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6Computational Science Laboratory, Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK
7IFREMER, Laboratorie Ressources Halieutiques, 150 quai Gambetta, BP 699, Boulogne-sur-Mer 62321, France
8Helmhotz Center for Environmental Research, Department of Ecological Modelling, Permoserstrasse 15,
Leipzig 04318, Germany
9Earth and Biosphere Institute, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
10Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment,
University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
11Natural England, Cromwell House, Andover Road, Winchester SO23 7BT, UK
12British Antarctic Survey, Madingley Road, High Cross, Cambridge CB3 0ET, UK
13United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road,
Cambridge CB3 0DL, UK
14Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, The University of
Reading, Earley Gate, PO Box 237, Reading RG6 6AR, UK
15Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterhurerstrasse 190,
Zurich 8057, Switzerland
16Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue,
Aberdeen AB24 2TZ, UK
17School of Biology, University of Leeds, Leeds LS2 9JT, UK

Human societies, and their well-being, depend to a significant extent on the

state of the ecosystems that surround them. These ecosystems are changing

rapidly usually in response to anthropogenic changes in the environment.

To determine the likely impact of environmental change on ecosystems

and the best ways to manage them, it would be desirable to be able to pre-

dict their future states. We present a proposal to develop the paradigm of

predictive systems ecology, explicitly to understand and predict the pro-

perties and behaviour of ecological systems. We discuss the necessary and

desirable features of predictive systems ecology models. There are places

where predictive systems ecology is already being practised and we sum-

marize a range of terrestrial and marine examples. Significant challenges

remain but we suggest that ecology would benefit both as a scientific disci-

pline and increase its impact in society if it were to embrace the need to

become more predictive.
1. Background
The importance of ecosystems and their associated biodiversity for humans is

well established [1–3]. Yet, our understanding of ecosystem structure and func-

tion is far from complete. This is important not just from a scientific perspective,

but also because effective protection and management of key ecosystems, and
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their services, depends on: understanding how they will

respond to a range of contemporary pressures; and projecting

realistic future scenarios so as to enable decision making.

Projecting ecological models into the future is challenging

because ecological systems are inherently complex, nonlinear

and variable, while future conditions often lie outside the

envelope of parameters used to develop models. It is there-

fore not surprising that confident predictions of ecosystem

dynamics are rare, despite being in demand from society.

A case in point is the UK National Ecosystem Assessment

(NEA) [2] which is one of the most rigorous and systematic

assessments of ecosystems and their ability to meet multiple

needs of the UK population now and in the future. Despite

being based on the unusually rich and complete information

available for the UK, its authors had to state:
280:20131452
‘scenarios attempt to look to the future and describe worlds very
different from today’s, the ecosystem responses have to be
credible. . .. This is generally achieved by using either process-
response models or empirical relationships that would allow dri-
vers and ecosystem services to be quantified,. . . Unfortunately,
the UK NEA material on current state and trends provided few
models or empirical relationships of the type needed’. [4, p. 1207]
In addition to predicting how ecosystems may respond to

environmental changes, models are needed to evaluate

potential management options. We therefore need:

— the development of ecological system models that can be

used to forecast the possible future state of a system;

— the use of such models to determine the likely impacts of

plausible futures, for example climate change, changes in

land use patterns, changes in nutrient flows; and

— their further use to test response options designed to

mitigate, or adapt to, the impacts of change.

While the ability to predict accurately how a system will

respond to perturbations is seen by some as a defining

characteristic of a successful science [5], this has not always

been a significant focus within ecology [6–15]. We believe

that the societal imperative to predict the impacts of environ-

mental change on ecosystems (usually, but not exclusively,

the result of anthropogenic pressures) should add impetus

to this endeavour [16].

