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Abstract—For software-defined networking (SDN) systems, to
enhance the scalability and reliability of control plane, existing
solutions adopt either multi-controller design with static switch-
controller association, or static control devolution by delegating
certain request processing back to switches. Such solutions can
fall short in face of temporal variations of request traffics,
incurring considerable local computation costs on switches and
their communication costs to controllers. So far, it still remains
an open problem to develop a joint online scheme that con-
ducts dynamic switch-controller association and dynamic control
devolution. In addition, the fundamental benefits of predictive
scheduling to SDN systems still remain unexplored. In this paper,
we identify the non-trivial trade-off in such a joint design and
formulate a stochastic network optimization problem which aims
to minimize time-averaged total system costs and ensure long-
term queue stability. By exploiting the unique problem structure,
we devise a predictive online switch-controller association and
control devolution (POSCAD) scheme, which solves the problem
through a series of online distributed decision making. Theo-
retical analysis shows that without prediction, POSCAD can
achieve near-optimal total system costs with tunable trade-off
for queue stability. With prediction, POSCAD can achieve even
better performance with shorter latencies. We conduct extensive
simulations to evaluate POSCAD. Notably, with mild-value of
future information, POSCAD incurs a significant reduction in
request latencies, even when faced with prediction errors.

Index Terms—SDN, switch-controller association, control de-
volution, predictive scheduling.

I. INTRODUCTION

DURING the past decade, software-defined networking

(SDN) has initiated a profound revolution in networking

system design towards more efficient network management

and more flexible network programmability. The key idea of

SDN is to separate the control plane from the data plane

[25]. In such a way, the control plane maintains network-wide

information to process requests that are constantly generated

from SDN-enabled switches in the data plane. Based on the

instructions from the control plane, the data plane only needs

to carry out basic network functions such as monitoring and

packet forwarding.

As the scale of data plane expands, scalability and reliability

of control plane often become the main concerns for SDN

systems [16]. For example, the control plane, if implemented

with a singleton controller, can be overloaded by the ever-

increasing request traffic, leading to excessively long queueing
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latencies and belated response to network events. Besides, the

singleton controller is also a single point of failure which can

result in the breakdown of the whole networking system.

To address such concerns, existing solutions basically fall

into two categories. One is to implement the control plane

as a distributed system with multiple controllers [3]. Such

controllers cooperate to form a logically centralized control

plane to manage the network within a single administrative do-

main [5] [15], or logically distributed control planes to handle

networks across different domains [28] [30]. Under such de-

signs, each switch may have potential connections to multiple

controllers for fault tolerance and load balancing. Accordingly,

the associations between switches and controllers need to be

carefully determined so as to reduce the communication costs

and balance the workloads among controllers. To this end,

existing works [10] [11] [17] [18] [23] [34] [35] have proposed

various solutions to decide switch-controller associations in a

deterministic fashion. The other is to devolve the processing

of some requests that requires no global information onto

switches, to reduce workloads on the control plane [12] [42].

Such techniques have been widely considered and adopted

in various large-scale systems such as data center networks

[9], WAN [14], and edge computing [37]. For example, Curtis

et al. [9] modified the OpenFlow model to conduct effective

flow management by: 1) devolving the control of most flows

back onto switches and processing them with an aggressive

use of flow-match wildcards or hash-based routing, while 2)

controllers maintain global visibility to handle only targeted

significant flows; e.g., carrying out load balancing for long-

lived flows with high throughputs.

Based on such investigations, we identify several interesting

but unresolved questions regarding the control plane design:

⋄ Instead of conducting deterministic switch-controller as-

sociations with infrequent re-association [17] [34], can

we directly perform dynamic association with respect to

request traffic variations? What is the benefit of fine-

grained control at the request level?

⋄ How to conduct dynamic devolution?

⋄ Are there any trade-offs in the joint design of dynamic

switch-controller association and dynamic control devo-

lution? If so, how do we manage such trade-offs?

⋄ Since the uncertainty in request traffic statistics remains

one of the key factors that bring challenges to SDN

system design, then if they can be learned, what are the

fundamental limits of the benefits of attaining such future

information for SDN systems?

Notably, the last question is motivated by the recent grow-
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ing interests in leveraging machine-learning-based predictive

analytics and scheduling to improve system performance, such

as traffic prediction for routing optimization [36], quality-of-

experience (QoE) prediction to promote user satisfaction [7],

and failure prediction to optimize IT operations [24]. Despite

the proposal of various prediction-based approaches [8] [26]

[40] [41] in recent years, the fundamental benefits of predictive

scheduling for SDN systems remain unexplored.

In this paper, we focus on general SDN systems with

requests dynamically generated from switches in the data plane

for the processing of various network events. We assume

that each request can be either processed at a switch (with

computation costs) or be uploaded to certain controllers (with

communication costs).1 We aim to reduce the computational

costs by control devolution at data plane, the communi-

cation costs by switch-user association between data plane

and control plane, and the response times experienced by

switches’ requests, which is mainly caused by queueing delays

on controllers. Regarding predictive scheduling, switches are

assumed able to predict requests to arrive in a limited number

of time slots ahead through lightweight prediction modules

with recent time-series forecasting techniques [6]. Further, we

assume such future requests can be generated and pre-served

before their arrival, and, if mis-predicted, they will incur extra

system costs of communication and computation.2 Under such

settings, we open up a new perspective to answer the above

questions. We summarize our contributions as follows.

⋄ Modeling and Formulation: We formulate the problem

stated above as a stochastic optimization problem that

aims to minimize time-averaged total system costs with

long-term queue stability constraints. Through a careful

choice in the granularity of modeling and decision mak-

ing, i.e., to characterize system dynamics at request level

and request scheduling on a time-slot basis, we achieve a

decent balance between modeling accuracy and decision

making complexity.

⋄ Algorithm Design: By adopting existing techniques [27]

[13] and exploiting unique problem structure, we propose

POSCAD, a Predictive Online Switch-Controller Asso-

ciation and control Devolution scheme which exploits

predicted request arrival information to make association

and devolution decisions in a distributed fashion.

⋄ Performance Analysis: We conduct theoretical analysis

which shows that without prediction, POSCAD yields a

tunable trade-off between O(1/V) deviation from min-

imum long-term average total costs of communication

and local computation on switches, and O(V) bound

for long-term average queue backlog size. Furthermore,

with prediction, POSCAD can achieve an even better

performance with a notable reduction in request latencies,

which is verified by our simulation results. Besides, we

also discuss the insights of our design and implementation

issues in practice.

1The scenario in which some requests can only be processed by a controller
is a special case of our model.

2The scenario in which some future requests may not be pre-served due to
their dependency on the processing of previous results is also a special case
of our model.

⋄ Performance Evaluation and Verification:3 We conduct

extensive simulations to evaluate the performance of

POSCAD. Our results show that under various settings,

POSCAD achieves near-optimal system costs while main-

taining a tunable trade-off with queue stability. Further-

more, given only mild-value of predicted information,

POSCAD incurs a significant reduction in request re-

sponse time, even when faced with mis-prediction.

⋄ New Degree of Freedom in the Design Space of

SDN Systems: To the best of our knowledge, this paper

provides the first design to explore and exploit the benefits

of predictive scheduling for SDN systems, opening up a

new perspective in the design of SDN systems.

The rest of this paper is organized as follows. Section

II presents two motivating examples to illustrate the non-

trivial trade-off between different performance metrics and the

potential benefits of predictive scheduling in SDN systems,

respectively. Section III demonstrates our system model and

problem formulation. Then Section IV shows the design of

POSCAD and its performance analysis. Section V discusses

our simulation results, Section VI reviews related works, while

Section VII concludes this paper.

