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Abstract

Estimating how uncertain an AI system is in its predictions is important to improve
the safety of such systems. Uncertainty in predictive can result from uncertainty in
model parameters, irreducible data uncertainty and uncertainty due to distributional
mismatch between the test and training data distributions. Different actions might
be taken depending on the source of the uncertainty so it is important to be able to
distinguish between them. Recently, baseline tasks and metrics have been defined
and several practical methods to estimate uncertainty developed. These methods,
however, attempt to model uncertainty due to distributional mismatch either im-
plicitly through model uncertainty or as data uncertainty. This work proposes a
new framework for modeling predictive uncertainty called Prior Networks (PNs)
which explicitly models distributional uncertainty. PNs do this by parameterizing
a prior distribution over predictive distributions. This work focuses on uncertainty
for classification and evaluates PNs on the tasks of identifying out-of-distribution
(OOD) samples and detecting misclassification on the MNIST and CIFAR-10
datasets, where they are found to outperform previous methods. Experiments on
synthetic and MNIST and CIFAR-10 data show that unlike previous non-Bayesian
methods PNs are able to distinguish between data and distributional uncertainty.

1 Introduction

Neural Networks (NNs) have become the dominant approach to addressing computer vision (CV) [1,
2, 3], natural language processing (NLP) [4, 5, 6], speech recognition (ASR) [7, 8] and bio-informatics
(BI) [9, 10] tasks. Despite impressive, and ever improving, supervised learning performance, NNs
tend to make over-confident predictions [11] and until recently have been unable to provide measures
of uncertainty in their predictions. Estimating uncertainty in a model’s predictions is important, as
it enables, for example, the safety of an AI system [12] to be increased by acting on the model’s
prediction in an informed manner. This is crucial to applications where the cost of an error is high,
such as in autonomous vehicle control and medical, financial and legal fields.

Recently notable progress has been made on predictive uncertainty for Deep Learning through
the definition of baselines, tasks and metrics [13] and the development of practical methods for
estimating uncertainty. One class of approaches stems from Bayesian Neural Networks [14, 15, 16,
17]. Traditionally, these approaches have been computationally more demanding and conceptually
more complicated than non-Bayesian NNs. Crucially, their performance depends on the form
of approximation made due to computational constraints and the nature of the prior distribution
over parameters. A recent development has been the technique of Monte-Carlo Dropout [18],
which estimates predictive uncertainty using an ensemble of multiple stochastic forward passes and
computing the mean and spread of the ensemble. This technique has been successfully applied to
tasks in computer vision [19, 20]. A number of non-Bayesian ensemble approaches have also been
proposed. One approach based on explicitly training an ensemble of DNNs, called Deep Ensembles
[11], yields competitive uncertainty estimates to MC dropout. Another class of approaches, developed
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for both regression [21] and classification [22], involves explicitly training a model in a multi-task
fashion to minimize its Kullback-Leibler (KL) divergence to both a sharp in-domain predictive
posterior and a flat out-of-domain predictive posterior, where the out-of-domain inputs are sampled
either from a synthetic noise distribution or a different dataset during training. These methods
are explicitly trained to detect out-of-distribution inputs and have the advantage of being more
computationally efficient at test time.

The primary issue with these approaches is that they conflate different aspects of predictive uncertainty,
which results from three separate factors - model uncertainty, data uncertainty and distributional
uncertainty. Model uncertainty, or epistemic uncertainty [23], measures the uncertainty in estimating
the model parameters given the training data - this measures how well the model is matched to the
data. Model uncertainty is reducible1 as the size of training data increases. Data uncertainty, or
aleatoric uncertainty [23], is irreducible uncertainty which arises from the natural complexity of the
data, such as class overlap, label noise, homoscedastic and heteroscedastic noise. Data uncertainty
can be considered a ’known-unknown’ - the model understands (knows) the data and can confidently
state whether a given input is difficult to classify (an unknown). Distributional uncertainty arises due
to mismatch between the training and test distributions (also called dataset shift [24]) - a situation
which often arises for real world problems. Distributional uncertainty is an ’unknown-unknown’ - the
model is unfamiliar with the test data and thus cannot confidently make predictions. The approaches
discussed above either conflate distributional uncertainty with data uncertainty or implicitly model
distributional uncertainty through model uncertainty, as in Bayesian approaches. The ability to
separately model the 3 types of predictive uncertainty is important, as different actions can be taken
by the model depending on the source of uncertainty. For example, in active learning tasks detection
of distributional uncertainty would indicate the need to collect training data from this distribution.
This work addresses the explicit prediction of each of the three types of predictive uncertainty by
extending the work done in [21, 22] while taking inspiration from Bayesian approaches.