In this paper, we are concerned with forecasts of the most

likely state that a system may have in the future, this would be

one of the possible projections for that system—the set of all poss-

ible states that a system could have in the future (http://www.

ipcc-data.org/ddc_definitions.html). In the language of the

Intergovernmental Panel on Climate Change, this would mean

that the general process that is required is the development of

projections of the future state of ecosystems that will enable us

to move towards forecasting the most likely future state.
2. What is needed to make a projection?
If we are to predict biological responses to environmental

change, we will need models that generate accurate and realis-

tic projections under both present and future, potentially novel,

conditions. These requirements mean that two of the con-

ventional approaches to ecological modelling—very simple

models containing few parameters; and phenomenological

models derived from observed statistical relationships among

parameters—are unlikely to be reliable [17]. The former are

so removed from real-life systems that they can rarely be
meaningfully tested against data, while phenomenological

descriptions of data should not be used to extrapolate

beyond existing conditions [18–20], hence cannot reliably be

used to predict responses to novel conditions. To predict

biological responses to environmental change, we need

process-based ecological models that capture the important

underlying biological mechanisms driving the behaviour of

the system [21–24], akin to systems models used in climatology

[25,26] and molecular systems biology [27].

Predictions of ecosystem behaviour (the way in which the

properties in an ecosystem change over time or in response to

perturbation) and/or ecosystem services (which are products

of ecosystems and often are valuable to society) would be

emergent properties of process-based models of ecosystems

[28], and such models would need to include sufficient

information from lower levels of organization (populations,

individuals, genes and the abiotic environment) to allow

accurate and realistic ecosystem behaviour to emerge [16].
3. Previous systems approaches in ecology
were unsuccessful

An integrated ecological systems approach was attempted in

the 1960s [29,30], most notably in the International Biological

Programme (IBP) [31]. The systems ecology of the 1960s foun-

dered on at least two grounds: practically—the computing

power available in the 1960s was insufficient to run the necess-

ary models; and philosophically—the approach attempted to

measure as many parameters of a system as possible without

using theory beyond its use as a tool for informing which func-

tion might best fit a given dataset [32,33]. Our use of the term

‘systems ecology’ is distinct from the approach used in the IBP,

instead it is analogous to the approach used in climatology and

in systems biology where process-based models are derived

from observational and experimental data.

Recent technological advances are revolutionizing scienti-

fic research. New sensors allow us to collect data in novel

ways: individuals can be tracked in the wild; ecosystem ser-

vices or habitats can be mapped remotely. New informatics

tools permit better data collation, analysis, inference and

visualization. Formerly undreamed-of computing power is

now ubiquitous. Additionally, there have been advances in

theory: in evolutionary ecology [34]; behavioural ecology

[35]; and life-history evolution [36]. These disciplines, which

emerged from the adaptationist paradigm [37] in the 1970s

and 1980s, focused on providing explanations for individual

behaviour derived from first principles and concerned with

evolutionary function. These theories can provide expla-

nations for why organisms act as they do. Recent work has

provided rigorous explanations for why we would expect

individual organisms to maximize relative fitness [38,39].

If we accept this, and if we have a good understanding of

how to measure fitness [38], then we have a conceptual

basis for modelling life-history decisions of organisms, even

when we have sparse information about their biology and

potentially even in conditions that we have not observed pre-

viously. For an example in which individual foraging

decisions (behavioural ecology) were successfully used to

predict food web complexity (community ecology), see [40].

Moreover, the development of individual-based and spatially

explicit modelling provides tools to model ecological systems

that integrate the behaviour of individuals [41] to their life

http://www.ipcc-data.org/ddc_definitions.html
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histories and allow phenomena at higher levels of organization

(populations, communities and ecosystems) to emerge from

the interaction of processes at lower levels of organization

[7,10] and spatial extent [42].
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4. A new kind of systems ecology
We believe that the time has therefore come to develop ‘predic-

tive systems ecology’ which we define here as ‘the integrated

analysis of interactions and feedbacks across different com-

ponents of biological and ecological organization and scale,

and their relationships with their abiotic and biotic envi-

ronments, to understand and predict the properties and

behaviour of ecological systems’.