II. MOTIVATING EXAMPLES

In this section, we provide two motivating examples to

illustrate the non-trivial trade-off in the joint design of dynamic

switch-controller association and control devolution, and the

potential benefits of predictive scheduling in SDN systems,

respectively. Such examples motivate our subsequent problem

formulation of joint switch-controller association and control

devolution with predictive scheduling in SDN systems.

A. Motivating Example of Performance Trade-off

Figure 1 shows the evolution of an SDN system within

one time slot. Particularly, Figure 1 (a) presents the initial

system state at the beginning of the time slot. Figures 1 (b) –

1 (e) show the system evolution given two different association

decisions. In Figure 1 (b), switches s1 and s2 are associated

to controller c1, whereas s3 chooses to process its requests

locally. In Figure 1 (d), switches s1 and s3 are associated to

controllers c1 and c2, respectively, while s2 chooses to process

its requests locally.

First, we focus on the consequences of different scheduling

decisions for switch s3. In Figure 1 (b), switch s3 chooses to

process its requests locally, which incurs 2 units of computa-

tion costs per request. In Figure 1 (c), s3 decides to upload

requests to c2, which incurs 3 units of communication costs.

Though the decision in Figure 1 (b) leads to a lower total cost

of 4 units than Figure 1 (c) (of 6 units), it still leaves one

request untreated at the end of the time slot.

Next, we switch to the consequences of such scheduling

decisions to the whole system. In Figure 1 (b), the decision

(denoted by X1) includes two switch-controller associations:

(s1, c1) and (s2, c1) (s3 processes requests locally). From Figure

3Note that testbed-based experimental verifications are not considered in
this work, since our focus is on the exploration of the fundamental limits of
the benefits of predictive scheduling in SDN systems. Nonetheless, it can be
an interesting direction for future work.
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Fig. 1. An SDN system with request-level switch-controller association and
control devolution within one time slot. There are three switches (s1, s2, s3),
two controllers (c1, c2), and one global scheduler. Switches and controllers
maintain queue backlogs to buffer requests. Between each pair of controller
and switch, each dotted line denotes a potential connection, while each
solid line denotes the actual association made in the current time slot. Each
connection and each switch are associated with a number denoting the unit
communication or local computation costs (on switches) for transferring and
processing one request, respectively. Each controller can serve up to 2 requests
for each time slot, while each switch serves only 1 request. The scheduler’s
goal is to minimize the sum of total communication costs and computational
costs, as well as the total queue backlog size, which implies timely processing
of requests. The system proceeds as follows. At the beginning of time slot
t, switches s1, s2, and s3 generate 3, 2, and 2 requests, respectively. The
scheduler then associates switches to controllers in two ways ((b) and (c)).
Switches then process new requests locally or upload them to controllers.

1 (d), we see that although decision X1 only incurs total costs

of 9, it still leaves four requests unfinished at the end of the

time slot. Meanwhile, in Figure 1 (c), the decision (denoted by

X2) includes two associations: (s1, c1) and (s3, c2) (s2 processes

its requests locally). Figure 1 (e) show that X2 does better than

X1 with two more finished requests at the end of the time slot.

However, this is achieved at a higher total cost of 13 units.

The above observations show that there is a non-trivial

trade-off between system costs and total queue backlog re-

duction.

B. Motivating Example of Benefits of Predictive Scheduling

Figure 2 presents an example that compares the cases with

and without predictive scheduling, where Figure 2 (a) shows

the system state at the beginning of time slot t. There are two

switches potentially connected to one controller (denoted by

dashed arrows). All requests are assumed homogeneous such

that they can be handled by both switches and the controller.

Upon new requests’ arrival, each switch either associates with

the controller (denoted by a solid arrow) and uploads requests,

or stores them in its own local processing queue. In each time

slot, a switch processes at most 1 request and the controller

processes at most 2 requests, both in a first-in-first-out manner.

The objective is to minimize the average request response time.

Figure 2 (a) shows the system state at the beginning of time
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Fig. 2. An example that shows the benefits of predictive scheduling.

slot t, where one new request arrives at switch 1, one is already

stored in switch 1’s local queue, and no requests arrive at

switch 2. The future request arrivals (marked with stripped

colors) in time slot (t +1) are also visible to switches. Figures

2 (b) and 2 (c) present the scheduling process that handles

current requests only, whereas Figures 2 (d) and 2 (e) exhibit

the case with predictive scheduling.

First, we consider the case without predictive scheduling

and handle only the arriving requests, as shown in Figures 2 (b)

and 2 (c). For switch 1, it chooses to make an association with

the controller and uploads the new request, considering that

its local queue has already buffered one request. Meanwhile,

switch 2 takes no action since no requests arrive at present.

After the only new request is forwarded, as shown in Figure

2 (b), the controller and switches process the requests in their

respective queues. Figure 2 (c) shows the system state at the

end of time slot t, where the two requests in time slot (t + 1)

are still left unprocessed.

Next, we focus on the case with predictive scheduling, as

shown in Figures 2 (d) and 2 (e). Switch 1 associates with the

controller and uploads the new request that arrives at present.

Considering that the controller has a service capacity of two

requests per time slot, it pre-admits the request which will

arrive in time slot (t + 1), then uploads the request to the

controller. Similarly, switch 2 pre-admits the future request

in time slot (t + 1) and stores the request in its local queue.

Figure 2 (d) shows the system state after the (pre-)admission

of requests. Then the controller and switches consume the

requests from their queues. Figure 2 (e) shows that with

predictive scheduling, all requests in time slots t and (t + 1)

are completed by the end of time slot t. Consequently, both

future requests will receive instant response upon their arrivals

in time slot (t + 1).

The above example shows that predictive scheduling can ef-

fectively reduce the request response time by taking advantage

of predicted future information.
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TABLE I
KEY NOTATIONS

Symbol Description

C The set of controllers in the control plane

S The set of switches in the data plane

Qs
i
(t) Switch i’s local queue backlog size in time slot t

Qc
j
(t) Controller j’s queue backlog in time slot t

Q
p

i
(t)

Prediction queue backlog with respect to switch i in
time slot t

Q
(d)
i
(t)

The number of untreated requests by time slot t
that will arrive at switch i in time slot (t + d)

Ai (t) The number of request arrivals on switch i in time slot t

Bs
i
(t) The service capacity of switch i in time slot t

Bc
j
(t) The service capacity of controller j in time slot t

Mi, j (t)
The per-request communication cost between switch i
and controller j in time slot t

Pi (t)
The per-request computational cost on switch i in time
slot t

Xi, j (t)
The association decision with respect to switch i and
controller j in time slot t

Yi (t) The admission decision for switch i in time slot t

fp (t) The total communication costs incurred in time slot t

gp (t) The total computational costs incurred in time slot t

hp (t) The weighted total queue backlog size in time slot t

III. PROBLEM FORMULATION

In this section, we present our system model and problem

formulation, with key notations summarized in Table I.

A. System Model

1) Basic Model: We consider an SDN system that evolves

over time slots, indexed by t ∈ {0, 1, 2, . . . }. The system

maintains a logically centralized control plane that comprises

a set C of physically distributed controllers. Meanwhile, its

data plane consists of a group of SDN-enabled switches S.

Each switch i keeps a local processing queue4 of backlog size

Qs
i
(t), while each controller j maintains a queue backlog Qc

j
(t)

that buffers requests from the data plane.

In each time slot t, there are a number of Ai(t) (≤ amax for

some constant amax) new requests arriving at each switch i.5

Such arrivals Ai(t) are assumed independently and identically

distributed over time slots. We denote A(t) , {Ai(t)}i . There

are two cases of serving a request. One case is local process-

ing, which means that the switch is programmed to provide

local control functions to process the packet with sub-optimal

but faster decision making [9]. The other case is when the

packet is added into an SDN event and uploaded to the control

plane to decide how to update the flow table.

