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Abstract—This paper presents a predictive strategy for the
control of a permanent magnet synchronous motor (PMSM).
Our approach allows one to simultaneously manipulate speed and
electrical variables, without using any auxiliary linear controller.
The high sampling rate, characteristic of this technique, and
the limited precision of the typical angle measurement devices,
present serious difficulties for this technique to work in practice.
These issues are dealt with in the paper and a solution based on
an extended Kalman filter is proposed. The effectiveness of the
proposed approach is evaluated through simulations.

I. INTRODUCTION

Permanent magnet synchronous motors (PMSM) have high

torque and power density, and excellent dynamic characteris-

tics. Thus, they are specially well suited for servo drives and

applications where size and weight are major constraints (e.g.,

automotive and aerospace industry). The typical construction

of a PMSM consist of a three phase stator winding and a

solid iron rotor with magnets attached to its surface or inserted

into the rotor body. This construction results in a magnetic

field fixed to the rotor position. Since such machines are

not capable of directly starting from the mains, excitation

by voltage source inverters controlled by field orientation is

required. Control techniques such vector control [1] or direct

torque control (DTC) [2] are standard for this type of drives.

The discrete nature of the output voltage in a voltage source

inverter, has motivated some authors to use finite alphabet

predictive control techniques for current control in this type

of power converters [3]. These techniques are also directly ap-

plicable to machine drives, and allow one to replace the inner

current control loop in vector control, or the inner torque and

flux control loops in DTC techniques [4]. Similar approaches

have been proposed in, e.g., [5] [6]. Predictive control is a

conceptually simple technique based on the prediction of the

effects of all possible actuation values on the variables to be

controlled, and the subsequent choice of the best actuation

value, as measured by an appropriate cost function [3].

It is possible to include different variables into a single

cost function. This makes, in principle, possible to achieve

integrated multivariable speed and current control. However,

some practical implementation issues arise. The main diffi-

culties relate to the large differences between electrical and

mechanical dynamics, and also to the quantization noise in the

speed measurement which is typical of standard speed sensors

in servo drives.

In this paper, we propose solutions for the difficulties

mentioned above. We define a cost function designed in a way

such that it spectrally shapes some key variables [7], and we

use of an extended Kalman filter to smooth the speed feedback

signal [8] [9].

The remainder of this paper is organized as follows: the

discrete model for the PMSM is developed in Section II and

its predictive control is introduced in Section III. In Section

IV, the use of a Kalman filter to solve the above mentioned

issues is described. In Section V, the proposed speed and

current control strategy is tested via simulations. Conclusions

are drawn in section VI.

II. THE MACHINE MODEL

In order to implement a predictive control strategy for a

given system, one needs an adequate model for it. This model

is used as a predictor of future system states assuming a

set of possible actuation values. In this section, we develop

a continuous time state space model for a PMSM. This

model includes the stator electrical dynamics and the rotor

mechanical dynamics. This model is then discretized in order

to obtain a model suitable for a discrete time model predictive

control formulation (see, e.g., [12]).

A. Continuous Time Machine Model

Using well-known space vector notation [13], the dynamics

of the stator of the PMSM can be written as

~vs = Rs~is +
d~ψs

dt
, (1)

where Rs is the winding resistance, and ~vs, ~is and ~ψs are

the stator voltage vector at the machine terminals, the stator

current vector and the vector associated to the flux linked by

the stator windings, respectively.

The stator flux linked by the stator windings ~ψs has two

sources: the field produced by the rotor magnets, which is

dependent on the rotor position θr, and the self-linked flux

due to the current flowing through the stator windings. So, if

Ls denotes the stator self-inductance, we have that

~ψs = Ls~is + ψme
jθr , (2)
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where ψm is the magnitude of the flux due to de rotor magnets.

Replacing (2) into (1), the stator dynamics can be written as

~vs = Rs~is + Ls
d~is

dt
+ jψmωre

jθr , (3)

where ωr , dθr

dt is the rotor electrical angular frequency.

Conventional vector control of synchronous machines is

usually implemented in a, so-called, dq rotatory frame which is

oriented with the rotor magnetic field axis [1]. Using this frame

of reference has the advantage of transforming sinusoidal

variables into DC values. This yields a model that is similar

to that of a DC machine and, hence, to a conceptually simple

drive implementation. In this frame, each current component

of the synchronous machine has a clear physical meaning:

the imaginary component isq is proportional to the torque,

while the real component isd is proportional to reactive power.