The societal imperative of managing systems under change

should facilitate the development of a fundamental scientific

good: systems approaches that lead to understanding. Predic-

tion and understanding have often before been considered as

separate modelling goals within ecology: models are often

typified as strategic (leading to understanding) or tactical

(allowing prediction) [24,43,44]. However, we consider this a

false and potentially damaging dichotomy. Process-based

models can be developed with the dual aim of improving

both mechanistic understanding and predictive capability

[45]. We will have the basis for understanding an ecological

system if we can make predictions about its state in new con-

ditions. Indeed, ecological theory will only be scientifically

credible when its predictions can survive being comprehen-

sively testing against the widest possible range of data.

The pace of change—in technology, in computing and in

the environment—is enormous. This sets the scope of both

the challenge and the potential of meeting it. This potential

can arise from the bottom-up embracing of the requirement,

and developing opportunities, for doing ecology in a new

way, and it can be driven by top down social imperatives.
5. Considerations for systems approaches
(a) Uncertainty
Ecological system models have to embrace uncertainty to an

even greater extent than either climatology or molecular sys-

tems biology, because at the core of climatological models are

well-understood physical equations, while in systems biology

predictive ability is enhanced by the deterministic nature of

chemical interactions between populations of molecules

[27]. Systems ecology has to grapple with uncertainty as,

for example, stochastic effects occur throughout ecological

systems at all levels [46]. The propagation of stochastic effects

may mean that confidence intervals on projections will be

large but realistic measures of our uncertainty, reflecting

our ability to predict outcomes in the real world given our

current state of knowledge [47]. We will increasingly require

ensembles of model runs with different initial conditions,

parameter sets, or even processes (cf. [48]) in order both to

scope out the variability of outcomes, and to quantify con-

text-dependent predictability of future states. This approach

is routinely followed in weather forecasting [49], and similar

needs apply to ecological forecasting.

The sources of uncertainty in the modelling process need

classification [50–53]. At the very least, there are uncertainties

in model parameters, in the specification of processes that are
included, and in the datasets that inform the models; there

will be processes that we know to be operating in principle,

but about which we lack enough knowledge, or data, to make

sensible model specifications, and there will be real-world pro-

cesses about which we are currently ignorant. Additionally, it

can be unclear where to draw model boundaries, either

spatially, or temporally, or in terms of what processes and cat-

egories of object should be included, and at what resolution and

scale the model should be run. Examples would be: cohort-

based models that produce different outputs from models

that include all individuals in a population [54]; and patchiness

and variability affecting productivity and ecological dynamics

[55,56]. Finally, there may be causal uncertainty: in a complex

system, the apparent proximal triggering of an event may not

be the main dynamical reason for its occurrence. Indeed,

there may be no one single factor that can be identified as lead-

ing to a given outcome. Predictive systems ecology will need to

find new ways of formalizing both the treatment of stochasticity

and the communication of uncertainty [57].
(b) Complexity
Predictive systems ecology is ‘big science’. It requires large

amounts of data and complex models. To avoid the fate of clas-

sical systems ecology, model complexity must be decided

carefully, and standardized approaches for describing individ-

ual organisms and their interactions and model structure are

required. Just as big data analysis requires advanced compu-

tational statistics, predictive systems ecology will require

models as complex as necessary to realistically represent eco-

systems. In a complex system with multiple patterns, there

may be trade-offs between agreement with different datasets

or advantages in some cases to including particular processes

that are not required for others. In such cases, a multi-model

approach with replaceable components allows for different

model purposes to be accommodated within an overarching

scheme [58]. Exploring experimental model variants can pro-

vide the level of complexity merited by iteratively removing

or adding components to the model and repeatedly com-

paring model robustness and sensitivity with data [59]. This

component-based approach would allow for suites of models

to be developed with different targets in mind that have differ-

ent levels of internal complexity depending on the state of

knowledge for particular subsystems, and is attractive from

the software development point of view, as it allows for

flexibility in model development and implementation, so

that different groups of specialists can develop their own

component parts independently.

