-

sponse to the external fields is usually char-

acterized by a single parameter, the fluid Love

number kf, which reaches its maximum value

of 3/2 for an incompressible fluid body. Pre-

vious determinations of Titan’s gravity (1) yielded

kf =1.0097 T 0.0039, implying a relaxed shape,

very close to hydrostatic equilibrium. The value

smaller than 3/2 revealed a significant concen-

tration toward the center, with a moment of in-

ertia factor C̃ ¼ 0:3414 T 0:0005 (inferred from

the Radau-Darwin equation). However, the non-

negligible eccentricity of Titan’s orbit causes a

variation with time of the quadrupole tidal field

[proportional to 1/r3 (r, distance between Titan

and the Saturn barycenter)]. These short-term

variations change the satellite’s physical shape

and gravity. Titan’s linear response to the peri-

odic tidal field entails a corresponding periodic

change in its own quadrupole potential. The

ratio between the perturbed and the perturbing

potentials is known as the k2 Love number. It is

an indication of the mass redistribution inside the

body in response to the forcing potential. k2,

like kf, reaches its theoretical upper limit of 3/2

for an incompressible liquid body, whereas for

a perfectly rigid body, k2 = 0. If Titan hosts a

global subsurface ocean, then k2 must differ sub-

stantially from zero. We have detected the sig-

nature of the tidal forcing in Cassini data and

derived a value of k2.

Our observational strategy entailed gravity

determinations near the pericenter and apocenter

of Titan’s orbit. For k2 = 0.4 (a typical value if

an ocean is present), the expected peak-to-peak

variations of the quadrupole coefficients are

about 4% for J2 and 7% for C22 (2, 3). The

corresponding change in the spacecraft accel-

eration, about 0.2 mgal in the most favorable

geometry, is measurable by the Cassini tracking
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Table 1. Titan’s k2 Love number, estimated from
different data analysis procedures (supplementary
materials) and representations of the gravity field:
multi-arc analysis and 3 × 3 gravity field (SOL1a);
multi-arc analysis and 4 × 4 gravity field (SOL1b);
and global solution with 3 × 3 gravity field (SOL2).
SOL1 and SOL2 were produced independently by
the Cassini Radio Science Team and the Naviga-
tion Team.

k2

(value T 1s)

SOL1a

SOL1b

SOL2

0.589

0.670

0.637

T

T

T

0.075

0.090

0.112
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