Summary of Contributions. This work describes the limitations of previous methods of obtaining
uncertainty estimates and proposes a new framework for modeling predictive uncertainty, called Prior
Networks (PNs), which allows distributional uncertainty to be treated as distinct from both data
uncertainty and model uncertainty. This work focuses on the application of PNs to classification tasks.
Additionally, this work presents a discussion of a range of uncertainty metrics in the context of each
source of uncertainty. Experiments on synthetic and real data show that unlike previous non-Bayesian
methods PNs are able to distinguish between data uncertainty and distributional uncertainty. Finally,
PNs are evaluated2 on the tasks of identifying out-of-distribution (OOD) samples and detecting
misclassification outlined in [13], where they outperform previous methods on the MNIST and
CIFAR-10 datasets.

2 Current Approaches to Uncertainty Estimation

This section describes current approaches to predictive uncertainty estimation. Consider a distribution
p(x, y) over input features x and labels y. For image classification x corresponds to images
and y object labels. In a Bayesian framework the predictive uncertainty of a classification model
P(!c|x

∗,D) 3 trained on a finite dataset D = {xj , yj}
N
j=1 ⇠ p(x, y) will result from data (aleatoric)

uncertainty and model (epistemic) uncertainty. A model’s estimates of data uncertainty are described
by the posterior distribution over class labels given a set of model parameters θ and model uncertainty
is described by the posterior distribution over the parameters given the data (eq. 1).

P(!c|x
∗,D) =

Z

P(!c|x
∗,θ)

| {z }

Data

p(θ|D)
| {z }

Model

dθ (1)

Here, uncertainty in the model parameters induces a distribution over distributions P(!c|x
∗,θ). The

expected distribution P(!c|x
∗,D) is obtained by marginalizing out the parameters θ. Unfortunately,

obtaining the true posterior p(θ|D) using Bayes’ rule is intractable, and it is necessary to use either
an explicit or implicit variational approximation q(θ) [25, 26, 27, 28]:

p(θ|D) ⇡ q(θ) (2)

1Up to identifiability limits. In the limit of infinite data p(θ|D) yields equivalent parameterizations.
2Code available at https://github.com/KaosEngineer/DirichletPriorNetworks
3Using the standard shorthand for P(y = ωc|x

∗

,D).
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Furthermore, the integral in eq. 1 is also intractable for neural networks and is typically approximated
via sampling (eq. 3), using approaches like Monte-Carlo dropout [18], Langevin Dynamics [29] or
explicit ensembling [11]. Thus,

P(!c|x
∗,D) ⇡

1

M

MX

i=1

P(!c|x
∗,θ(i)), θ(i)

⇠ q(θ) (3)

Each P(!c|x
∗,θ(i)) in an ensemble {P(!c|x

∗,θ(i))}Mi=1 obtained sampled from q(θ) is a categorical

distribution µ 4 over class labels y conditioned on the input x∗, and can be visualized as a point on a
simplex. For the same x∗ this ensemble is a collection of points on a simplex (fig. 1a), which can be
seen as samples of categorical distributions from an implicit conditional distribution over a simplex
(fig. 1b) induced via the posterior over model parameters.