The computational burden of predictive systems ecological

models is not to be underestimated, but the judicious use of

mathematics can mitigate this by highlighting approximations

that can replace some components of explicit simulation

models. For example, it is more computationally expensive to

model the motion of organisms by discrete steps than to use

the diffusion equation, yet in some cases the latter may describe

the behaviour equally faithfully [60]. Moreover, the diffusion

equation is more parsimonious as it requires just one parameter

(the diffusion constant) to be measured, whereas explicit simu-

lation requires many details. In many cases, mathematical

approximations work best in exactly the cases where simu-

lation is most costly, e.g. when local density dependence is

made up of contributions from many individuals [61]. By

incorporating, at the right scale, appropriate analytical and
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semi-analytical submodels into simulation approaches, we can

simulate more complex ecological systems and improve the

power of our projections.

The high levels of uncertainty and complexity in ecological

systems will be seen, by some, as a reason not to attempt pro-

gress. We suggest the opposite: that these create interesting

opportunities for the development of new theory—perhaps

furthering fruitful collaborations between ecologists, statis-

ticians, mathematicians and computer scientists. We should

also note that error does not necessarily multiply in process-

based models of complex systems: there can be feedbacks

and buffers that reduce the effects of variation, just as in real

systems. Such models would allow us to see effects that at pre-

sent are not conspicuous. Complexity despite being inherent in

understanding ecology as the product of its component parts,

often remains untackled while researchers focus on simplifying

systems to make them more tractable [62].

(c) Constraining models with data
Greater emphasis on constraining models, with data, and on

hypothesis testing within models will afford both more robust

predictions to be made from models and better understanding

of the processes that are likely to be operating within ecosys-

tems. Models should be expected to generate projections at

many different levels—both within the ecosystem and emerging

from the system; these could and should be tested against data.

Testing such patterns is a core concept of predictive systems

ecology. The very fact that we can observe patterns means that

in ecology, despite of all the uncertainty, nonlinearity and

stochasticity, there are recurrent phenomena, and there is some-

thing to be predicted. Models should be able to reproduce these

observed patterns, both qualitatively and quantitatively [63].

Still we may have to accept that high process accuracy may

not, in all cases, lead to high agreement between model and

past observation [64], and that multiple process pathways can

potentially give rise to similar output patterns, so that model

selection may not be straightforward [65].

Systems ecology will need to develop methods to deal with

the availability of data—a significant advance could be made

in ecology if more scientists working in the discipline adopted

the habit of data sharing (www.datadryad.org), and funders

made free data access a condition for funding, as is the norm

in some in other areas of science, and is being actively encour-

aged by funders in most countries. Successful models will also

suggest key gaps in data and hopefully inspire new and rel-

evant observations and experiments. Common standards will

be needed for both data and models, to make both more trans-

parent and easily handled [66]. This has been done elsewhere:

for example systems biology markup language facilitates

model interoperability and sharing and the existence of publi-

cally funded data repositories makes data sharing relatively

straightforward in molecular biology.
6. Systems ecology is already being practised
Systems ecology approaches are already being applied in

both terrestrial and marine systems.

(a) Terrestrial vegetation models
Terrestrial vegetation models have been developed, at least in

part, to refine the terrestrial carbon cycle subroutines of
general circulation models and the Earth System Models,

and to improve the predictive ability of these models [67].

Models like SORTIE, FORMIND, PPA, PICUS and ED are

capable of producing robust predictions of community struc-

ture in forest ecosystems over time [21–23,68–71]. In the

main, this field has developed from a combination of ecophy-

siology and individual-based modelling, as well as data from

established, long-term, forest inventory surveys, allowing

model output to be tested against observations. The rationale

for the development of these models has been to improve

predictions of how ecosystems respond to changes in climate

and, in particular, how these changes will feedback into and

affect the global and regional climate [67]. The development

of land process models has burgeoned, with each model

incorporating the same fundamental processes to predict

the same global phenomena, such as the dynamics of terres-

trial carbon. Now, the focus is on why the different models

make different predictions which are resulting in model-

intercomparison [72–74], benchmarking models against

standard datasets [75,76], model–data fusion [77,78], and

characterizing the expected behaviour of the terrestrial

carbon cycle [79]. The development of terrestrial vegetation

models has benefited from the existence of, often rich, data-

sets collected by foresters in many parts of the world.