In this work, we assume all requests are homogeneous;

i.e., they can be handled by both switches and controllers,

4In some other designs [12], the control devolution can also be implemented
with a two-layered control plane. Controllers in the bottom layer are deployed
in the virtual machines on the same servers as some Open vSwitches. Such
controllers have no network-wide information but they can provide faster
processing of some basic functions such as local load balancing. Our model
can be directly extended to handle such cases by regarding the local processing
as the service provided by the controllers in the bottom layer.

5In our work, we define a request as follows. When a new packet arrives
at an SDN-enabled switch, the switch will extract the packets header fields
to match against flow table entries and execute the matched action upon the
packet. If the packet matches no entries (or matches some pre-specified entry),
the switch will trigger a packet-in event, encapsulate the packet, then forward
it to one of the controllers. In this process, we call the processing demand of
each packet a request.

though our model can be directly extended to scenarios with

heterogeneous requests with stateful processing requirements.

To process such requests, each controller j has a service

capacity of Bc
j
(t) requests, while each switch i ∈ S has

a service capacity of Bs
i
(t) requests. We denote all service

rates {Bc
j
(t)}j∈C and {Bs

i
(t)}i∈S by B(t). Considering the

resource limits on switches and controllers, we assume that

Bc
j
(t) ≤ bcmax and Bs

i
(t) ≤ bsmax , for some constants bcmax and

bsmax . Besides, we also assume the existence of E{(Ai(t))
2},

E{(Bc
j
(t))2}, and E{(Bs

i
(t))2}.

2) Pre-service Model: Besides the processing of actually

arriving requests, we take a further step by considering the

case when the system can predict future request arrivals in

a finite number of time slots ahead.6 Meanwhile, pre-serving

future requests is also assumed applicable.7 Particularly, each

switch is installed with a learning module that actively pre-

dicts request arrivals [36], while maintaining extra buffer for

predicted requests. Such requests are predicted, pre-generated

(with one bit for indication in their headers), and recorded

by the switch. Arriving and predicted requests, if scheduled,

are appended to corresponding processing queues and later

served with some queueing discipline, e.g., first-in-first-out.

When predicted requests arrive, if pre-served, they will be

considered finished.

Formally, for each time slot t, we consider each switch

i having access to its future request arrivals in a prediction

window of size Di (< D for some constant D), denoted by

{Ai(t + 1), . . . , Ai(t + Di)}. In practice, one should leverage

machine learning techniques such as time series forecasting

methods with low computational complexity [6], and the size

of the prediction window would not be very large, only few

time slots. Note that the prediction may be inaccurate often

times, leading to extra resource consumptions. We evaluate the

impacts of mis-prediction in Section V.

With predictive scheduling, some future requests might have

been pre-admitted or pre-served before time slot t, thus we

use Q
(d)

i
(t) (0 ≤ d ≤ Di) to denote the number of untreated

requests in the d-th slot ahead of time t, such that

0 ≤ Q
(d)

i
(t) ≤ Ai(t + d). (1)

Note that Q
(0)

i
(t) denotes the number of untreated requests

that actually arrive at time t. We denote the total number of

untreated requests on each switch i by Q
p

i
(t) =

∑Di

d=0
Q
(d)

i
(t).

We regard Q
p

i
(t) as a virtual prediction queue backlog that

buffers untreated future requests for switch i.

We denote the vector of all queue backlog sizes {Q
p

i
(t)}i∈S ,

{Qs
i
(t)}i∈S , and {Qc

j
(t)}j∈C by Q(t).

3) Scheduling Decisions: Upon new requests’ arrivals, each

switch should make two types of decisions.

Of the first type are association decisions, i.e., deciding to

associate with one of its potentially connected controllers or

6We do not assume any particular prediction techniques in this paper, since
our main focus is to explore the fundamental benefits of predictive scheduling.
In practice, such prediction can be carried out by applying various machine
learning techniques such as time-series prediction methods [6].

7The techniques of request pre-admission are still under active development.
Here we take the flow management in SDN as an example. In practice, we
can adopt recently developed network traffic prediction techniques [2] [20],
so that switches and controllers can pre-identify long-lived or bursty flows
and pre-install rules on switches to optimize the processing of such flows.
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Fig. 3. An example of queueing model with predictive scheduling: At the
beginning of each time slot, requests arrive at switches over time slots. Along
with predicted request arrivals, they are buffered in queue Q

p

i
(t). Meanwhile,

each switch i makes association decisions {Xi, j (t)} j and admission decision
Yi (t), then either forwards requests to controllers or processes them locally.
Requests are queued up and await to be processed in a first-in-first-out order.

not (devolution). We adopt Xi, j(t) to denote such decisions.

Specifically, Xi, j(t) = 1 if switch i will be associated with

controller j ∈ C in the current time slot and zero otherwise.8 If

switch i is assigned with no controllers, i.e.,
∑

j∈C Xi, j(t) = 0,

then it appends new requests to its local processing queue.

An association is feasible if it ensures that each switch is

associated with at most one controller during each time slot.

The set of feasible associations is defined as follows.

A , {X ∈ {0, 1} |S |×|C | |
∑

j∈C

Xi, j ≤ 1, ∀ i ∈ S}. (2)

Of the second type are admission decisions, i.e., deciding

the total number of untreated requests to be admitted, includ-

ing requests that actually arrive in the current time slot and

untreated future requests in its own prediction window. We use

Yi(t) to denote the number of requests admitted by switch i in

time slot t. Such admitted requests must include all untreated

requests that have arrived, but not exceed Q
p

i
(t), i.e.,

Q
(0)

i
(t) ≤ Yi(t) ≤ Q

p

i
(t), ∀i ∈ S, t ≥ 0. (3)

In the rest of this paper, we denote the sets {Xi, j(t)}i∈S, j∈C
and {Yi(t)}i∈S by X(t) and Y(t), respectively.

4) System Workflow and Queueing Model: Basically, the

system proceeds over time slots as follows. At the beginning

of each time slot t, new requests arrive at switches. Scheduling

decisions [X(t),Y(t)] are then made based on instant system

dynamics such as Q(t) and spread to all switches. Each switch

i then admits Yi(t) requests, possibly including untreated future

requests. All admitted future requests are marked treated

8Our model can also be extended to handle the case of logically distributed
control planes. Under such designs, each switch belongs to a distinct admin-
istrative domain. Accordingly, each switch i only has access to a subset of
controllers, which can be denoted by Ci ⊂ C.

and will not be served again thereafter. Meanwhile, based

upon {Xi, j(t)}j∈C , each switch i sets up its association and

forwards admitted requests accordingly. Next, all switches and

controllers process as many requests as possible from their

processing queues. At the end of time slot t, the learning

module on each switch updates its new prediction of request

arrivals. Accordingly, each switch’s prediction window slides

ahead by one time slot and new future requests are included

to the corresponding prediction queues.

With the above workflow, we have the following update

equations for different queue backlogs.

i) For the prediction queue with respect to switch i,

Q
p

i
(t + 1) =

[

Q
p

i
(t) − Yi(t)

]

+

+ Ai(t + Di + 1). (4)

ii) For the processing queue on switch i ∈ S,

Qs
i (t + 1) =

[

Qs
i (t) + (1 −

∑

j∈C

Xi, j(t))Yi(t) − Bs
i (t)

]

+

. (5)

iii) For the processing queue on controller j ∈ C,

Qc
j
(t + 1) =

[

Qc
j
(t) +

∑

i∈S Xi, j(t)Yi(t) − Bc
j
(t)

]

+

. (6)

Note that we provide an example of the above queueing model

in Figure 3.