(a) Ensemble (b) Distribution

Figure 1: Distributions on a Simplex

By selecting an appropriate approximate inference scheme and model prior p(θ) Bayesian approaches

aim to craft an approximate model posterior q(θ) such that the ensemble {P(!c|x
∗,θ(i))}Mi=1 is

consistent in the region of training data, and becomes increasingly diverse when the input x∗ is far
from the training data. Thus, these approaches aim to craft an implicit conditional distribution over a
simplex (fig. 1b) with the attributes that it is sharp at the corners of a simplex for inputs similar to
the training data and flat over the simplex for out-of-distribution inputs. Given an ensemble from
such a distribution, the entropy of the expected distribution P(!c|x

∗,D) will indicate uncertainty
in predictions. It is not possible, however, to determine from the entropy whether this uncertainty
is due to a high degree of data uncertainty, or whether the input is far from the region of training
data. It is necessary to use measures of spread of the ensemble, such as Mutual Information, to
assess uncertainty in predictions due to model uncertainty. This allows sources of uncertainty to be
determined.

In practice, however, for deep, distributed black-box models with tens of millions of parameters, such
as DNNs, it is difficult to select an appropriate model prior and approximate inference scheme to
craft a model posterior which induces an implicit distribution with the desired properties. This makes
it hard to guarantee the desired properties of the induced distribution for current state-of-the-art Deep
Learning approaches. Furthermore, creating an ensemble can be computationally expensive.

An alternative, non-Bayesian class of approaches derives measures of uncertainty via the predictive
posteriors of regression [21] and classification [13, 22, 30] DNNs. Here, DNNs are explicitly trained
[22, 21] to yield high entropy posterior distributions for out-of-distribution inputs. These approaches
are easy to train and inference is computationally cheap. However, a high entropy posterior over
classes could indicate uncertainty in the prediction due to either an in-distribution input in a region
of class overlap or an out-of-distribution input far from the training data. Thus, it is not possible to
robustly determine the source of uncertainty using these approaches. Further discussion of uncertainty
measures can be found in section 4.

3 Prior Networks

Having described existing approaches, an alternative approach to modeling predictive uncertainty,
called Prior Networks, is proposed in this section. As previously described, Bayesian approaches aim
to construct an implicit conditional distribution over distributions on a simplex (fig 1b) with certain
desirable attributes by appropriate selection of model prior and approximate inference method. In
practice this is a difficult task and an open research problem.

4Where µ is a vector of probabilities:
⇥

µ1, · · · , µK

⇤

T
=

⇥

P(y = ω1), · · · , P(y = ωK)
⇤

T
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This work proposes to instead explicitly parameterize a distribution over distributions on a simplex,
p(µ|x∗,θ), using a DNN referred to as a Prior Network and train it to behave like the implicit
distribution in the Bayesian approach. Specifically, when it is confident in its prediction a Prior
Network should yield a sharp distribution centered on one of the corners of the simplex (fig. 2a). For
an input in a region with high degrees of noise or class overlap (data uncertainty) a Prior Network
should yield a sharp distribution focused on the center of the simplex, which corresponds to being
confident in predicting a flat categorical distribution over class labels (known-unknown) (fig. 2b).
Finally, for ’out-of-distribution’ inputs the Prior Network should yield a flat distribution over the
simplex, indicating large uncertainty in the mapping x 7! y (unknown-unknown) (fig. 2c).

(a) Confident Prediction (b) High data uncertainty (c) Out-of-distribution

Figure 2: Desired behaviors of a distribution over distributions

In the Bayesian framework distributional uncertainty, or uncertainty due to mismatch between the
distributions of test and training data, is considered a part of model uncertainty. In this work it will be
considered to be a source of uncertainty separate from data uncertainty or model uncertainty. Prior
Networks will be explicitly constructed to capture data uncertainty and distributional uncertainty. In
Prior Networks data uncertainty is described by the point-estimate categorical distribution µ and
distributional uncertainty is described by the distribution over predictive categoricals p(µ|x∗,θ). The
parameters θ of the Prior Network must encapsulate knowledge both about the in-domain distribution
and the decision boundary which separates the in-domain region from everything else. Construction
of a Prior Network is discussed in sections 3.1 and 3.2. Before this it is necessary to discuss its
theoretical properties.