Although the implementation of a predictive control strategy

could use any reference frame, the synchronous dq frame is

preferred in this work for its simple physical interpretation.

Transforming the stator dynamics equation into the dq coor-

dinate system results in

~v(r)
s = Rs~i

(r)
s + Ls

d~i
(r)
s

dt
+ jωr~i

(r)
s + jψmωr, (4)

where superscript (r) denotes variables in the dq frame, and ωr
is as before. On the other hand, the mechanical rotor dynamics

is given by

dωmr
dt

=
1

J
(Te − Tl) −

B

J
ωmr , (5)

where ωmr is the shaft mechanical speed, J is the rotor inertia,

Te is the electric torque produced by the motor, Tl is the load

torque1, and B is a friction coefficient. The rotor speed ωmr
is directly related to the rotor electrical angular frequency ωr
by the number of pole pairs p of the machine, namely

ωr = p ωmr . (6)

The mechanical subsystem (5) is coupled with the stator

electrical variables by the electric torque Te, which, for a non-

salient PMSM, is given by

Te =
3

2
pψmisq. (7)

At the same time, the mechanical subsystem interacts with the

stator variables through the rotor frequency ωr, as described

in (4). As a consequence, the resulting model is nonlinear

(it has a product of two different states). Equations (4), (5),

(6) and (7) can be summarized in the following state space

representation for the PMSM:

dx(t)

dt
= g(x(t), u(t)), (8)

1Which is an independent disturbance and generally unknown.

Fig. 1. Two level voltage source inverter

where

x , [isd isq ωr]
T (9)

u , [vd vq]
T (10)

g(x, u) ,





− 1
τs

isd + ωrisq + 1
Ls

vd

− 1
τs

isq − ωrisd −
ψm

Ls

ωr + 1
Ls

vq
pkT

J isq −
B
J ωr



 (11)

where τs , Ls

Rs

and kT , 3
2pψm are the stator time constant

and the machine torque constant, respectively.

B. Predictive Model

In order to obtain a predictive model for the motor, the

model (8) will be discretized. In order to do so, we use

the modified Euler integration method [10]. This yields the

following discrete model:

x̂[k + 1] = x[k] + hg(x[k], u[k]) (12)

x[k + 1] = x[k] +
h

2
(g(x[k], u[k]) + g(x̂[k + 1], u[k])) (13)

where h is the sampling interval.

The voltage applied to the motor during each sampling

interval belongs to the finite alphabet of actuations generated

by the inverter. In this work, a conventional voltage source

inverter is considered (see Figure 1). The different output

voltage values generated by this converter are determined by

the states of the switches in each of its phases, i.e., by Sa, Sb
and Sc. Each of these switching functions can adopt values

Sx ∈ {0, 1}, where x ∈ {a, b, c}. The switching state of the

inverter can be summarized in a single complex switching

function given by

~S ,
2

3

(

Sa + ~aSb + ~a2Sc
)

, (14)

where ~a , ej2π/3. This notation allows one to write the output

voltage vector ~vs as

~vs = Vdc~S, (15)

where Vdc is the DC-Link voltage (see Fig. 1). Figure 2 shows

all possible output voltage vectors.

The output voltage vectors given by (15) are expressed

in the stationary frame. In the synchronous dq frame, they

become

~v(r)
s = ~vse

−jθr . (16)

Using the seven possible inverter voltage vectors as inputs

to the discrete model given by (12) and (13), seven different
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Fig. 2. Voltage vectors generated by the voltage source inverter

Fig. 3. Predictive Control scheme of the PMSM

predictions for the system state x = [isd isq ωr]
T are

obtained.

Is important to note that, in order to compensate for the

algorithm calculation time, the two step prediction scheme

proposed in [11] is used. This additional prediction does not

change the nature of the control scheme and, hence, to simplify

the notation, it will not be considered hereafter.

III. PREDICTIVE CONTROL OF THE PMSM

A diagram of the proposed predictive control scheme is

shown in figure 3. In that scheme, the predictive model outputs

the seven predicted state vectors of the machine for the next

sampling instant. Each of these predictions correspond to

one of the possible output voltage vectors the inverter can

generate. These predictions are used to evaluate a cost function

that weights several control objectives. The voltage vector

associated with the predicted state that minimizes the cost

function is then selected. This voltage vector is applied to

the machine terminals during the next sampling period.