B. Optimization Objectives

Communication Cost: Request transmissions from data

plane to control plane often incur some communication costs.9

Lower communication costs often imply shorter request re-

sponse time. For each time slot t, we define Mi, j(t) as the

communication cost of forwarding one request from switch

i to controller j. By denoting the set {Mi, j(t)}i∈S, j∈C by

M(t), given decisions X(t) and Y(t), we define the total

communication costs in time slot t as

fp(t) , f̂p (X(t),Y(t)) =
∑

i∈S

∑

j∈C

Mi, j(t)Xi, j(t)Yi(t). (7)

Computational Cost: Considering the scarcity of switches’

computational resources, the scheduler should spare the use

of switches’ processing capacities. We use Pi(t) to denote the

computational cost for serving a request locally on switch i in

time slot t. With P(t) as {Pi(t)}i∈S and given decisions X(t)

and Y(t), we define the one-time-slot computational costs as

gp(t) , ĝp (X(t),Y(t))=
∑

i∈S

Pi(t)
[

1−
∑

j∈C

Xi, j(t)
]

Yi(t). (8)

Queue Stability: To ensure the timely processing of re-

quests, it is necessary to balance queue backlogs on controllers

and switches, so that no queue backlogs would suffer from

being overloaded. Hence, we require the stability of all queue

backlogs in the system. To this end, we first denote the

weighted total queue backlog size in time slot t as

hp(t) , ĥ(Q(t)) =
∑

j∈C

Qc
j (t)+β1

∑

i∈S

Qs
i (t)+β2

∑

i∈S

Q
p

i
(t),

(9)

9In practice, communication costs can be measured by the number of hops,
round-trip times (RTT), or transmission powers, etc.
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where β1 and β2 are positive constants that measure the

importance of balancing the backlogs of switch queues and

prediction queues compared to controller queues, respectively.

Then we define queue stability [27] as

lim sup
T→∞

1

T

T−1
∑

t=0

E{hp(t)} < ∞. (10)

C. Problem Formulation

We formulate the following stochastic optimization problem

that aims to minimize the long-term time-averaged expectation

of the weighted sum of total communication and computation

costs, while ensuring long-term queue stability.

Minimize
{(X(t),Y(t))}T−1

t=0

lim sup
T→∞

1

T

T−1
∑

t=0

[

E{ fp(t)} + γE{gp(t)}
]

Subject to Xi, j(t) ∈ A, ∀i ∈ S, j ∈ C,

Yi(t) ∈ Z+, ∀i ∈ S, and (3) − (6), (10),

(11)

where γ is a non-negative constant that measures the scarcity

of computation resources on switches.10

IV. ALGORITHM DESIGN AND ANALYSIS

In this section, we present detailed algorithm design to solve

problem (11) with theoretical analysis and further discussion.

A. Algorithm Design

We adopt Lyapunov optimization techniques [27] to solve

problem (11). First, we define the following Lyapunov function

L(Q(t)) ,
1

2

[
∑

j∈C

(

Qc
j (t)

)2

+β1

∑

i∈S

(

Qs
i (t)

)2
+ β2

∑

i∈S

(

Q
p

i
(t)

)2
]

.

(12)

Then we define the conditional Lyapunov drift for consecutive

time slots as

∆ (Q(t)) , E {L(Q(t + 1)) − L(Q(t)) |Q(t)} . (13)

The conditional difference measures the general change in the

queueing congestion state of the system. Such a difference

should be as low as possible to prevent any queue backlog

from being overloaded. To this end, the decision-making

process should aim to minimize (13). However, this may

also incur considerable communication and computational

costs when faced with various uncertainties in the system,

such as uneven request arrival traffic on different switches,

inhomogeneous service capacities of controllers, and temporal

variations of communication costs. Hence, besides optimizing

(13), such costs should also be considered. Given decisions

X(t) and Y(t), we define the conditional drift-plus-penalty as

∆V (Q(t)) , ∆(Q(t)) + V · E
{

fp(t) + gp(t)|Q(t)
}

, (14)

10 The overheads of rule installation are not considered in our system
model. The reason is that in practice, such overheads are relatively small
and can be further mitigated by recently proposed SDN overhead reduction
techniques [29]. Moreover, our model can also be extended to handle such
a case. Specifically, for each switch, we can associate each of its possible
choices (including itself and its controllers) with a more general cost that
takes such overheads into account, while the rest of our model requires no
change.

where parameter V is a positive constant that controls the

penalty brought by incurred system costs fp(t) (defined in (7))

and gp(t) (defined in (8)). By minimizing the upper bound of

the drift-plus-penalty term (14), the time-average communica-

tion cost can be minimized while stabilizing the network of

request queues [27]. We adopt the concept of opportunistically

minimizing an expectation [27], and transform problem (11)

into a series of sub-problems over time slots. Particularly, in

each time slot t, we have

Maximize
X(t),Y(t)

∑

i∈S

li(t)Yi(t) +
∑

i∈S

∑

j∈C

ui, j(t)Xi, j(t)Yi(t)

Subject to Xi, j(t) ∈ A, ∀i ∈ S, j ∈ C,

Yi(t) ∈ Z+, ∀i ∈ S, and (3) − (6),

(15)

where the terms li(t) and ui, j(t) are defined as

li(t) , β2Q
p

i
(t) − β1Qs

i (t) − VγPi(t), (16)

ui, j(t) ,
[

β1Qs
i (t) −Qc

j (t)
]

+ V
[

γPi(t) − Mi, j(t)
]

, (17)

respectively. Note that parameter V is a positive parameter

to determine the trade-off between queue stability and the

reduction in total system costs. The objective function of (15)

can be further decoupled. For each time slot t and switch i:

Maximize
X(t),Y(t)

li(t) · Yi(t) +
[
∑

j∈C

ui, j(t)Xi, j(t)
]

· Yi(t)

Subject to Xi, j(t) ∈ A, Yi(t) ∈ Z+, ∀ j ∈ C,

Q
(0)

i
(t) ≤ Yi(t) ≤ Q

p

i
(t).

(18)

Note that variables {Xi, j(t)}j∈C and Yi(t) are coupled in the

objective function, making problem (18) complicated to solve.

However, by exploiting the problem structure, we show that it

can be solved optimally, as follows.

Given [Q(t),P(t),M(t)], li(t) and ui, j(t) are constants in time

slot t. For each switch i, solving problem (18) is equivalent to

finding the maximum product of two terms: 1) Yi(t) (positive

and bounded), 2) li(t) +
∑

j∈C Xi, j(t)ui, j(t), which depends on

{Xi, j(t)}j∈C that at most one of them equals one.

To achieve the maximum value of (18), we consider the

following three cases.

Case 1: If li(t) < 0 and li(t)+ui, j(t) < 0 for all j, then one

should consider two sub-cases. In either case, Yi(t) should be

set as its minimum Q
(0)

i
, and we aim to decide {Xi, j(t)}j∈C

that maximizes the value of li(t) +
∑

j∈C Xi, j(t)ui, j(t).

i) If ui, j(t) < 0 for all j, then choose no controllers, i.e.,

Xi, j(t) = 0 for all j.

ii) Otherwise, if Ĉ , { j ′ ∈ C | ui, j′(t) ≥ 0} , ∅, then one

should choose the controller j∗ ∈ arg maxj′∈Ĉ ui, j′(t) by

setting Xi, j∗ (t) = 1 and others to be zero.11

Case 2: If li(t) ≥ 0 and li(t) + ui, j(t) < 0 for all j, then

the best choice is to choose no controllers (so that the second

term equals li(t)) and set Yi(t) to its maximum Q
p

i
(t).