These allow the growth, development and reproduction of

trees to be well constrained by data and the increasing use

of Bayesian methods to infer probability distributions for

model parameters allows estimation of the likely error in

both parameters and output (for a recent example,

see [78]). Terrestrial vegetation models that are based on

modelling the behaviour of individual trees (e.g. SORTIE

and FORMIND) can be computationally demanding when

extended over large areas and a solution to the problem of

scaling these models up has been to move from individual-

based to cohort-based models (e.g. ED is a cohort-based

model). A version of ED parametrized with data from a

Harvard Forest, MA, has been used to generate predictions

of forest structure across a large area of the northeastern

USA and southeastern Canada that are a good match to

what is seen in forest inventories [71]. The solution to the

inherent practical difficulty of scaling up to larger areas was

to lose information about the behaviour and performance

of individual trees.

The main focus of terrestrial vegetation models is on

primary producers and their relationship with the climate

via the carbon cycle [67], effectively this relationship is at

the core of the climate-regulating services provided by eco-

systems. While some other ecosystem goods and services

could be derived from terrestrial vegetation models—food,

fibre and biofuels—the limited scope of these models

means that estimates of most ecosystem services cannot be

derived from them.

The output from terrestrial vegetation models could be

converted into estimates of primary production and thence

to the abundance and distribution of resources that could

then be used to model herbivore behaviour. The impact of

herbivory would impact on the plants and could feedback

into the vegetation model. There has been some consideration

of the impact of herbivorous insects on tree mortality, growth

and carbon capture in forest models [80,81]. Neither of these

studies was concerned with estimating herbivore populations

but could be modified to do so, taking forest models closer to

models of ecosystems.

http://www.datadryad.org
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(b) Ocean ecosystem models
A particular focus of ocean ecosystem modelling has been on

models of biogeochemical cycles, developed in conjunction

with the ocean physics and chemistry modelling communities.

These ocean ecosystem models are process-based, but the focus

is on physical and chemical physiological processes. There are

models of microbial systems in which organisms have been

categorized on the basis of the different groups with different

biogeochemical functions. Examples of such models include

MEDUSA, that has relatively few components but is physio-

logically complicated [82], and PlankTOM10, which includes

a wider range of functional types [83]. These models are

being used to examine the role of these systems in global

biogeochemistry, and especially carbon budgets.

None of these marine models were designed to examine the

ecological impact of environmental change or to act as a model

of the ecosystem as a whole. Models have been developed to

examine individual species in oceanic systems. These have

developed over the last decade to be coupled with output

from physical models to examine the interaction between

biological processes (physiological, behavioural and demo-

graphic) and physical processes (e.g. ocean circulation and

vertical structure [84–88]). In one global marine phytoplankton

model, physiological traits were assigned randomly to generate

different phytoplankton types. This model generated a realistic

emergent community structure at a global scale [89].

A range of marine food web models have been developed

to examine the impacts of change within ecosystems; includ-

ing impacts of fisheries and climate change. However, these

make various simplifying assumptions to cope with the

inherent complexity such as aggregating across trophic levels

and averaging processes across spatial and temporal scales

(e.g. ECOPATH [90–92]). There have been other approa-

ches to capture the broader structure of ecosystems, with

a particular focus on development of size-based models

(e.g. APECOSM [93,94]), which again make simplifying

assumptions to cope with the complexity of having many

different species. However, the importance of cross scale inter-

actions and feedback processes is now being recognized: for

example, plankton and fish populations are affected by the

biogeochemical and physical systems dynamics and large zoo-

plankton species may influence biogeochemical cycles [95].