Consider modifying eq. 1 by introducing the term p(µ|x∗,θ) as follows:

P(!c|x
∗,D) =

Z Z

p(!c|µ)
| {z }

Data

p(µ|x∗,θ)
| {z }

Distributional

p(θ|D)
| {z }

Model

dµdθ (4)

In this expression data, distribution and model uncertainty are now each modeled by a separate term
within an interpretable probabilistic framework. The relationship between uncertainties is made
explicit - model uncertainty affects estimates of distributional uncertainty, which in turn affects
the estimates of data uncertainty. This is expected, as a large degree of model uncertainty will
yield a large variation in p(µ|x∗,θ), and large uncertainty in µ will lead to a large uncertainty in
estimates of data uncertainty. Thus, model uncertainty affects estimates of data and distributional
uncertainties, and distributional uncertainty affects estimates of data uncertainty. This forms a
hierarchical model - there are now three layers of uncertainty: the posterior over classes, the per-data
prior distribution and the global posterior distribution over model parameters. Similar constructions
have been previously explored for non-neural Bayesian models, such as Latent Dirichlet Allocation
[31]. However, typically additional levels of uncertainty are added in order to increase the flexibility
of models, and predictions are obtained by marginalizing or sampling. In this work, however, the
additional level of uncertainty is added in order to be able to extract additional measures of uncertainty,
depending on how the model is marginalized. For example, consider marginalizing out µ in eq. 4,
thus re-obtaining eq. 1:

Z h Z

p(!c|µ)p(µ|x
∗,θ)dµ

i

p(θ|D)dθ =

Z

P(!c|x
∗,θ)p(θ|D)dθ (5)

Since the distribution over µ is lost in the marginalization it is unknown how sharp or flat it was
around the point estimate. If the expected categorical P(!c|x

∗,θ) is "flat" it is now unknown whether
this is due to high data or distributional uncertainty. In this situation, it will be necessary to again
rely on measures which assess the spread of an MC ensemble, like mutual information (section 4), to
establish the source of uncertainty. Thus, Prior Networks are consistent with previous approaches to
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modeling uncertainty, both Bayesian and non-Bayesian - they can be viewed as an ’extra tool in the
uncertainty toolbox’ which is explicitly crafted to capture the effects of distributional mismatch in a
probabilistically interpretable way. Alternatively, consider marginalizing out θ in eq. 4 as follows:

Z

p(!c|µ)
h Z

p(µ|x∗,θ)p(θ|D)dθ
i

dµ =

Z

p(!c|µ)p(µ|x
∗,D)dµ (6)

This yields expected estimates of data and distributional uncertainty given model uncertainty. Eq. 6
can be seen as a modification of eq. 1 where the model is redefined as p(!c|µ) and the distribution
over model parameters p(µ|x∗,D) is now conditional on both the training data D and the test input
x∗. This explicitly yields the distribution over the simplex which the Bayesian approach implicitly
induces. Further discussion of how measures of uncertainty are derived from the marginalizations of
equation 4 is presented in section 4.

Unfortunately, like eq. 1, the marginalization in eq. 6 is generally intractable, though it can be
approximated via Bayesian MC methods. For simplicity, this work will assume that a point-estimate
(eq. 7) of the parameters will be sufficient given appropriate regularization and training data size.

p(θ|D) = �(θ � θ̂) =) p(µ|x∗;D) ⇡ p(µ|x∗; θ̂) (7)

3.1 Dirichlet Prior Networks

A Prior Network for classification parametrizes a distribution over a simplex, such as a Dirichlet
(eq. 8), Mixture of Dirichlet distributions or the Logistic-Normal distribution. In this work the
Dirichlet distribution is chosen due to its tractable analytic properties. A Dirichlet distribution is a
prior distribution over categorical distribution, which is parameterized by its concentration parameters
α, where ↵0, the sum of all ↵c, is called the precision of the Dirichlet distribution. Higher values of
↵0 lead to sharper distributions.