11If more than one controller achieves the maximum, then the switch should
choose one of them uniformly at random.
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Algorithm 1 POSCAD (Predictive Online Switch-Controller

Association and control Devolution) in one time slot

Input: Queue backlog sizes Q(t), computation costs P(t) on

switches, and communication costs M(t) in time slot t.

Output: Admission and association decisions Y and X.

1: for each switch i ∈ S

2: Calculate li(t) and ui, j(t) for each controller j ∈ C

according to (16) and (17), respectively.

3: if ui, j(t) < 0 for each controller j ∈ C then

4: if li(t) > 0 then

5: set Yi ← Q
p

i
(t).

6: else set Yi ← Q
(0)

i
(t).

7: endif

8: Set Xi, j ← 0, ∀ j.

9: Admit Yi requests from its prediction queue and

10: append them to switch i’s local queue Qs
i
(t).

11: else associate switch i with the controller j∗ such that

j∗ ∈ arg max
j∈C

ui, j(t).

12: if li(t) + ui, j∗ (t) > 0 then

13: set Yi ← Q
p

i
(t).

14: else set Yi ← Q
(0)

i
(t).

15: endif

16: Admit Yi requests from its prediction queue.

17: Forward admitted requests to controller j∗ and add

them to Qc
j∗
(t); i.e., set Xi, j∗ ← 1 and 0 for j , j∗.

18: endif

19: endfor

20: All switches and controllers then consume requests from

their respective processing queues.

Case 3: If C̃ , { j ′ ∈ C | li(t) + ui, j(t) ≥ 0} , ∅, then the

optimal solution is attained by setting Xi, j∗ (t) = 1 for j∗ ∈

arg maxj′∈C̃ ui, j′(t) and others to be zero, while Yi(t) = Q
p

i
(t).

In this way, problem (18) can be solved optimally. Based

the above design, we propose POSCAD, a predictive and

distributed scheme to solve problem (18). Its pseudocode is

given in Algorithm 1.

B. Discussion:

First, we discuss the roles of li(t) and ui, j(t) in POSCAD,

as defined in (16) and (17), respectively. On the one hand, the

value of ui, j(t) reflects switch i’s willingness of associating

with controller j in time slot t. On the other hand, the value

of li(t) quantifies the weighted balance between the number

of untreated requests in the prediction queue and switch i’s

local queue backlog size and computation cost. The larger the

value of li(t), the more untreated future requests in switch

i’s prediction queue, and the more requests switch i tends to

admit. Note that both li(t) and ui, j(t) utilize queue backlog

sizes and estimate communication cost as the indicator of

congestion. Note that such information is readily available on

switches and controllers at the beginning of each time slot.

Based on the above discussion, we illustrate how POSCAD

works. If switch i decides to process new requests locally,

i.e., ui, j(t)< 0 for all j ∈ C, the number of admitted requests

depends on the value of li(t). If li(t) > 0, switch i would admit

future requests to its local queue; otherwise, only untreated

requests in current time slot will be admitted. If ui, j(t) > 0

for some controllers, then switch i will associate with the

controller j∗ with the maximum ui, j∗ (t). In this case, POSCAD

decides request admission based on the value of li(t)+ui, j∗ (t),

which by (16) and (17) turns out to be

li(t) + ui, j∗ (t) = β2 · Q
p

i
(t) −Qc

j∗ (t) − V · Mi, j∗ (t). (19)

Intuitively, li(t) + ui, j∗ (t) reflects the weighted balance among

the number of all untreated requests in the prediction queue,

controller j∗’s queue backlog size, and their communication

cost in between. Switch i tends to admit more future requests

when li(t) + ui, j∗ (t) > 0, i.e., controller j∗ possesses a queue

backlog with a small size and low communication costs.

Next, we discuss the role of parameter V in POSCAD.

Specifically, with a sufficiently large value of V , the terms

related to queue backlogs in (16) and (17) become negligible.

In this case, POSCAD inclines to neglect the workload balance

among queue backlogs, and admits only arriving requests by

sending them to those queues with the least costs. In contrast,

if the value of V approaches zero, POSCAD would ignore

the impact of such costs and greedily forward requests to the

queue with the smallest backlog size.

C. Performance Analysis

First, we assume that the expectation of total system pro-

cessing capacity is greater than that of the total request arrival

rate. Then without predicted information (i.e., Di = 0 for

each switch i ∈ S), we can show that POSCAD achieves

the classic [O(V),O(1/V)] trade-off between the time-averaged

expectation of total costs and total queue backlog size in the

system. The proof is quite standard and thus omitted here [27].

Moreover, with predictive scheduling, POSCAD can achieve

an even better performance by breaking the [O(V),O(1/V)]

backlog-cost barrier with even shorter request latencies. In-

tuitively, this is achieved by making each switch proactively

leverage available predicted information and opportunistically

exploit surplus system processing capacities to pre-serve pre-

dicted requests during each time slot. Regarding the theoretical

analysis for the impacts of prediction errors, it is still an

open problem. In this paper, we resort to simulation results

to evaluate such impacts. More details are given in Section V.

Regarding the time complexity of POSCAD, from Algo-

rithm 1, we see that POSCAD can be run in a distributed

manner. In particular, after acquiring instant information sys-

tem dynamics at the beginning of each time slot, each switch

conducts decision making that is independent of each other.

For each switch, the searching for the best candidate to forward

requests requires only a time complexity of O(|C|). Such a

low time complexity allows system designers to trade off only

little overheads for notable improvements in system perfor-

mance. More detailed discussion about the implementation of

POSCAD is given in Section V.

V. SIMULATION RESULTS

We conduct trace-driven simulations to evaluate the perfor-

mance of POSCAD under different settings. Particularly, in
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Fig. 4. Instances of Fat-tree and Jellyfish topologies for SDN systems. All
controllers are deployed on particular hosts.

the following subsections, we first evaluate the performance

of POSCAD without prediction (i.e., with prediction window

size Di = 0 for each switch i ∈ S). For ease of reference, we

name such a special case of POSCAD as GOSCAD (Greedy

Online Switch-Controller Association and control Devolution

scheme). The reason is that by Algorithm 1, when Di = 0 for

all i ∈ S, each switch i always greedily forwards requests to

the controller j with the maximum positive value of ui, j(t) (if

ui, j(t) < 0 for all j, then process requests locally). Then we

evaluate POSCAD under more general scenarios with perfect

and imperfect predicted information, respectively.

A. Basic Settings

Topology: We evaluate the performance of POSCAD under

four well-known data center topologies: Canonical 3-Tiered

topology [4], Fat-tree [1], Jellyfish [31], and F10 [22]. We

show the instances for Fat-tree and Jellyfish, respectively, in

Figure 4. To make our performance analysis fair among the

four topologies, we construct them at almost the same scale,

comparable to commercial data centers [4].

We deploy controllers (the control plane of the SDN system)

on particular hosts, which are denoted by hosts with blue

circles. Each controller has a service capacity of 600 requests

per time slot (the typical setting of NOX controller [33]).

Specifically, for deterministic topologies (Fat-tree, Canonical

3-Tiered, and F10), we deploy one controller in every pod;12

for random topology (Jellyfish), we deploy the same number

of controllers on hosts with non-adjacent ToRs.

Request Arrival Settings: Note that the design of POSCAD

does not depend on particular traffic statistics. In our simu-

lations, the request inter-arrival times follow the distribution

12In Canonical 3-Tiered topology, we regard the group of switches that
belong to the same aggregation switch as one pod (including the aggregation
switch itself).