The challenge of generating climate change projections has

led to the development of systems level concepts that in the

marine community have been termed ‘end-to-end’ approaches

[96]. This includes the development of methods for linking

together different types of models such as biogeochemical,

population and food web models [97]. A key aspect of this

work is to link to human activities, focusing mainly on fisheries

activities, and a range of models of food webs and fisheries are

being linked to biogeochemical and physical models [98,99].

Some key features of ocean ecosystem models are that they

frequently operate at large scales (sometimes a global scale)

and that they integrate the physical environment into models

more extensively than is typical for terrestrial models. The low

availability of datasets for many parts of the world’s oceans

can limit the ability to constrain these models with data (for a

discussion of this issue in the Southern Ocean, see [97]).

(c) Global ecological models
A prototype global ecological model has been recently reported

[100], building on the idea of enabling the structure and
dynamics of ecological systems to emerge, at global scales,

from the fundamental birth, death, interaction and dispersal

dynamics of modelled individuals. This model uses simplifying

assumptions such as representing organisms as cohorts of

identical individuals rather than individuals per se and uses

functional types rather than species, but even in its current,

initial instantiation, is capable of generating simple but realistic

predictions at the level of the entire biosphere from rules about

the behaviour of individuals (birth, death, growth, dispersal and

interactions). This model, rather like the terrestrial vegetation

model ED, makes a series of simplifying assumptions in

order to overcome the obvious practical difficulties of trying

to model all individuals in a large area. This is clearly necessary

to make the problem tractable but does result in the loss of

information about the finer detail—providing a good example

of the trade-off between the detail that it is possible to capture

in a model and the scale at which it operates. This might mean

that, for example, it was difficult to see how evolutionary

change could be accommodated in such a model.
(d) Humans and ecosystems
People interact with ecosystems, and almost all systems have

been modified to some extent by human intervention [101]

and many are dominated by human activity. There are a grow-

ing number of examples of coupled models of humans and

ecosystems, such as Bithell & Brasington [102] who coupled

SORTIE with a hydrological model and an individual-based

model of a human population. This model was used to predict

the extent of forest clearance over a 1000-year timescale in a

mountain valley. The human population expanded, clearing

trees for fuel and to produce fields. The model suggested that

the loss of forest cover and the increase in crops would result

in changes in the hydrology with a tendency to greater flash

flooding during the monsoon. This coupled model is an ecosys-

tem model with several types of plant (two types of trees as

well as food crops), a ‘herbivore’ (humans) and the hydrology

of the environment in which they reside. This model was

able to produce a reasonable description of current state of

the valley and forecast valley state into the future [102].

Other studies have looked at landscape evolution in coupled

models of herbivores, hunter–gatherers and vegetation [103],

populations of migratory wildebeest, pastoralists and veg-

etation [104], bushmeat hunting [105], and have examined

management options for pastoralists in rangeland systems

[106]. Models for marine systems have included aspects of

the dynamics and/or economics of fishery fleets that have

been linked to models of fish populations and oceanic ecosys-

tems [98,107–109]. These exercises suggest that producing

coupled human–ecosystem models that capture key elements

in a food chain is achievable. They also provide good examples

of models that include the effect of people on ecosystems.

Understanding how human behaviour and policies might

respond to the loss of natural resources and compensate for

this loss, will require linked, dynamic human–ecological sys-

tems models [110–112], further adding to the challenge of

building truly predictive ecosystem models. The feedback

between humans and ecosystems will need to be a feature

of systems ecology models, not just because policy makers

and legislators are more interested in the impact of change

on people than on ecosystems, but also because in many

cases the activities of humans have larger effects on ecosys-

tems than those of any other component of the ecosystem
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[113]. Very significant challenges remain in approaching a

full ‘social–ecological–system’ framework for coping with

the interactions between humans and the environment

[65,114], not least the human ability to self-organize in differ-

ent ways at different institutional levels [115]. However, the

likelihood is that few if any unmodified ecosystems remain

against which a ‘pristine’ ecosystem model could be

adequately tested and so understanding human-modified

systems will be unavoidable.
 g.org
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7. What are the challenges?
(a) Scale
Different biological processes operate over different scales