In general, control objectives are multiple, sometimes con-

flicting, and may be subject to constraints. In the case of speed

control for PMSM, the control objectives are as follows:

• Speed reference tracking.

• Smooth behavior of the electrical torque.

• Current magnitude minimization (to achieve good torque

per ampere ratios).

• Current limitations (the motor nominal current cannot be

exceeded).

These control objectives can be captured by the following

cost function:

Fc = λω

(

ω∗

r [k + 1] − ωpr [k + 1]
)2

+ λid

(

i
p
sd[k + 1]

)2

+ λiqf

(

i
p
qf [k + 1]

)2

+ f̂
(

i
p
sd[k + 1], ipsq[k + 1]

)

(17)

where ω∗

r is the speed reference and the superscript (p)

denotes predicted values. The symbols and terms in (17) are

described next. The first term of the cost function weights the

speed error. Its evaluation favors the application of voltage

vectors that make the motor speed closest to its reference. For

cost functional calculations, the speed reference at the next

sampling instant is assumed to be equal to that at the current

sampling instant (i.e., ω∗

r [k + 1] = ω∗

r [k]). The second term

weights the magnitude of the current in the d axis; its inclusion

favors the application of voltage vectors that minimize isd, i.e.,

it is aimed at achieving high torque per ampere operation. In

the third term, i
p
qf is a high-pass filtered version the current

in the q axis. This term penalizes the voltage vectors that

generate high frequency components in isq . In this way, a

smooth behavior of the electrical torque may be obtained. The

first three terms of the cost function are linear functions of

the predicted states, and λω, λid and λiqf are non-negative

weighting factors that give these terms appropriate relative

weights, and they can be used for tuning purposes. Although

no theoretical rules exist for the design of these weighting

factors, some general consideration apply: firstly, the currents

factors, λid and λiqf , have similar values, reflecting the similar

effect that the voltage vectors have in the variation of both

currents; secondly, the speed error weighting factor λω must

have a relatively high value, in order to compensate for small

effect that the voltage vector choice has in the speed variation.

The fourth term, i.e., f̂ , is a highly nonlinear function that

takes into account restrictions on the maximum stator current,

imposing hard constraints on the maximum values of the stator

currents. This function is given by

f̂
(

i
p
sd, i

p
sq

)

,

{

∞ if |ipsq| > îq or |ipsd| > îd,

0 if |ipsq| ≤ îq and |ipsd| ≤ îd.
(18)

Clearly, f̂ penalizes heavily the application of voltage vectors

that generate currents beyond acceptable limits. Finally, the

voltage vector which minimizes the described cost function

is selected and applied to the motor at the beginning of every

sampling period. This results in a variable switching frequency,

with a theoretical maximum of half the sampling rate.

IV. IMPLEMENTATION ISSUES

Due to the magnitude of the electrical time constants, the

predictive control strategy proposed in the previous section

must be implemented at high sampling rates. Otherwise, rea-

sonable current waveforms and smooth torque control cannot

be achieved. This leads to considerable noise in the motor

speed estimate due to the inherent quantization noise present in

the angle output of an incremental encoder. These devices give

a quantized measurement of the rotor position, adding high

frequency noise to the angle measurement. The quantization
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noise in the position measurement is amplified when the speed

is estimated using the Euler approximation of the derivative,

i.e. when making

ω̃r[k] =
θr[k] − θr[k − 1]

h
. (19)

It is clear that the noise energy becomes higher when the

resolution of the encoder is low or the sampling frequency

is increased.

The high magnitude and high frequency noise in the speed

estimation produced by the angle quantization, impedes the

correct operation of the predictive control strategy proposed

above. In this section, we propose a solution to this problem

based on the extended Kalman filter (EKF). The EKF is im-

plemented using the usual formulation, given by the following

equations [14]:

K[k] = P [k|k − 1]CT
(

CP [k|k − 1]CT +Re
)

−1

(20)

x̂[k|k] = x̂[k|k − 1] +K[k] (y[k] − Cx̂[k|k − 1]) (21)

P [k|k] = P [k|k − 1] −K[k]CP [k|k − 1] (22)

x̂[k + 1|k] = gd(x̂[k|k], u[k]) (23)

P [k + 1|k] = A[k]P [k|k]A[k]T , (24)

where x̂ is the state estimate, gd(x, u) is the discrete model of

the nonlinear system, A is the corresponding jacobian matrix,

and C is the model output matrix. Re and P are the covariance

matrices of the measurement noise and the state, respectively,

and K is the Kalman gain. In (23) and (24) the state and its

covariance are predicted using the measurements available at

the sampling instant k. These predictions are then corrected

with new data at the next sampling instant by (21) and (22)

using the Kalman gain calculated in (20).