, 𝑸𝒑(𝒕)

Fig. 5. Two scheduler implementations of POSCAD.

that is drawn from measurements of real-world data centers

[4]. We also consider traffic statistics that follow Poisson and

Pareto distributions, since they are widely adopted in queueing

network analysis. Under such scenarios, the length of each

time slot is set as 10ms and the average request arrival rate

on each switch is about 5.88 requests per time slot. Besides,

considering the existence of hot spots (i.e., some switches

have intensive request arrivals) in real-world systems, we pick

the first pod as the hot spot with each switch having a request

arrival rate of 200 requests per time slot.

System Cost Settings: By setting parameter γ = 1, we

assume the equal importance of reducing communication costs

and local computational costs on switches. Given any network

topology, we define the communication cost Mi, j(t) between

switch i and controller j as the length (number of hops) of

shortest path from i to j. For each topology, to make switches’

computational costs comparable to communication costs, we

set the average unit computation cost P of switches as the

average hop number between switches and controllers in the

topology. In Fat-tree and F10 topologies, P = 4.13; in 3-Tiered

and Jellyfish topologies, P equals 4.81 and 3.56, respectively.

Queueing: We treat all queue backlogs equally by setting

β1 and β2 as 1 in (9). In practice, the values of parameter β1
and β2 can be tuned proportional to the ratio between the ca-

pacity of prediction queues, switches’ queues, and controllers’

queues. Recall that the value of parameter V determines the

importance of communication cost reduction to queue stability.

When applying POSCAD, one can tune the value of parameter

V proportional to the ratio between the magnitude of queue

backlog size (in number of requests) and communication cost

(in milliseconds). In our simulation, the ratio is about 100 and

thereby we adjust the value of parameter V from 1 to 104. The

queueing policy is first-in-first-out (FIFO) for all queues.

Scheduler Implementations: Figures 5 (a) and 5 (b) illus-

trate how POSCAD can be implemented in a centralized and

decentralized manner, respectively. Both implementations can

be applied to various systems, such as data center networks,

SDN-based WANs, and SDN-based edge computing systems.

In the centralized way, the scheduler is independent of both

control plane and data plane. The scheduler collects system

dynamics including queue backlogs on both switches and

controllers to make centralized scheduling decisions. Next, it

spreads the scheduling decisions onto switches; then switches

upload or locally process their requests according to such

decisions. The abstract process is presented in Figure 5 (a).

The advantage of centralized architecture is that it requires

no modifications on data plane, i.e., all the system dynamics

such as communication costs and queue backlogs can be

obtained via standard OpenFlow APIs. This is well-suited for
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the situation where the data plane is at a large scale and switch

computing resource is scarce. In fact, the scheduler could also

be deployed on the control plane. There are disadvantages, too.

Centralized scheduler is a potential single point of failure, or

even a bottleneck with considerable computation overheads.

Besides, it requires back-and-forth message exchange between

the SDN system and the scheduler, thus leading to longer

latencies. Specifically, under such an implementation, it takes

extra bandwidth consumptions and latencies to obtain instant

system dynamics (system costs and backlog sizes) from the

control plane and the data plane. Nonetheless, the mechanism

for probing instant system dynamics can be implemented in

a scalable fashion. In particular, by deploying POSCAD over

a group of dedicated servers, each server only needs to probe

instant dynamics from part of switches and controllers. Based

on probed information, each server can conduct independent

decision making for switches.

In the decentralized way, as Figure 5 (b) shows, switches

periodically update their information about queue backlogs

from control plane; meanwhile, each of them can make

scheduling decisions independently. Though this way requires

modification on switches, the decentralized way still has the

following advantages. It requires less amounts of message

exchange than that in the centralized way, thus switches would

response even faster to handling network events. On the other

hand, the computation of decision-making in both schemes

is distributed across switches, leading to better scalability and

fault tolerance. In our simulations, we choose the decentralized

implementation for POSCAD.

B. Evaluation of GOSCAD (POSCAD without Prediction)

Figures 6 (a) and 6 (b) show how different values of

parameter V affect the long-term time-averaged total costs of

communication and computation, and the total queue backlog

size in the system. In general, as the value of parameter V

grows from 1 to 104, we see a rapid reduction in total system

costs and a linear increase in the total queue backlog size.

However, as the value of V continues to increase, the reduction

in total system costs diminishes, while the queue backlog size

keeps going up. Note that this verifies our previous theoretic

results on the [O(V),O(1/V)] trade-off between the time-

averaged expectation of total costs and total queue backlog

size in the system. We discuss them in detail as follows.

First, recall that the value of parameter V actually controls

the switches’ willingness of uploading requests. For switches

that are close to controllers (their communication costs are

less than the average), large values of V make them incline

to uploading requests, unless all controllers become heavily

loaded. For switches that are distant from controllers, local

processing is a better choice. Consequently, large values of

V generally lead to lower communication costs. However,

as the value of V becomes sufficiently large, switches either

greedily process requests locally or upload them to the nearest

controllers, leading to hot spots on particular controllers with

ever-increasing backlog sizes. In this case, according to Little’s

theorem [19], request response time increases as well.

Figure 6 (a) presents how the long-term time-averaged total

costs of communication and local computation (on switches)

(a) Total cost vs. V (b) Total queue backlog vs. V

Fig. 6. Performance of GOSCAD (POSCAD without prediction) under
different topologies.

(a) Total cost vs. V (b) Total queue backlog vs. V

Fig. 7. Performance of GOSCAD (POSCAD without prediction) under Fat-
tree topology with other two arrival processes.

with different values of V in the four topologies. We make the

following observations.

First, as the value of V varies from 1 to 104, it shows that

the total cost goes down gradually. This is consistent with our

previous theoretic analysis. The intuition behind such decline

is as follows. Remind that V controls the switches’ willingness

of uploading requests. For switches that are close to controllers

(their communication cost is less than the average), large V

makes them unwilling to process requests locally unless the

controllers are heavily loaded. As the value of V increases,

those switches will choose to upload requests to further reduce

the costs since for those switches, communication costs are

less than the computation costs.

Second, the total cost in 3-Tiered topology is greater than

the other schemes’, because it has a higher unit computational

cost (P = 4.81 compared to 4.13 and 3.56 for Fat-tree/F10 and

Jellyfish). Meanwhile, switches in 3-Tiered topology usually

take longer paths to controllers and incur more communication

costs compared to other topologies.

Third, the total costs under Jellyfish topology are signifi-

cantly lower (up to 21%) than the others, as Jellyfish generally

has a shorter average path between switches and controllers

than the other deterministic topologies of the same scale [31].

Figures 7 (a) and 7 (b) show the performance of GOSCAD

under Fat-tree topology with other two request arrival pro-

cesses. The results show that GOSCAD (i.e., POSCAD without

prediction) requires no prior knowledge about the statistics of

request arrival dynamics and still achieves the [O(V),O(1/V)]

backlog-cost trade-off.

C. Performance Comparison against Baseline Schemes

In Figures 8 - 11, we compare the performance of GOSCAD

(POSCAD without prediction) against three baseline schemes:

Static, Random, and JSQ (Join-the-Shortest-Queue). Particu-

larly, in Static scheme, each switch i chooses the controller j
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GOSCAD

(a) Canonical 3-Tiered topology

GOSCAD

(b) Fat-tree topology

GOSCAD

(c) Jellyfish topology

GOSCAD

(d) F10 topology

Fig. 8. Comparison of communication costs among four scheduling schemes
under different topologies. Note that GOSCAD corresponds to the special case
of POSCAD without prediction.

with the minimum communication costs. In Random scheme,

each switch is scheduled to pick up a controller uniformly at

random during each time slot. In JSQ scheme, each switch

picks the controller with the shortest queue backlog. Note

that the baseline schemes do not conduct control devolution.