Dir(µ|α) =
Γ(↵0)

QK

c=1 Γ(↵c)

KY

c=1

µαc−1
c , ↵c > 0, ↵0 =

KX

c=1

↵c (8)

A Prior Network which parametrizes a Dirichlet will be referred to as a Dirichlet Prior Network
(DPN). A DPN will generate the concentration parameters α of the Dirichlet distribution.

p(µ|x∗; θ̂) = Dir(µ|α), α = f(x∗; θ̂) (9)

The posterior over class labels will be given by the mean of the Dirichlet:

P(!c|x
∗; θ̂) =

Z

p(!c|µ)p(µ|x
∗; θ̂)dµ =

↵c

↵0
(10)

If an exponential output function is used for the DPN, where ↵c = ezc , then the expected posterior
probability of a label !c is given by the output of the softmax (eq. 11).

P(!c|x
∗; θ̂) =

ezc(x
∗)

PK

k=1 e
zk(x∗)

(11)

Thus, standard DNNs for classification with a softmax output function can be viewed as predicting the
expected categorical distribution under a Dirichlet prior. The mean, however, is insensitive to arbitrary
scaling of ↵c. Thus the precision ↵0, which controls the sharpness of the Dirichlet, is degenerate
under standard cross-entropy training. It is necessary to change the cost function to explicitly train a
DPN to yield a sharp or flat prior distribution around the expected categorical depending on the input
data.

3.2 Dirichlet Prior Network Training

There are potentially many ways in which a Prior Network can be trained and it is not the focus of
this work to investigate them all. This work considers one approach to training a DPN based on the
work done in [21, 22] and here. The DPN is explicitly trained in a multi-task fashion to minimize
the KL divergence (eq. 12) between the model and a sharp Dirichlet distribution focused on the
appropriate class for in-distribution data, and between the model and a flat Dirichlet distribution for
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out-of-distribution data. A flat Dirichlet is chosen as the uncertain distribution in accordance with the
principle of insufficient reason [32], as all possible categorical distributions are equiprobable.

L(θ) = Epin(x)[KL[Dir(µ|α̂)||p(µ|x;θ)]] + Epout(x)[KL[Dir(µ|α̃)||p(µ|x;θ)]] (12)

In order to train using this loss function the in-distribution targets α̂ and out-of-distribution targets α̃
must be defined. It is simple to specify a flat Dirichlet distribution by setting all ↵̃c = 1. However,
directly setting the in-distribution target ↵̂c is not convenient. Instead the concentration parameters

↵̂c are re-parametrized into ↵̂0, the target precision, and the means µ̂c =
α̂c

α̂0

. ↵̂0 is a hyper-parameter

set during training and the means are simply the 1-hot targets used for classification. A further
complication is that learning sparse ’1-hot’ continuous distributions, which are effectively delta
functions, is challenging under the defined KL loss, as the error surface becomes poorly suited for
optimization. There are two solutions - first, it is possible to smooth the target means (eq. 13), which
redistributes a small amount of probability density to the other corners of the Dirichlet. Alternatively,
teacher-student training [33] can be used to specify non-sparse target means µ̂. The smoothing
approach is used in this work. Additionally, cross-entropy can be used as an auxiliary loss for
in-distribution data.

µ̂c =
n

1� (K � 1)✏ if �(y = !c) = 1
✏ if �(y = !c) = 0

(13)

The multi-task training objective (eq. 12) requires samples of x̃ from the out-of-domain distribution
pout(x). However, the true out-of-domain distribution is unknown and samples are unavailable.
One solution is to synthetically generate points on the boundary of the in-domain region using a
generative model [21, 22]. An alternative is to use a different, real dataset as a set of samples from
the out-of-domain distribution [22].

4 Uncertainty Measures

The previous section introduced a new framework for modeling uncertainty. This section explores a
range of measures for quantifying uncertainty given a trained DNN, DPN or Bayesian MC ensemble.
The discussion is broken down into 4 classes of measure, depending on how eq. 4 is marginalized.
Details of derivation can be found in Appendix C.

The first class derives measures of uncertainty from the expected predictive categorical P(!c|x
∗;D),

given a full marginalization of eq. 4 which can be approximated either with a point estimate of the

parameters θ̂ or a Bayesian MC ensemble. The first measure is the probability of the predicted class
(mode), or max probability (eq. 14), which is a measure of confidence in the prediction used in
[13, 22, 30, 23, 11].