To implement the EKF, the stationary frame machine model,

i.e. αβ frame model, is preferred because, when doing so, the

quantization noise in the angle measurement is not propagated

into the electrical variables through a coordinate rotation.

Additionally, in the stationary frame, the rotor speed has a

grater effect in the electrical dynamics and, hence, the current

measurements have a bigger influence in the estimation of the

mechanical variables, as compared with an implementation the

dq rotatory frame.

The continuous model of the machine in the αβ frame is

given by the following equations:

dxαβ(t)

dt
= gαβ(xαβ(t), uαβ(t)) (25)

yαβ(t) , [iα iβ θr]
T = Cxαβ(t), (26)

where

xαβ , [iα iβ ωr θr]
T (27)

uαβ , [vα vβ ]
T (28)

Cαβ ,





1 0 0 0
0 1 0 0
0 0 0 1



 (29)

gαβ(x, u) ,









− 1
τs

iα + ψm

Ls

ωr sin(θr) + 1
Ls

vα

− 1
τs

iβ − ψm

Ls

ωr cos(θr) + 1
Ls

vβ
pkT

J (− sin(θr)iα + cos(θr)) −
B
J ωr

ωr









.

(30)

Note that yαβ corresponds to the state variables that are

available for measurement. The third state, namely ωr, is not

measured, but estimated using the EKF.

The model in (25) is discretized for the implementation

of the EKF using the modified Euler integration method

mentioned earlier.

The EKF tuning is made adjusting the initial covariance

matrix P [0,−1] and the measurement noise covariance matrix

Re. For simplicity, we assume Re to be diagonal. The entry

associated with the rotor angle measurement corresponds to

the quantization noise variance σ2
q . Assuming uniform and

white quantization noise,

σ2
q =

∆2

12
, (31)

where ∆ is the quantization step (i.e., is given by the encoder

resolution). The remaining entries in the Re matrix, are

associated with the currents measurements (iα, iβ), and were

adjusted empirically through simulations.

Another drawback of employing a high sampling rate is

the magnification of the effect of the commutation dead-

time of the semiconductors. In these conditions, it cannot

be disregarded. This is particularly true for the EKF, whose

performance is heavily affected if the dead times are not taken

into account.

The commutation dead-time corresponds to a delay on the

turn-on of the semiconductors. This gives time for the corre-

sponding complementary switch to completely turn-off, thus

avoiding short circuits of the DC link during commutation.

This delay on the turn-on of the switches has an effect on

the output voltage, reducing or increasing its average value

with respect to its reference depending on the commutation

state and current direction. This effect on the inverter output

voltage is depicted in Figure 4.

Dead-time effects can be taken into account in the input

voltages of the EKF by correcting the reference voltage

according to the measured phase current. We propose the

following:

VzN [k] = V ∗

zN [k] + VzDT [k], (32)

where V ∗

zN is the reference voltage for a given phase z ∈
{a, b, c}, and VzDT is the dead-time compensation voltage for
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Fig. 4. Effect of the commutation dead-time of the semiconductors on the
inverter output voltage

that phase, which is given by

VzDT [k] =























0 if Sz[k] = Sz[k − 1]
−DT

h Vdc if Sz[k] − Sz[k − 1] = −1
and iz > 0

DT
h Vdc if Sz[k] − Sz[k − 1] = 1

and iz < 0,

(33)

where DT corresponds, approximately, to the dead-time value

and its magnitude can be adjusted to include compensation of

other related effects, such as device commutation time and

conduction voltage drop [15].

Using the reference voltage (appropriately corrected for the

dead-time), and the currents and rotor position measurements

as inputs to the EKF, a good estimation of the rotor speed is

achieved. This speed estimate has no high frequency quanti-

zation noise, and can be used as speed measurement in the

proposed predictive control strategy.