To make the comparison fair, we set the unit computational

cost P = 1028 for all switches. This makes the costs of local

computation prohibitively high; as a result, under GOSCAD,

switches would keep uploading new requests to associated

controllers. That being said, GOSCAD degenerates into a

dynamic switch-controller association scheme. Note that such

settings also emulate the scenarios in which control devolution

is not supported.

From Figure 8, we see that Static achieves the minimum

total costs, since it greedily associates switches to controllers

with minimum communication costs. On the other hand, both

Random and JSQ incur much higher communication costs. The

reason is that their decisions make no use of system dynamics

about communication costs. Compared to baseline schemes,

GOSCAD cuts down the communication costs as the value of

V increases. Eventually, its induced communication costs stays

5.7% above the curve of Static. In fact, such a gap is the price

taken to maintain queue stability. Note that when the value

of V increases, GOSCAD’s behavior becomes increasingly

similar to Static, which focuses more on the reduction in total

system costs. The difference emerges when some controllers’

queue backlog sizes exceed some threshold (about twice the

value of V in our simulations). In such cases, Static would

continue pursuing minimum communication costs and send

requests to controllers which are heavily loaded but with the

lowest communication costs. Consequently, such controllers

will become overloaded and even lead to system breakdown.

Under GOSCAD, however, some switches would rather send

requests to controllers with higher costs but a smaller queue

backlog size, to ensure queue stability. Such illustration is

supported by the results from Figure 9. From the results, we

GOSCAD

GOSCAD

GOSCAD

(a) Canonical 3-Tiered topology

GOSCAD

GOSCAD

GOSCAD

(b) Fat-tree topology

GOSCAD

GOSCAD

GOSCAD

(c) Jellyfish topology

GOSCAD

GOSCAD

GOSCAD

(d) F10 topology

Fig. 9. Variances of queue backlog size comparison incurred by four schedul-
ing schemes under different topologies. Note that GOSCAD corresponds to
the special case of POSCAD without prediction.

see that the larger the value of parameter V , the greater the

variance of queue backlog sizes among different controllers.

In the extreme case (Static), the variance grows remarkably.

Unlike Static, GOSCAD constantly ensures queue stability.

Besides, we also notice that such a gap is much smaller under

Jellyfish topology, because therein the communication costs

are more even to each switch, resulting in more balanced queue

backlogs in the system.

Insight: As the value of V increases, GOSCAD achieves

a tunable trade-off between system cost reduction and queue

stability. The gap between GOSCAD and the minimum costs

is the price which has to be taken to maintain queue stability.

Figure 10 shows the induced total queue backlog sizes

under GOSCAD and the baseline schemes. We see that under

different topologies, both Random and JSQ maintain the total

queue backlog sizes at a low level, which is consistent with

the result in Figure 9. In contrast, Static induces significantly

higher queue backlog sizes, due to its greediness to send

requests to controllers with lowest costs, leading to imbalanced

queue backlogs. Intuitively, the more balanced the queue

backlogs across controllers, the more controller resources are

utilized, and hence a smaller total queue backlog size.

As for GOSCAD, under deterministic topologies (3-Tiered,

Fat-tree, and F10), we observe a reduction in the backlog size

at the very beginning, then a linear increase after reaching a

valley at around 103. The explanation is as follows. When

the value of V is small, switches prefer controllers with

shorter queues.13 Recall that a switch’s scheduling decision is

independent of the others’. This will lead to requests being

intensively forwarded to few controllers. Then controllers

close to hot spots are more likely to be heavily loaded. As

the value of V becomes larger, some switches would reach

a tipping point and choose other controllers instead. As a

result, this would make controllers’ backlogs more balanced,

13Note that JSQ is a special case of GOSCAD with V = 0.
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GOSCAD

(a) Canonical 3-Tiered topology

GOSCAD

(b) Fat-tree topology

GOSCAD

(c) Jellyfish topology

GOSCAD

(d) F10 topology

Fig. 10. Total queue backlog size comparison among four scheduling schemes
under different topologies. Note that GOSCAD corresponds to the special case
of POSCAD without prediction.

and hence smaller total queue backlog sizes. When the value

of V continues to grow, switches turn to forward requests with

the aim to minimize communication costs. As a result, requests

will constantly accumulate on some particular controllers,

leading to queue backlog imbalance across controllers and

hence the growth in the total queue backlog size.
When GOSCAD is applied in Jellyfish, its curve is very

different from other three topologies. We can see the signif-

icant reduction at the beginning and then it stays at a low

level thereafter. We find that for Fat-tree, F10, and Canonical

3-Tiered, they have higher variance in the number of hops be-

tween switches and controllers; as a result, with the existence

of hot spots and aim to minimize communication costs, more

requests accumulate on some particular controllers, inducing

increased queue backlog sizes. For Jellyfish, however, because

incoming requests are spread more evenly among controllers,

increasing the value of V has no significant impact on the

skewness of controller queue backlogs.

Insight: In practice, one can tune the value of parameter V

to be proportional to the ratio between the magnitude of queue

backlog size and communication cost, to achieve a significant

reduction in the total system costs while maintaining balanced

queue backlogs among controllers.

In addition, we also conduct simulations under two kinds of

request arrival processes, i.e., Poisson and Pareto processes,

which are widely adopted in traffic analysis. We only show

the simulation results under Fat-tree topology, because the

simulation results in the other three topologies are qualitatively

similar. From Figure 11, we find that all schemes perform

qualitatively consistent under different arrival processes.

D. Evaluation of POSCAD

1) Prediction Settings: We vary switches’ prediction win-

dow sizes by sampling them uniformly at random in [0, 2×D],

with mean D. The values of D range from 0 to 20. Besides,

GOSCAD

(a) Poisson

GOSCAD

(b) Pareto

GOSCAD

(c) Poisson

GOSCAD

(d) Pareto

Fig. 11. Performance comparison among different schemes under Fat-tree
topology, with Poisson and Pareto request arrivals, respectively. Note that
GOSCAD corresponds to the special case of POSCAD without prediction.

considering that prediction errors are inevitable in practice,

we evaluate POSCAD’s performance with prediction errors at

different levels. We use et to denote the prediction deviation

for time slot t, i.e., the difference between the number of pre-

dicted and actual arrivals. Particularly, et = 0 indicates that the

prediction is perfect. When the prediction is imperfect, et > 0

implies that the future request arrivals are over-estimated;

otherwise, they are under-estimated. We also assume et to be

i.i.d. over time slots, and generated by 1) sampling a value xt
from some probability distribution with zero mean and then

2) obtaining et by rounding xt , i.e., et , Round(xt ). The

second step is due to that the probability distribution may

be continuous but the number of requests must be an integer.

Then we define prediction error rate r , i.e., the probability of

mis-prediction, as r , Pr{et , 0} = Pr{xt < (−0.5, 0.5)}. In

our simulation, we sample xt from a normal distribution with

zero mean and variance σ2. Accordingly, we have

r = 2[1 − Φ(0.5/σ)], (20)

where Φ(·) is the CDF of standard normal distribution. Based

on (20), the error rate r can be adjusted by choosing an

appropriate value of σ. We pick error rates from 0% to 50%.

2) Response Time Metric: As for evaluation metrics, note

that the total queue backlog size in the non-prediction case

(D = 0) and the predictive case (D > 0) are incomparable.