P = max
c

P(!c|x
∗;D) (14)

The second measure is the entropy (eq. 15) of the predictive distribution [23, 18, 11]. It behaves
similar to max probability, but represents the uncertainty encapsulated in the entire distribution.

H[P(y|x∗;D)] = �

KX

c=1

P(!c|x
∗;D) ln(P(!c|x

∗;D)) (15)

Max probability and entropy of the expected distribution can be seen as measures of the total
uncertainty in predictions.

The second class of measures considers marginalizing out µ in eq. 4, yielding eq. 1. Mutual
Information (MI) [23] between the categorical label y and the parameters of the model θ is a measure

of the spread of an ensemble {P(!c|x
∗,θ(i))}Mi=1 [18] which assess uncertainty in predictions due to

model uncertainty. Thus, MI implicitly captures elements of distributional uncertainty. MI can be
expressed as the difference of the total uncertainty, captured by the entropy of expected distribution,
and the expected data uncertainty, captured by expected entropy of each member of the ensemble
(eq. 16). This interpretation was given in [34].

I[y,θ|x∗,D]
| {z }

Model Uncertainty

= H[Ep(θ|D)[P(y|x
∗,θ)]]

| {z }

Total Uncertainty

� Ep(θ|D)[H[P(y|x∗,θ)]]
| {z }

Expected Data Uncertainty

(16)
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The third class of measures considers marginalizing out θ in eq. 4, yielding eq. 6. The first measure
in this class is the mutual information between y and µ (eq. 17), which behaves in exactly the same
way as MI between y and θ, but the spread is now explicitly due to distributional uncertainty, rather
than model uncertainty.

I[y,µ|x∗;D]
| {z }

Distributional Uncertainty

= H[Ep(µ|x∗;D)[P(y|µ)]]
| {z }

Total Uncertainty

� Ep(µ|x∗;D)[H[P(y|µ)]]
| {z }

Expected Data Uncertainty

(17)

Another measure of uncertainty is the differential entropy (eq. 18) of the DPN. This measure is
maximized when all categorical distributions are equiprobable, which occurs when the Dirichlet
Distribution is flat - in other words when there is the greatest variety of samples from the Dirichlet
prior. Differential entropy is well suited to measuring distributional uncertainty, as it can be low even
if the expected categorical under the Dirichlet prior has high entropy, and also captures elements of
data uncertainty.

H[p(µ|x∗;D)] = �

Z

SK−1

p(µ|x∗;D) ln(p(µ|x∗;D))dµ (18)

The final class of measures uses the full eq. 4 and assesses the spread of p(µ|x∗;θ) due to model
uncertainty via the MI between µ and θ, which can be computed via Bayesian ensemble approaches.

5 Experiments

The previous sections discussed modeling different aspects of predictive uncertainty and presented
several measures of quantifying it. This section compares the proposed and previous methods in two
sets of experiments. The first experiment illustrates the advantages of a DPN over other non-Bayesian
methods [22, 30] on synthetic data and the second set of experiments evaluate DPNs on MNIST and
CIFAR-10 and compares them to DNNs and ensembles generated via Monte-Carlo Dropout (MCDP)
on the tasks of misclassification detection and out-of-distribution data detection. The experimental
setup is described in Appendix A and additional experiments are described in Appendix B.

5.1 Synthetic Experiments

A synthetic experiment was designed to illustrate the limitation of using uncertainty measures derived
from P(!c|x