V. SIMULATION RESULTS

The proposed predictive control strategy is evaluated

through simulations using MATLAB/Simulink. The parame-

ters of a real 4[kW ] machine were used in this simulation

and they are listed in Table I. The simulated inverter is

characterized by a DC link of 540[V ] and dead-time of 2[µs].
For the purposes of prediction and evaluation of the ob-

jective function, a sampling period h = 30[µs] was used. In

each sampling period, predictions were performed using the

prediction model described in (12) and (13) for all voltage

vectors shown in Figure 2. The results of these predictions

were then used to evaluate the cost function (17), which has

the parameters shown in Table II. The high-pass filter for isq
was a second order butterworth filter with cutoff frequency fc.

This predictive model, and the evaluation of the cost function,

was coded as a Matlab S-function in the C language for easy

migration to an experimental set-up. The machine, on the

other hand, was simulated using continuous time Simulink

integrators and a sampling frequency much higher than h−1.

Steady state results are shown in Figure 5. This result

assumes additional friction as mechanical load. The effect of

using an EKF is evident, showing a significant improvement

on the estimated speed ω̂r, with respect to the speed calculated

using the Euler approximation ω̃r. For this speed calculation,

an angle measurement with a resolution of 4096 [PPR] and

TABLE I
MACHINE PARAMETERS.

Parameter Value

Rs 0.3[Ω]
Ls 8.2[mH]
ψm 0.125[Wb]
p 3
J 0.004[kgm2]
B 1 · 10−3[kgm2/s]

TABLE II
PREDICTIVE CONTROL PARAMETERS

Parameter Value

h 30[µs]
λω 1000
λid 1
λiqf 1.4
fc 200[Hz]
biq 22.6[A]
bid 1[A]

a sampling period of 30[µs] has been used. Also, the stator

currents show low harmonic distortion, which is a consequence

of imposing zero reference for isd.

The transient response, under the same conditions, is shown

in Figure 6, where a speed reversal is documented. The first

noticeable characteristic of this response is its good reference

speed tracking, and a fast response in the torque current

isq . Remarkable is the fact that the speed shows almost no

overshoot, while the torque transient (proportional to isq) is

adjusted to obtain nearly ideal speed tracking. We also note

that the control of the current components isd and isq is highly

decoupled, achieving almost zero isd current. As mentioned

above, this leads to highly sinusoidal stator currents, even

during transients. Finally, some oscillations are noticeable on

the control of isq at the beginning of the simulation. This is

due to the transient response of the EKF, which translates into

a speed estimation error at start-up. This error converges to

zero in less than 0.04[s].
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Fig. 5. Steady state operation: (a) rotor speed calculated using the Euler
approximation ω̃r and the Kalman filter ω̂r , (b) stator currents.
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Fig. 6. Speed reversal: (a) reference and actual rotor speed, (b) stator currents in dq frame, (c) three-phase stator currents.

VI. CONCLUSIONS

In this paper, we have developed a centralized predictive

control strategy for a PMSM. A suitable cost function that

incorporates different control objectives, including constraints,

has been designed. The proposed cost function is more com-

plex than a simple weighted sum of errors in the different

objectives, including filters and nonlinear functions for a

smooth torque response. On the other hand, the inclusion

of restrictions was straightforward once a suitable nonlinear

term was included in the cost function. The resulting scheme

showed good performance, which is characterized by good

speed tracking and decoupled current control.

The high sampling rate needed for effective current control

using the proposed predictive control leads to serious im-

plementation difficulties. This is particularly true in relation

to quantization noise in the speed feedback signal. An ex-

tended Kalman filter has been designed to solve this problem.

Nevertheless, this filter complicates the control strategy. We

conclude that measurement noise may become a serious issue

in high speed predictive control, but an appropriately designed

Kalman filter can be used to mitigate such problems.

Finally, it should be noted that there exists hard con-

straints on the sampling frequency due to physical limitations

such as A/D conversion time, maximum allowable switching

frequency on the semiconductors and DSP calculation time

which, in a real implementation, might be high due to the

complexity of the motor model and the addition of the Kalman

filter. On the other hand, the low inductance characteristic of

PMSM motors impose restrictions on the minimum sampling

frequency needed to achieve good current control. A good

trade-off may not be achieved if the inductance of the machine

is too small.

Experimental validation of the proposed control scheme is

ongoing.
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