The reason is that with predictive scheduling, the total queue

backlog size, as defined in (9), also includes future untreated

requests. All such requests are still counted, although they have

not actually arrived or even not been pre-served. The com-

parison is even more inappropriate with predictive scheduling

in the presence of errors, where some future requests may

not even exist due to over-estimation. Hence, instead of total

queue backlog size, we evaluate POSCAD in terms of average

request response time, since POSCAD is promising to reduce

request response times by exploiting future information and
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Fig. 12. Performance under perfect prediction settings.

pre-serving future requests with idle system resources. In

our simulations, we define a request’s response time as the

number of time slots from its actual arrival to its eventual

completion. If pre-served before its actual arrival, a request

will be responded instantly and hence experience a near-zero

response time. In our simulations, the average request response

time is obtained over completed requests.

3) Evaluation with Perfect Prediction: To explore the

benefits of predictive scheduling, we first consider the case

where switches have perfect information about future request

arrivals in the lookahead window, i.e., with error rate r = 0.

Considering the similarity between curves under Fat-Tree and

F10 topologies, we omit the results for F10 in the following.

Time-averaged total costs vs. V : We compare the total

costs incurred by POSCAD with different values of V under

different topologies in Figure 12. Particularly, we compare the

results with prediction window sizes D = 0 (non-prediction)

and D = 2 in Figures 12 (a) and 12 (b), respectively. We

see a rapid reduction in total system costs when the value of

V increases from 1 to 20. As the value of V continues, the

reduction eventually diminishes with 10% gap to the optimal

total costs (denoted by the solid horizontal line). Comparing

Figures 12 (a) and 12 (b), we see that the incurred total costs

are almost the same even when the window size D is increased.

With such observations, we have the following insight.

Insight: As the value of parameter V increases, POSCAD

reduces the time-averaged total costs and achieves the optimal

system costs asymptotically under different topologies. Note

that the gap between the converged costs and the optimal

costs is the price paid for stabilizing queue backlogs in the

system. In the meantime, compared to the non-prediction case,

POSCAD performs predictive scheduling without increasing

the total costs in the system.

Average response time vs. prediction window size: Next,

we focus on the impact of different prediction window sizes

on the average request response time. Figures 12 (c) and

Fig. 13. Average response time vs. prediction error rate under Fat Tree
topology with different parameter V and prediction window size D.

12 (d) present the results from simulations with trace-driven

and Poisson arrival process, each with mean arrival rate 5.88

requests per time slot, respectively. Figure 12 (c) shows the

curves under trace-driven settings. We see a sharp decrease of

the average request response time from around 14ms to less

than 1ms, as the window size rises from 0 (non-prediction)

to 6 under different topologies. As the window size continues

growing, the reduction stops and the average response time

converges (0.45ms). The results are similar in Figure 12 (d).

Insight: Figure 12 shows the benefits of predictive schedul-

ing. By exploiting predictive information to pre-serve requests,

POSCAD effectively reduces the average response time with-

out incurring extra system costs. Moreover, with mild-value

of lookahead window size, POSCAD achieves a significant

reduction in the average request response time.

4) Evaluation with Imperfect Prediction: Prediction errors

are inevitable in practice. Hence, we are also interested in the

robustness of POSCAD against such errors. In the following,

we vary error rate from 0% to 50%.

Average response time vs. prediction error rate: Figure

13 shows the system performance with prediction error rate r

ranging from 0% (perfect prediction) to 50% under POSCAD

with various settings. On the one hand, with parameter V = 10

and window size D = 2, we observe a growth (6.21ms) of

the average response time as the prediction error rate rises

from 0% to 50%. This suggests that prediction errors lead

to an increased request response time. With prediction error

rate r fixed as 10% and a prediction window size D = 2, we

see that the response time (21.26ms) under V = 10 is higher

than that (7.9ms) under V = 1. The result suggests that one

can reduce request response time by decreasing the value of

parameter V . The reason is that a smaller value of V leads to

a smaller total queue backlog size which, by Little’s theorem

[19], implies a lower average response time. Besides, by fixing

the prediction error rate (take r = 10% as an example), we

see that the longer the window size, the shorter the response

time. This implies that more future information conduces to

response time reduction by up to 50% even under inaccurate

prediction. On the other hand, we see that higher prediction

error rates lead to higher system costs, since the system needs

to allocate surplus resources to process mis-predicted requests.

Besides, there are no significant costs (∼ 2%) incurred as the

value of window size D increases. Meanwhile, increasing the

value of V results in a notable reduction of response time.

Such results show that the advantage of predictive scheduling

mainly lies in response time reduction. Its impact is minor to
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system costs because of the trade-off between cost reduction

and queue stability.

Insight: POSCAD is robust against prediction errors. By

choosing a smaller value of V and enlarging the prediction

window size, POSCAD can effectively eliminate the negative

effect of prediction errors and shortens request response time.

VI. RELATED WORK

Regarding switch-controller association, the usual design

choice is to make a static switch-controller association [15]

[32]. However, solutions with static association are often

inflexible when dealing with temporal variations of request

traffic, thereby inducing workload imbalance across controllers

and increased request processing latency. To mitigate such

issues, Dixit et al. proposed an elastic distributed controller

architecture with an efficient protocol design for switch

migration among controllers [10]. However, the design for

switch-controller association still remained unresolved. Later,

Krishnamurthy et al. took a further step by formulating the

controller association problem as an integer linear problem

with prohibitively high computational complexity [17]. A

local search algorithm was proposed to find the best possible

association within a given time limit (e.g., 30 seconds). Wang

et al. modeled the controller as an M/M/1 queueing system

[34]. By formulating the association problem with a steady-

state objective function as a many-to-one stable matching

problem with transfers, they developed a novel two-phase

algorithm that connects stable matching to utility-based game

theoretic solutions, i.e., coalition formation game with Nash

stable solutions. Later, they extended the problem with an

aim to minimize the long-term costs in SDN systems [35].

By decomposing it into a series of per-time-slot controller as-

signment sub-problems, Wang et al. applied receding horizon

control techniques to solve the problem. In parallel, Filali et

al. [11] formulated the problem as an one-to-many match-

ing game, then developed another matching-based algorithm

that achieves load-balancing by assigning minimum quota of

workload to each controller. Lyu et al. [23] presented an

adaptive decentralized approach for joint switch-controller as-

sociation and controller activation with periodic on-off control

to save operational costs. Regarding control devolution, most

works have focused on static delegation of certain network

functions to switches [9] [12] [42]. Some recent works [38]

have proposed more flexible devolution schemes based on the

distribution of network states or workloads on controllers in

real time.

Compared to existing works, the focus of our work is on

the joint design of dynamic switch-controller association and

control devolution with performance analysis, while investi-

gating the benefits of predictive scheduling in SDN systems.

Particularly, without prediction, our schemes are not dependent

on any particular network traffic distributions. However, when

adopted in real scenarios with dramatic traffic variations [39]

[21], network traffic prediction would inevitably lead to pre-

diction errors. Nonetheless, our proposed scheme is still robust

against such prediction inaccuracy, as illustrated in Section V.

VII. CONCLUSION

In this paper, we studied the problem of dynamic switch-

controller association and control devolution, and investigated

the benefits of predictive scheduling for SDN systems. We pro-

posed POSCAD, an efficient online joint control scheme that

solves the problem through a series of online decision making

in a distributed manner. Our theoretical analysis showed that

without prediction, POSCAD achieves near-optimal total costs

with queue stability guarantee. Furthermore, with predictive

scheduling, POSCAD achieves even better performance with

a significant reduction in request response time. We conducted

extensive simulations to verify the effectiveness of POSCAD.

Our results showed that with mild-value of future information,

POSCAD incurs a significant reduction in request response

time, even in face of mis-prediction. Notably, the focus of

this work is the exploration of the fundamental limits of the

benefits of predictive scheduling in SDN systems. Therefore,

we did not consider testbed-based experimental verifications

in this work. Nonetheless, it can be an interesting direction

for future work.
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