∗;D) [22, 30] to detect out-of-distribution samples. A simple dataset with 3 Gaussian
distributed classes with equidistant means and tied isotropic variance � is created. The classes are
non-overlapping when � = 1 (fig. 3a) and overlap when � = 4 (fig. 3d). The entropy of the true
posterior over class labels is plotted in blue in figures 3a and 3d, which show that when the classes are
distinct the entropy is high only on the decision boundaries, but when the classes overlap the entropy
is high also within the data region. A small DPN with 1 hidden layer of 50 neurons is trained on this
data. Figures 3b and 3c show that when classes are distinct both the entropy of the DPN’s predictive
posterior and the differential entropy of the DPN have identical behaviour - low in the region of
data and high elsewhere, allowing in-distribution and out-of-distribution regions to be distinguished.
Figures 3e and 3f, however, show that when there is a large degree of class overlap the entropy and
differential entropy have different behavior - entropy is high both in region of class overlap and far
from training data, making difficult to distinguish out-of-distribution samples and in-distribution
samples at a decision boundary. In contrast, the differential entropy is low over the whole region of
training data and high outside, allowing the in-distribution region to be clearly distinguished from the
out-of-distribution region.

5.2 MNIST and CIFAR-10 Experiments

An in-domain misclassification detection experiment and an out-of-distribution (OOD) input detection
experiment were run on the MNIST and CIFAR-10 datasets [35, 36] to assess the DPN’s ability to
estimate uncertainty. The misclassification detection experiment involves detecting whether a given
prediction is incorrect given an uncertainty measure. Misclassifications are chosen as the positive
class. The misclassification detection experiment was run on the MNIST valid+test set and the
CIFAR-10 test set. The out-of-distribution detection experiment involves detecting whether an input
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(a) σ = 1 (b) Entropy σ = 1 (c) Diff. Entropy σ = 1

(d) σ = 4 (e) Entropy σ = 4 (f) Diff. Entropy σ = 4

Figure 3: Synthetic Experiment

is out-of-distribution given a measure of uncertainty. Out-of-distribution samples are chosen as the
positive class. The OMNIGLOT dataset [37], scaled down to 28x28 pixels, was used as real ’OOD’
data for MNIST. 15000 samples of OMNIGLOT data were randomly selected to form a balanced
set of positive (OMNIGLOT) and negative (MNIST valid+test) samples. For CIFAR-10 three OOD
datasets were considered - SVHN, LSUN and TinyImagetNet (TIM) [38, 39, 40]. The two considered
baseline approaches derive uncertainty measures from either the class posterior of a DNN [13] or an
ensemble generated via MC dropout applied to the same DNN [23, 18]. All uncertainty measures
described in section 4 are explored for both tasks in order to see which yield best performance. The
performance is assessed by area under the ROC (AUROC) and Precision-Recall (AUPR) curves in
both experiments as in [13].

Table 1: MNIST and CIFAR-10 misclassification detection

Data Model
AUROC AUPR

% Err.
Max.P Ent. M.I. D.Ent. Max.P Ent. M.I. D.Ent.

MNIST
DNN 98.0 98.6 - - 26.6 25.0 - - 0.4
MCDP 97.2 97.2 96.9 - 33.0 29.0 27.8 - 0.4
DPN 99.0 98.9 98.6 92.9 43.6 39.7 30.7 25.5 0.6

CIFAR10
DNN 92.4 92.3 - - 48.7 47.1 - - 8.0
MCDP 92.5 92.0 90.4 - 48.4 45.5 37.6 - 8.0
DPN 92.2 92.1 92.1 90.9 52.7 51.0 51.0 45.5 8.5

Table 1 shows that the DPN consistently outperforms both a DNN, and a MC dropout ensemble
(MCDP) in misclassification detection performance, although there is a negligible drop in accuracy of
the DPN as compared to a DNN or MCDP. Max probability yields the best results, closely followed
by the entropy of the predictive distribution. This is expected, as they are measures of total uncertainty
in predictions, while the other measures capture the either model or distributional uncertainty. The
performance difference is more pronounced on AUPR, which is sensitive to misbalanced classes.

Table 2 shows that a DPN consistently outperforms the baselines in OOD sample detection for both
MNIST and CIFAR-10 datasets. On MNIST, the DPN is able to perfectly classify all samples using
max probability, entropy and differential entropy. On the CIFAR-10 dataset the DPN consistently
outperforms the baselines by a large margin. While high performance against SVHN and LSUN is
expected, as LSUN, SVHN and CIFAR-10 are quite different, high performance against TinyIma-
geNet, which is also a dataset of real objects and therefore closer to CIFAR-10, is more impressive.
Curiously, MC dropout does not always yield better results than a standard DNN, which supports
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the assertion that it is difficult to achieve the desired behaviour for a Bayesian distribution over
distributions.