and interact with different physical and chemical processes

[116,117]; so ecosystem models require the application of

scaling rules, both physical and ecological, from local and

regional to global scales and across different levels of biologi-

cal organization and processes (gene, individual, population,

community, food webs and ecosystems) [28,95,97]. Developing

models that resolve the appropriate physical, chemical, biologi-

cal and social processes at different scales presents a major

challenge [99,118–121], but scaling from individual beha-

viours to changes in population sizes at a regional scale is

being attempted [100,122].

(b) Evolution
Evolutionary change is also a ubiquitous feature of living sys-

tems. The extent to which it needs to be incorporated in

ecological models will be determined by the relationship

between the duration over which projections are made and

the generation times of the organisms of interest. While

models of forests typically run for periods equivalent to centu-

ries or even millennia, the generation time of the trees will mean

that only small number of generations occur, and so evolution-

ary change during that time is assumed to be sufficiently small

to be practically negligible [22,70]. However, were one to incor-

porate trophic interactions with univoltine forest insects, then

evolutionary change, particularly in a changing environment,

becomes likely. If we truly wish to understand biological diver-

sity and function then it is not appropriate to treat the

‘evolutionary play’ as being distinct from the ‘ecological theatre’

in which it occurs [11–13,34,123]. Ecological and evolutionary

change are intertwined—population dynamics are the pro-

duct of the realized life histories of individuals within the

population, while the strength of selection is modified by

properties of the population [13,34,124,125]. So far, there

have been few attempts to include evolution into ecological

models (examples are available for fisheries-induced evolution

[110,111], and for freshwater [126] and terrestrial ecosystems

[127]) and this scarcity is needs to be rectified [125,128–130].
Recognizing the importance of evolution also helps us to

model organisms with poorly known behaviour. If we know

that organisms will act so as to maximize relative fitness

[38,39] then we have a conceptual basis for modelling life-

history decisions of organisms, even when we have sparse

information about their biology [40]. Understanding evolution-

ary change will also become critical when we are faced with

rapid environmental change and consequently intense selec-

tion—evolution then potentially becomes the primary process

in shaping the future of ecosystems. This will have substantial

effects if some components of ecosystems fail to adapt and

are lost during the process of change [131]. This may happen

when multiple environmental variables change simultaneously

and rapidly, such as is often true for anthropogenic changes.
8. Conclusion
The need for a modern approach to systems ecology is clear, the

requisite theory and data exist at least to start the process, and

the societal imperative should provide impetus for the develop-

ment of this field. As we transgress our local and planetary

boundaries [132], the need for better understanding of the

world across multiple space and time scales becomes ever

more urgent. Process-based models should be the best available

tools we have to in hand in this struggle: they will help us

to distinguish those systems that are dynamic, contingent,

threshold-dependent and changing from those that are stable

and resilient; to separate situations in which robust forecasts

can be made from those that are chaotic or indeterminate and

to elucidate those cases that are amenable to simple explanation

and identify those that are irredeemably complex. Along this

path, the act of developing and constructing new models, in

which assumptions about ecosystem dynamics must be made

explicit and shown to be operational, has multiple potential

benefits [133], not least to identify theoretical and data collection

gaps and opportunities, and to confront existing ideas with new

datasets in a meaningful way. With a suite of these models, we

might hope to get to grips with the multiple issues of policy rel-

evance that ecosystems present [134], although there will

remain many difficulties in the translation from model to

policy [135,136]. However, relevance to policy should not be

the sole driver of our interest: developing predictive systems

ecology should also inspire us through new and surprising dis-

coveries. To truly forecast the future of Darwin’s ‘.. tangled

bank, clothed with many plants of many kinds, with birds sing-

ing on the bushes, with various insects flitting about, and with

worms crawling through the damp Earth’ [137, p. 403], we must

embrace fully the complexity of the natural world and include it

in our models.
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