Table 2: MNIST and CIFAR-10 out-of-domain detection

Data
Model

AUROC AUPR
ID OOD Max.P Ent. M.I. D.Ent. Max.P Ent. M.I. D.Ent.

MNIST OMNI
DNN 98.7 98.8 - - 98.3 98.5 - -
MCDP 99.2 99.2 99.3 - 99.0 99.1 99.3 -
DPN 100.0 100.0 99.5 100.0 100.0 100.0 97.5 100.0

CIFAR10 SVHN
DNN 90.1 90.8 - - 84.6 85.1 - -
MCDP 89.6 90.6 83.7 - 84.1 84.8 73.1 -
PN 98.1 98.2 98.2 98.5 97.7 97.8 97.8 98.2

CIFAR10 LSUN
DNN 89.8 91.4 - - 87.0 90.0 - -
MCDP 89.1 90.9 89.3 - 86.5 89.6 86.4 -
DPN 94.4 94.4 94.4 94.6 93.3 93.4 93.4 93.3

CIFAR10 TIM
DNN 87.5 88.7 - - 84.7 87.2 - -
MCDP 87.6 89.2 86.9 - 85.1 87.9 83.2 -
DPN 94.3 94.3 94.3 94.6 94.0 94.0 94.0 94.2

The experiments above suggest that there is little benefit of using measures such as differential entropy
and mutual information over standard entropy. However, this is because MNIST and CIFAR-10 are
low data uncertainty datasets - all classes are distinct. It is interesting to see whether differential
entropy of the Dirichlet prior will be able to distinguish in-domain and out-of-distribution data better
than entropy when the classes are less distinct. To this end zero mean isotropic Gaussian noise with
a standard deviation � = 3 noise is added to the inputs of the DNN and DPN during both training
and evaluation on the MNIST dataset. Table 3 shows that in the presence of strong noise entropy
and MI fail to successfully discriminate between in-domain and out-of-distribution samples, while
performance using differential entropy barely falls.

Table 3: MNIST vs OMNIGLOT. Out-of-distribution detection AUROC on noisy data.

Ent. M.I. D.Ent.
� 0.0 3.0 0.0 3.0 0.0 3.0

DNN 98.8 58.4 - - - -
MCDP 98.8 58.4 99.3 79.1 - -
DPN 100.0 51.8 99.5 22.3 100.0 99.8

6 Conclusion

This work describes the limitations of previous work on predictive uncertainty estimations within the
context of sources of uncertainty and proposes to treat out-of-distribution (OOD) inputs as a separate
source of uncertainty, called Distributional Uncertainty. To this end, this work presents a novel
framework, called Prior Networks (PN), which allows data, distributional and model uncertainty to
be treated separately within a consistent probabilistically interpretable framework. A particular form
of these PNs are applied to classification, Dirichlet Prior Networks (DPNs). DPNs are shown to yield
more accurate estimates of distributional uncertainty than MC Dropout and standard DNNs on the task
of OOD detection on the MNIST and CIFAR-10 datasets. The DPNs also outperform other methods
on the task of misclassification detection. A range of uncertainty measures is presented and analyzed
in the context of the types of uncertainty which they assess. It was noted that measures of total
uncertainty, such as max probability or entropy of the predictive distribution, yield the best results on
misclassification detection. Differential entropy of DPN was best for measure of uncertainty for OOD
detection, especially when classes are less distinct. This was illustrated on both a synthetic experiment
and on a noise-corrupted MNIST task. Uncertainty measures can be analytically calculated at test
time for DPNs, reducing computational cost relative to ensemble approaches. Having investigated
PNs for image classification, it is interesting to apply them to other tasks computer vision, NLP,
machine translation, speech recognition and reinforcement learning. Finally, it is necessary to explore
Prior Networks for regression tasks.
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